25.875 OT

download 25.875 OT

of 11

Transcript of 25.875 OT

  • 8/11/2019 25.875 OT

    1/11

    Unlined canal Offtake : 2R

    at Km : 1.325

    Discharge (required) = 0.1020 cumecs Discharge (provided) = 0.107 OKV = 0.971 OK

    Full supply depth (d) = 0.35 m Vo

    Bed width (b) = 0.50 m Manning's rugosity coefficient (n) = 0.03

    Side slopes ( Inner) = 1.5 :1

    ( Outer) = 2.0 :1

    Bed fall = 1 in 1500 OR 0.00067

    Area = 0.500 + 0.35 x 1.5 x 0.35

    = 0.359 Sq.m

    P = 0.50 + 2 x 1.803 x 0.35

    = 1.76 m

    R = A

    P

    = 0.359 = 0.204 m

    1.762

    V = 1 X 0.2042/3

    X 0.000670.5

    0.030

    = 0.298 m/sec

    Q = V x A

    = 0.298 x 0.35875

    = 0.107 cumecs

    Vo = 0.530 x d0.52

    m/sec

    Vo = 0.530 x 0.3500.52

    = 0.307 m/sec

    V = 0.298 = 0.971

    Vo 0.307

    GUNDLAKAMMA RESERVOIR PROJECT2. DESIGN OF OFF-TAKE CHANNEL

    0.350 m :1

    1.5

    Bed width

    0.50 m

    3 245932249.xls.ms_office

  • 8/11/2019 25.875 OT

    2/11

    1) HYDRAULIC PARTICULARS

    1 Ayacut Ha 41100 400

    2 Discharge (Required/Designed) Cumecs 19.383 / 19.540 0.1360

    3 Bed width m 10.10 0.70

    4 Full Supply Depth m 2.00 0.35

    5 Free board m 0.90 0.45

    6 Side slopes (Inner) - 1.50 :1 1.50 :1

    (Outer) 2 :1 2 :1

    7 Bed fall - 1 in 5000 1 in 2000

    8 Velocity m/s 0.746 0.3250

    9 Value of 'n' - 0.0250 0.0250

    10 Top width of banks L/R m 7.000 / 4.00 4.200 / 2.00

    11 C.B.L. m + 453.325 + 453.925

    12 F.S.L. m + 455.325 + 454.275

    13 T.B.L. m + 456.225 + 454.725

    14 G.L. m + 456.065 + 456.065

    2) DESIGN OF O.T.CHANNEL

    Assume the section - x 0.350 m

    Area - 1.500

    = 0.42875 m2

    Perimeter - + 1.803 x 2 x 0.350

    = 1.962 m

    Hydraulic Radius (R) - A/P = 0.429 / 1.962

    0.2185 m

    R2/3

    - = 0.3628 m

    Velocity - V = 1/ 0.025 x 0.3628 x 0.022361

    = 0.3245

    Discharge - Q = 0.4288 x 0.3245

    = 0.1391 > 0.1360

    HENCE O.K.

    V0= 0.53 x 0.350= 0.30704

    V/V0= 0.3245 / 0.3070

    = 1.0569 (1.1 to 0.9)

    3) DRIVING HEAD:

    FSL in the parent channel = 455.325 m

    3/4 of FSD = 1.500

    3/4 of FSL = + 454.825

    3/4 FSL in the Offtake channel = + 454.275 m

    Driving head = 454.825 - 454.275

    So, Consider the driving head = 0.5500 m

    4) AREA OF VENT WAY

    Q = Cd A Sqrt (2g h) (for circular vent ) Cd = 0.75

    Q Cd A S t (2 h) (f R t l t t)

    DESIGN OF OFF-TAKE SLUICE FOR 12 L MAJOR @ Km 25.875

    0.7

    ( 0.7 + x 0.35 ) x 0.350

    Main Canal O.T 12 L

    DescriptionSl Particulars ofUnit

    0.7

    0.52

  • 8/11/2019 25.875 OT

    3/11

    Q = OT Discharge = 0.1360 Cumecs

    h = Driving head considered = 0.5500 m

    A = Area of vent way

    Cd = Coefficient of discharge = 0.750

    In this case "Provide circular type vent"

    0.136 = 0.750 x A x Sqrt (2 x 9.81 x

    = 0.750 x A x Sqrt 10.791= 2.464 x A

    Area of vent (A) = 0.136

    2.464

    A = 0.055 Sqm

    The minimum dia . Of pipe = 0.300 m

    Dia meter of pipe required (d) = Sqrt(4x0.055/pi)

    = 0.265 m

    = 265.20 mm

    Provide 300 mm minimum with ferrule of 265 mm @ the first pipe joint.

    So, provide 1 vents of 0.300 m

    Therefore the area of vent provided = 0.071 Sqm > 0.055 Sqm HENCE OK

    5 HOIST PLATFORM LEVEL (HPL)

    (A) Hoist platform level = Sill level + twice height of gate + 0.3 + 0.15

    Height of gate = 0.30 m

    Hoist plotform level = 453.925 + 2 x 0.30 + 0.05

    + 0.3 + 0.15

    Hoist plotform level = + 455.075 m

    FSL in the parent channel = + 455.325 m

    (B) Hoist plotform level = FSL + 0.3

    = 455.325 + 0.3

    = + 455.625 m

    Therefore, Provide the hoist platform level (HPL) = + 455.63 m

    Provide Width of platform = 1.200 m

    4 LENGTH OF BARREL

    Length of barrel Required = 0.60 + 1.5 (TBL/GL - HPL) + TW + 2/1.5 (TBL/GL - d/s Hwl) + 0.6/0.45

    Assume Level of D/s head wall = m

    Length of barrel = 0.6 + 1.500 x 456.225 - 455.625 + 7.000

    + 2 x 456.225 - 455.725 + 0.5

    = 0.6 + 0.9 + 7.000 + 1.000

    + 0.5

    Length of barrel = 10.0000 m

    Provide 4 no.s of 2.500 m length pipes

    Length of barrel provided = 10.000 m HENCE OK

    5) PROTECTION WORK

    Provide 5 m length of Lining in CC M10 on D/S of of structure in the O.T Channel

    and the same for 5 m length on either side of U/S transition to the side of Parent channel

    6) UPSTERAM TRANSITION

    Th l l f U/S l d i Pl tf l l (Pl tf idth / id l )

    0.5500 )

    + 455.7250

  • 8/11/2019 25.875 OT

    4/11

    The length of U/S transition (or) The Horizontal length of U/S sloped wing

    = (level of U/S sloped wing - CBL of parent channel) * side slope

    = 1.500 x + 454.825 - 453.325

    = 2.250 m

    Providing length of transition 1 in 3 flare

    Outer width of transition = barrel width +( 2 x horizontal length of U/s sloped wing / flare)

    = 0.300 + 2 x 2.250

    3

    = 1.800 m

    say 1.800 m

    7) DOWNSTERAM TRANSITION

    Barrel / Pipes width = 0.300 m

    Bed width of O.T channel = 0.70 m

    Providing length of transition in 1 in 5 flare

    The length of D/S transition = 5 x 0.70 - 0.3

    2

    = 1.0 m

    However provide , a cistern of 2.000 x 2.00 m size

    from which the offtake channel runs

  • 8/11/2019 25.875 OT

    5/11

    GL = ######## m

    TBL of Parent canal = ######## m Dia of pipe = 300 mm

    Platform level = ######## m Thickness of pipe = 30.00 mm FSL parent channel = ######## m Caulking space = 16.00 mm

    Sill of OT = ######## m Collar thickness = 30.00 mm

    CBL of Parent channel = ######## m Collar length = 150.00 mm

    GL = ######## m

    length of barrel 10.00 m

    0.900 Bank Width 4.000 m 4.000

    1.200 + 456.225 TBL

    0.45 0.6

    0.15 2.0001.5 : 1 2.0 : 1

    Platform level #######

    2.27

    FSL #######

    Pial Wall

    #######

    + 453.955 0.03

    Parent channel 1 2 0.3 3 4#######

    CBL ########

    1.2 2.5 2.5 2.5 2.5

    3.(ii). LINE DIAGRAM OF OFFTAKE SLUICE (CIRCULAR TYPE VENT)

    7

  • 8/11/2019 25.875 OT

    6/11

    1. DESIGN OF HEAD WALL (U/S)

    = t

    1.5:1 = t

    W6 +

    +

    +

    Taking moments about A (Stresses in concrete)

    W1 x x

    W2 x x x

    W3 x x x

    W6 x x x

    Pv x x x

    Ph x x x

    Lever arm = M / V = / = m

    Eccentricity = - /2 = m

    Permissible 'e' = = < REVISE THE SEC

    = x ( 1 + 6 ) = t/sq.m.

    Min. Stress = x ( 1 - 6 ) = t/sq.m.

    Taking moments about B (Stresses on soil)

    W1 x x

    W2 x x x

    W3 x x x

    W4 x x

    W5 x x

    W6 x x x

    Pv x x x

    Ph x x x

    Lever arm = M / V = / = m

    Eccentricity = - /2 = m

    Permissible 'e' = = > HENCE OK

    = x ( 1 + 6 ) = t/sq mMax comp Stress 18 16 x 0 323 14 102

    2.35 /6 0.392 0.323

    27.2 18.16 1.498

    1.498 2.350 0.323

    Sv 18.16

    SM 27.202

    ---

    0.360 3.642 3.642 2.100 10.015 1.15 11.517

    0.1031 3.642 3.642 2.100 2.871

    2.820 1.175 3.314

    2.100

    1.961.150 2.375 2.100 0.50 2.868 0.683

    5.985

    1.150 2.375 2.400 0.50 3.28 1.067 3.496

    0.600 2.375 2.400 3.420 1.750

    Load ParticularsForce

    V HMoment

    1.750 1.750

    12.63 x 0.393

    1.750 1.750

    1.75 /6 0.292

    Max. comp. Stress 12.63 x 0.393

    16.008

    16.0 12.63 1.268

    1.268 1.750 0.393

    0.1031

    SV 12.63

    3.142 3.142 2.100

    7.453 0.950 7.0810.3596 3.142 3.142 2.100

    0.767 2.513

    1.150 2.375 2.100 0.500 2.868 0.383 1.1

    1.150 2.375 2.400 0.500 3.28

    L.A. MomentV H

    3.420 1.450 4.959

    unit wt of concrete 2.400

    455.625

    W3

    2.100

    W4 W1

    1.7500.50

    W5

    W2

    0.30 1.150 0.600

    unit wt of earth

    0.30 453.25

    2.350 452.750

    ParticularsForce

    2.375

    0.77

    0.767 1.150 2.100

    Load

    0.600 2.375

    0.3550.500 0.926 0.383

    2.137

    0.300 3.142

    0.767 1.150 0.683 0.633

    0.297

    2.350 0.500 2.400

    8. DESIGN OF HEAD WALLS, WINGS AND RETURNS

    0.9262.100 0.50

    1.979

    ---

    SM

    0.393

    16.939

    -2.507

    L.A.

    0.15

    2.400

  • 8/11/2019 25.875 OT

    7/11

    2. DESIGN OF WING WALLS (U/S)

    = t

    = t

    +

    +

    +

    Taking moments about A (Stresses in concrete)

    W1 x x

    W2 x x x

    W3 x x x

    Pv x x x

    Ph x x

    Lever arm = M / V = / = m

    Eccentricity = - /2 = m

    Permissible 'e' = = < REVISE THE SEC

    = x ( 1 + 6 ) = t/sq.m.

    Min. Stress = x ( 1 - 6 ) = t/sq.m.

    Taking moments about B (Stresses on soil)

    W1 x x

    W2 x x x

    W3 x x x

    W4 x x

    W5 x x

    Pv x x x

    Ph x x

    Lever arm = M / V = / = m

    Eccentricity = - /2 = m

    Permissible 'e' = = > HENCE OK

    = x ( 1 + 6 ) = t/sq.m.

    0.600

    0.60

    3.4

    2.400

    0.50

    0.165

    /6 0.100

    1.57

    1.575

    1.575

    2.400

    2.100

    0.6725.02

    0.600

    Max. comp. Stress

    0.672 1.200

    1.20

    0.100

    0.500 1.575 2.400

    Sv 5.024

    1.440 0.6

    0.072

    /6 0.200 0.072

    5.694

    1.200 1.200

    5.02 x 0.072

    0.83 1.006

    3.374SM

    ---

    1.200 0.500

    0.134 2.075 2.075 2.100 1.212

    0.992 0.15 0.149

    0.864

    0.0384 2.075 2.075 2.100 0.347

    0.100 0.50

    0.300 1.575 2.100

    0.367

    0.333

    0.650

    0.056

    L.A. MomentV H

    1.229

    0.19 0.07

    1.890

    Load ParticularsForce

    10.552

    0.600 0.600

    2.44 x 0.159 -2.404

    0.159

    1.121 2.44 0.459

    Max. comp. Stress 2.44 x 0.159

    S M 1.121

    0.7 0.630 0.44

    0.459 0.600 0.159

    S V 2.444

    0.134 1.575 2.100

    0.033 0.006

    0.0384 1.575 1.57 2.100 0.2 ---

    0.100 1.575 2.100 0.500 0.2

    0.662

    0.100 1.575 2.400 0.500 0.2 0.067 0.013

    0.500 1.575 2.400 1.9 0.350

    Load ParticularsForce

    L.A. MomentV H

    2.100

    0.600

    W5

    1.200 452.75

    0.50

    0.300.300

    454.825

    unit wt of earth

    unit wt of concrete 2.400

    W3

    W4 W1

    W2

    453.250.100 0.500

    1.575

  • 8/11/2019 25.875 OT

    8/11

    3. DESIGN OF HEAD WALL (D/S)

    = t

    2:1 = t

    W6 +

    +

    +

    Taking moments about A (Stresses in concrete)

    W1 x x

    W2 x x x

    W3 x x x

    W6 x x x

    Pv x x x

    Ph x x x

    Lever arm = M / V = / = m

    Eccentricity = - /2 = m

    Permissible 'e' = = < REVISE THE SEC

    = x ( 1 + 6 ) = t/sq.m.

    Min. Stress = x ( 1 - 6 ) = t/sq.m.

    Taking moments about B (Stresses on soil)

    W1 x x

    W2 x x xW3 x x x

    W4 x x

    W5 x x

    W6 x x x

    Pv x x x

    Ph x x x

    Lever arm = M / V = / = m

    Eccentricity = - /2 = m

    Permissible 'e' = = > HENCE OK

    = x ( 1 + 6 ) = t/sq.m.

    ---

    2.586

    0.600 0.400 2.100 0.50

    0.051

    0.1260.252 0.500

    0.741

    455.725

    W3

    unit wt of earth0.40

    unit wt of concrete

    W1

    W2

    3.96

    453.245

    Load Particulars

    453.745

    1.1000.50

    W5

    0.300 0.600 0.500

    2.376

    ForceL.A. Moment

    V H

    0.850 2.02

    1.43 0.400 0.5710.600 1.980 2.400 0.500

    0.200 0.250.600 1.980 2.100 0.500

    2.380 2.380 2.100

    1.247

    0.500 0.252

    4.941

    0.792 2.049

    0.0623

    S V 6.042

    0.2174 2.380 2.380 2.100

    0.818 1.100 0.268

    S M

    1.10 /6 0.183 0.268

    4.9 6.04 0.818

    0.268 -2.537

    Max. comp. Stress 6.04 x 0.268

    1.100 1.100

    Load ParticularsForce

    13.522

    1.100 1.100

    6.04 x

    0.500 1.980 2.400 2.376

    L.A. MomentV H

    0.600 1.980 2.400 0.50 1.430.500 0.624

    1.150 2.733

    0.700

    0.300 2.380 2.100

    0.9980.600 1.980 2.100 0.50 1.247

    1.499 0.15 0.225

    1.700 0.500 2.400 2.040 0.85 1.734

    0.805 ---0.0623 2.480 2.480 2.100

    2.808 0.992 2.7860.217 2.480 2.480 2.100

    SM 9.226

    9.2 9.65 0.957

    Sv 9.645

    0.957 1.700 0.107

    1.70 /6 0.283 0.107

    Max. comp. Stress 9.65 x 0.107 7.816

    1 700 1 700

    2.400

    2.100

    0.600 0.400 2.100

    0.500 1.980 2.400

    1.700

    0.30

    W4

    0.200

    1.980

  • 8/11/2019 25.875 OT

    9/11

    4. DESIGN OF WING & RETURN WALLS (D/S)

    = t

    = t

    +

    +

    +

    Taking moments about A (Stresses in concrete)

    W1 x x

    W2 x x x

    W3 x x x

    Pv x x x

    Ph x x

    Lever arm = M / V = / = m

    Eccentricity = - /2 = m

    Permissible 'e' = = < REVISE THE SEC

    = x ( 1 + 6 ) = t/sq.m.

    Min. Stress = x ( 1 - 6 ) = t/sq.m.

    Taking moments about B (Stresses on soil)

    W1 x x

    W2 x x xW3 x x x

    W4 x x

    W5 x x

    Pv x x x

    Ph x x

    Lever arm = M / V = / = m

    Eccentricity = - /2 = m

    Permissible 'e' = = > HENCE OK

    = x ( 1 + 6 ) = t/sq.m.

    unit wt of concrete 2.400

    W4 W1

    W2

    unit wt of earth 2.100

    455.725

    W3

    453.745

    0.8000.50

    W5

    0.300 0.300 0.500 0.30

    MomentV H

    1.400 453.245

    Load Particulars

    0.500 1.980 2.400 2.376

    ForceL.A.

    0.550 1.307

    0.300 1.980 2.400 0.500 0.71 0.200 0.143

    0.300 1.980 2.100 0.500 0.624 0.100 0.063

    0.316 ---0.0384 1.980 1.980 2.100

    1.103 0.792 0.8740.134 1.980 1.980 2.100

    S M 2.387

    2.4 4.03 0.593

    S V 4.029

    Max. comp. Stress 4.03 x 0.193 12.325

    0.593 0.800 0.193

    0.80 /6

    0.800 0.800

    4.03 x 0.193

    0.1930.133

    -2.254

    0.800 0.800

    Load ParticularsForce

    L.A. MomentV H

    0.500 1.980 2.400 2.376 0.850 2.02

    0.71 0.500 0.3570.300 1.980 2.400 0.500.624 0.400 0.250.300 1.980 2.100 0.50

    0.7 1.176

    0.300 1.980 2.100

    2.480 2.100

    1.247 0.15 0.188

    1.400 0.500 2.400 1.680

    1.7170.134 2.480 2.480 2.100

    ---0.0384 2.480

    Max. comp. Stress 7.14 x

    SM

    0.8 1.400 0.100

    1.40 /6 0.233

    7.2810.100

    1.400 1.400

    Sv 7.136

    1.731

    5.7 7.14 0.8

    0.100

    0.992

    0.496

    5.708

    1.980

  • 8/11/2019 25.875 OT

    10/11

    Sl STRESS TABLE Concrete Soil

    no

    1 HEAD WALL U/S

    Min. Stress

    2 WING WALL U/S

    Min. Stress

    3 HEAD WALLS D/S

    Min. Stress

    4 WING & RETURN

    WALLS Min. Stress

    3.531-2.537

    7.81613.522Max. comp. Stress

    2.679

    Max. comp. Stress

    t / Sqm

    5.69410.552Max. comp. Stress

    2.913-2.254

    -2.507

    7.28112.325

    -2.404

    Max. comp. Stress

    1.355

    t / Sqm

    14.10216.939

  • 8/11/2019 25.875 OT

    11/11

    S.NO PAGE NO

    I 1

    II

    3

    3

    4

    4

    4

    4

    5

    6

    III

    DESIGN OF OFF-TAKE (12L) @ km 17.350

    GENERAL PLAN AND SECTION

    DESCRIPTION

    NOTE ON DESIGN FEATURES

    DESIGN CALCULATIONS

    1. HYDRAULIC PARTICULARS OF CANAL/OT

    2. VENT WAY

    3. HOIST PLATFORM LEVEL

    8. DESIGN HEADWALLS, WINGS & RETURNS

    DRAWINGS

    4. LENGTH BARREL

    5. PROTECTION WORK

    6. UPSTREAM TRANSITION

    7. DOWNSTREAM TRANSITION