2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on...

54
AP Chemistry Summer Enrichment Assignment Dear AP Chemistry Students and Parents, Welcome to AP Chemistry! I am so excited to start the new school year and to meet all of my new students! I hope that you are having a great end to this school year and that you have a wonderful summer planned. AP Chemistry is a highly rigorous course that requires lots of effort and motivation. If you are willing to put in the time, the rewards are huge! For the summer, I believe that you should have a break, relax, and enjoy yourselves…but I don’t want you forgetting what you had previously learned in honors chemistry. If you find yourself struggling to answer any of the questions or problems included in this assignment, I expect that you will first reference your textbook for clarification. If you are still experiencing difficulty, you should contact me in order to get help. Due dates for the assignment are listed below. There are two parts to the assignment: Part 1 is the memorization portion memorizing the common polyatomic ions & solubility rules. Part 2 is our first unit, covering chapters 13 of your text. These chapters are a review of first year chemistry. The assignment may be done in any order you choose, however I strongly suggest you work through your text, the notes, and then take the multiple choice quiz, as the notes are designed to prepare for you this assessment. You do not need to print out this entire packet! You may choose to print only the quizzes and honor code sheet to turn in at the beginning of school. I will also make the quizzes available as Google forms on my website. Please note, many multiplechoice questions on the AP Exam involve math but you will not have a calculator to complete them. You should estimate and round numbers to make them easier to work with, in your efforts to solve the problem. For this reason, you are not allowed the use of a calculator on the multiplechoice quizzes on the summer assignment. It is my suggestion that you purchase a review book for AP Chemistry. These are great resources for unit test review and the AP Exam! If you have any questions, please feel free to see me or email me. Take care and have a great summer!!! Thanks, Mrs. Elyse Vaughan

Transcript of 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on...

Page 1: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

AP Chemistry Summer Enrichment Assignment        Dear  AP  Chemistry  Students  and  Parents,    Welcome  to  AP  Chemistry!    I  am  so  excited  to  start  the  new  school  year  and  to  meet  all  of  my  new  students!    I  hope  that  you  are  having  a  great  end  to  this  school  year  and  that  you  have  a  wonderful  summer  planned.    AP  Chemistry  is  a  highly  rigorous  course  that  requires  lots  of  effort  and  motivation.    If  you  are  willing  to  put  in  the  time,  the  rewards  are  huge!  ☺    For  the  summer,  I  believe  that  you  should  have  a  break,  relax,  and  enjoy  yourselves…but  I  don’t  want  you  forgetting  what  you  had  previously  learned  in  honors  chemistry.        If  you  find  yourself  struggling  to  answer  any  of  the  questions  or  problems  included  in  this  assignment,  I  expect  that  you  will  first  reference  your  textbook  for  clarification.    If  you  are  still  experiencing  difficulty,  you  should  contact  me  in  order  to  get  help.    Due  dates  for  the  assignment  are  listed  below.        There  are  two  parts  to  the  assignment:  Part  1  is  the  memorization  portion  -­‐  memorizing  the  common  polyatomic  ions  &  solubility  rules.    Part  2  is  our  first  unit,  covering  chapters  1-­‐3  of  your  text.    These  chapters  are  a  review  of  first  year  chemistry.      The  assignment  may  be  done  in  any  order  you  choose,  however  I  strongly  suggest  you  work  through  your  text,  the  notes,  and  then  take  the  multiple  choice  quiz,  as  the  notes  are  designed  to  prepare  for  you  this  assessment.    You  do  not  need  to  print  out  this  entire  packet!    You  may  choose  to  print  only  the  quizzes  and  honor  code  sheet  to  turn  in  at  the  beginning  of  school.    I  will  also  make  the  quizzes  available  as  Google  forms  on  my  website.    Please  note,  many  multiple-­‐choice  questions  on  the  AP  Exam  involve  math  but  you  will  not  have  a  calculator  to  complete  them.    You  should  estimate  and  round  numbers  to  make  them  easier  to  work  with,  in  your  efforts  to  solve  the  problem.    For  this  reason,  you  are  not  allowed  the  use  of  a  calculator  on  the  multiple-­‐choice  quizzes  on  the  summer  assignment.    It  is  my  suggestion  that  you  purchase  a  review  book  for  AP  Chemistry.    These  are  great  resources  for  unit  test  review  and  the  AP  Exam!        If  you  have  any  questions,  please  feel  free  to  see  me  or  e-­‐mail  me.      Take  care  and  have  a  great  summer!!!    Thanks,      Mrs.  Elyse  Vaughan      

             

Page 2: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

   Part  1:  Common  ions  &  solubility  rules This  part  of  the  summer  assignment  for  AP  Chemistry  is  quite  simple  (but  not  easy).  You  need  to  master  the  formulas,  charges,  and  names  of  the  common  ions.  In  the  first  week  of  the  school  year,  you  will  be  given  a  quiz  on  the  ions  &  on  solubility  rules.  You  will  be  asked  to:  

• write  the  names  of  these  ions  when  given  the  formula  and  charge   • write  the  formula  and  charge  when  given  the  names   • write  net  ionic  equations  predicting  products  based  on  solubility  rules

 I  have  included  several  resources  in  this  packet.  First,  there  is  a  list  of  the  ions  that  you  must  know  on  the  first  day.  This  list  also  has  some  suggestions  for  making  the  process  of  memorization  easier.  There  are  naming  patterns  that  greatly  simplify  the  learning  of  the  polyatomic  ions  as  well.    Second,  there  is  a  list  of  the  solubility  rules.    Remember  that  the  rules  are  applied  in  order,  so  any  earlier  rule  overrules  the  later  rules.    Also  included  is  a  copy  of  the  periodic  table  used  in  AP  Chemistry.  Notice  that  this  is  not  the  table  used  in  first  year  chemistry.  The  AP  table  is  the  same  that  the  College  Board  allows  you  to  use  on  the  AP  Chemistry  test.  Notice  that  it  has  the  symbols  of  the  elements  but  not  the  written  names.  You  need  to  take  that  fact  into  consideration  when  studying  for  the  afore-­‐mentioned  quiz!     Doubtless,  there  will  be  some  students  who  will  procrastinate  and  try  to  do  all  of  this  studying  just  before  the  start  of  school.  Those  students  may  even  cram  well  enough  to  do  well  on  the  initial  quiz.  However,  they  will  quickly  forget  the  ions,  and  struggle  every  time  that  these  formulas  are  used  in  lecture,  homework,  quizzes,  tests  and  labs.  All  research  on  human  memory  shows  us  that  frequent,  short  periods  of  study,  spread  over  long  periods  of  time  will  produce  much  greater  retention  than  long  periods  of  study  of  a  short  period  of  time.     I  could  wait  and  throw  these  at  you  on  the  first  day  of  school,  but  I  don’t  think  that  would  be  fair  to  you.  Use  every  modality  possible  as  you  try  to  learn  these  –  speak  them,  write  them,  visualize  them.  

 

Page 3: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

 Part  2:  Unit  1  The  first  test  will  cover  Unit  1  (parts  1,  2,  and  3),  which  is  a  review  of  first  year  chemistry.    This  assignment  is  designed  to  prepare  you  for  that  test.    All  documents  referenced  can  be  found  on  my  website:  https://sites.google.com/a/nsacademy.org/ap-­‐chemistry-­‐vaughan/?pli=1    All  quizzes  will  be  posted  on  my  web  site  by  May  22nd,  2015,  and  should  be  taken  and  submitted  via  e-­‐mail  by  Monday,  August  24th.    They  are  all  timed  –  you  should  take  no  more  than  24  minutes.  No  calculators  or  notes  may  be  used  in  completing  the  quizzes.      Signing  the  honor  pledge  indicates  that  you  have  not  used  your  notes  or  a  calculator  to  complete  the  quiz,  and  that  you  took  only  24  minutes.    Quizzes  may  be  taken  only  once  and  will  count  as  1  quiz  grade.  Unit  1  (Part  1):    Chemical  Foundations    

• For  Review  Purposes:  o This  section  of  material  is  covered  in  Chapter  1  (pages  1-­‐41)  in  your  textbook.  o Notes  (AP  Unit  1  Part  1  Notes.doc  )  are  provided.    I  suggest  completing  all  boxed  problems  (exercise  1.1  

–  1.13  in  the  notes)  using  your  text  and  the  notes  provided.      Answers  are  provided  so  that  you  can  make  sure  you  did  the  problem  correctly.      

o A  video  review  of  these  notes  is  available  at  http://vimeo.com/14216778  that  you  can  use  as  an  alternative  source  of  review  if  you  prefer.  

• Assignment:  o Quiz  -­‐  I  strongly  suggest  completing  the  review  listed  above  before  taking  the  quiz!    

 Unit  1  (Part  2):    Atoms,  Molecules,  and  Ions    

• For  Review  Purposes:  o This  section  of  material  is  covered  in  Chapter  2  (pages  42-­‐80)  in  your  text.  o Notes  (AP  Unit  1  Part  2  Notes.doc)  are  provided.    I  suggest  completing  all  boxed  problems  (exercise  1.14  

–  1.23  in  the  notes)  using  your  text  and  the  notes  provided.      Answers  are  provided  so  that  you  can  make  sure  you  did  the  problem  correctly.      

o A  video  review  of  these  notes  is  available  at  http://vimeo.com/14217141  that  you  can  use  as  an  alternative  source  of  review  if  you  prefer.  

• Assignment:  o Quiz  -­‐I  strongly  suggest  completing  the  review  listed  above  before  taking  the  quiz!      

 Unit  1  (Part  3):    Stoichiometry    

• For  Review  Purposes:  o This  section  of  material  is  covered  in  Chapter  3  (pages  81-­‐137)  in  your  text.  o Notes  (AP  Unit  1  Part  3  Notes.doc)  are  provided.    I  suggest  completing  all  boxed  problems  (exercise  1.24  

–  1.41  in  the  notes)  using  your  text  and  the  notes  provided.      Answers  are  provided  so  that  you  can  make  sure  you  did  the  problem  correctly.      

o A  video  review  of  these  notes  is  available  at  http://vimeo.com/13588248  and  http://www.vimeo.com/13217975  that  you  can  use  as  an  alternative  source  of  review  if  you  prefer.  

• Assignment:  o Quiz  -­‐I  strongly  suggest  completing  the  review  listed  above  before  taking  the  quiz!      o Complete  the  two  free  response  questions  in  the  document  “AP  Chemistry  Summer  Assignment  Stoich  

FR”.    This  will  be  collected  on  the  first  day  of  class.  

Page 4: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

AP Chemistry Summer Assignment Honor Pledge

I  have  not:  • Received  help  from  another  individual  in  completing  these  quizzes.  • Given  help  to  another  individual  in  completing  these  quizzes.  • Used  a  calculator  or  my  notes  to  complete  these  quizzes.  • Spent  more  than  24  minutes  on  any  one  quiz.  

 All  quizzes  will  be  available  for  you  to  take  on  Friday,  May  22nd.    Quizzes  may  only  be  taken  one  time  and  must  be  completed  within  24  minutes.    All  quizzes  must  be  complete  by  Monday,  August  24th.    You  must  sign  the  pledge  below  and  have  a  parent  sign  in  order  to  earn  credit.  

 Unit  1  Part  1  MC  Quiz  Taken  on  ____________________________  (date)    Student  Signature  _________________________________    Parent  Signature  ___________________________________      Unit  1  Part  2  MC  Quiz  Taken  on  ____________________________  (date)    Student  Signature  _________________________________    Parent  Signature  ___________________________________      Unit  1  Part  3  MC  Quiz  Taken  on  ____________________________  (date)    Student  Signature  _________________________________    Parent  Signature  ___________________________________      

Please  print  this  document  and  give  to  Mrs.  Vaughan  on  the  first  day  of  class.    

                       

Page 5: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce the amount of memorizing that one must do.

1. “ate” anions have one more oxygen then the “ite” ion, but the same charge. If you memorize the “ate” ions, then you should be able to derive the formula for the “ite” ion and vice-versa.

a. sulfate is SO42-; sulfite has the same charge but one less oxygen (SO3

2-) b. nitrate is NO3

-; nitrite has the same charge but one less oxygen (NO2-)

2. Learn the hypochlorite " chlorite" chlorate" perchlorate series, and you also know the series containing iodite/iodate as well as bromite/bromate.

a. The relationship between the “ite” and “ate” ion is predictable, as always. Learn one and you know the other.

b. The prefix “hypo” means “under” or “too little” (think “hypodermic”, “hypothermic” or “hypoglycemia”) Hypochlorite is “under” chlorite, meaning it has one less oxygen

c. The prefix “hyper” means “above” or “too much” (think “hyperkinetic”) The prefix “per” is derived from “hyper” so perchlorate (hyperchlorate) has one more oxygen than chlorate.

d. Notice how this sequence increases in oxygen while retaining the same charge: ClO- ClO2

- ClO3- ClO4

- hypochlorite chlorite chlorate perchlorate

3. If you know that a sulfate ion is SO42- then to get the formula for hydrogen sulfate ion, you add

a hydrogen ion to the front of the formula. Since a hydrogen ion has a 1+ charge, the net charge on the new ion is less negative by one.

Example: PO4

3- HPO42- H2PO4

- phosphate hydrogen phosphate dihydrogen phosphate

Ions to Memorize -1 Charge -2 charge -3 charge

Amide NH2 Carbonate CO3 Phosphate PO4 Acetate C2H3O2 Chromate CrO4 +1 charge Bromate BrO3 Dichromate Cr2O7 Ammonium NH4

Chlorate ClO3 Oxalate C2O4 Hydronium H3O+ Cyanide CN Peroxide O2 +2 charge Hydroxide OH Sulfate SO4 Zinc Zn Iodate IO3 Silicate SiO3 Mercury (I) Hg2 Nitrate NO3 Thiosulfate S2O3 +3 charge Permanganate MnO4 Aluminum Al Thiocyanate SCN

Page 6: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

Solubility Rules Apply these rules in order. 1. All group 1 and ammonium (NH4

+) salts are soluble. 2. All NO3

-, ClO3-, ClO4

-, and C2H3O2- salts are soluble.

3. All Ag+, Pb22+, and Hg2+ salts are insoluble.

4. All Cl-, Br-, and I- salts are soluble. 5. All SO4

2- compounds are soluble except those of the heavy group 2 metals (Ca2+, Ba2+, Sr2+) 6. All OH- salts are insoluble except those of group 1 and heavy group 2 metals (Ca2+, Ba2+, Sr2+) 7. All sulfide (S2-) compounds are insoluble except those of group 1 & 2. 8. All SO3

2-, CO3-, CrO4

2-, and PO43- compounds are insoluble.

Page 7: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

 Unit  1:    Chemical  Foundations  (Review)  Adapted  from  Chemical  Foundations  (NMSI,  Rene  McCormick)  and  Chemistry  (Brown/LeMay)    

1.1 An  Overview  of  Chemistry    # Chemistry  –  the  study  of  MATTER  and  ENERGY!  # Matter  –  the  physical  material  of  the  universe;  anything  

with  mass  and  volume  (takes  up  space),  exhibits  intertia  $ Composed  of  aprox.  100  different  types  of  atoms  

$ Atoms  can  be  broken  down  or  combined  to  form  new  substances  (ex:    water)  (this  means  reactions  can  be  reversible!)    

# Property  –  any  characteristic  that  makes  a  particular  type  of  matter  distinguishable  from  other  types  

# Element  –  a  group  of  1  type  of  atom;  elements  combine  to  make  compounds  # Molecules  –  2+  atoms  joined  together  by  covalent  bonds  

 1.2 The  Scientific  Method  (p.  13)  

# Systematic  way  of  finding  a  possible  answer  to  a  problem  # Steps  in  the  Scientific  Method:  

$ Make  observations  -­‐  qualitative  or  quantitative  (quant.  obs.  =  a  measurement)  $ Formulate  a  hypothesis  –  a  possible  explanation  for  the  observation  $ Perform  experiments  –  design  experiment  to  test  the  hypothesis  (try  to  control  as  

many  variables  as  you  can,  REPEAT  experiments  to  improve  validity)      # Experiments  may  lead  to  new  observations,  therefore  new  experiments  

$ If  experiments  are  repeated  and  similar  results  are  found  by  many  different  researchers,  the  hypotheses  may  become  a  theory  (an  attempt  to  explain  WHY  the  observation  happened)  

# Theory  can  be  similar  to  a  model  (an  example  we  use  to  explain  a  natural  phenomenon  –  if  new  evidence  is  found,  the  model/theory  may  change!)  

# Example:    geocentric  model  of  the  universe,  atomic  theory  # Scientific  law  –  summary  of  observations  (theories  attempt  to  explain  these  observations)  

 

A  LAW  describes  WHAT  happens  while  a  THEORY  describes  WHY  it  happens!  Examples:     Law  of  Conservation  of  Mass  –  mass  before  and  after  a  reaction  must  be  the  same  (massreactants  =  massproducts)     Law  of  Conservation  of  Energy  (1st  Law  of  Thermodynamics)  –  Energy  can’t  be  created  nor  destroyed,  it  can  only                                        change  forms  or  be  transferred  

# Analysis  of  results  of  experiments  are  subject  to  human  interpretation  (data  misinterpretation,  emotional  attachments,  politics,  ego,  MONEY,  religious  beliefs)  

$ Galileo  –  due  to  religious  influence,  forced  to  “revise”  his  astronomical  observations  $ Lavoisier  –  “father  of  modern  chemistry”  was  beheaded  due  to  his  political  affiliations  $ Nuclear  devices,  fertilizers,  explosives  

(rapid  change  of  a  solid/liquid  into  a  gas  where  the  molecules  quickly  become  very  far  apart  exerting  large  amounts  of  energy)    

1.3 Units  of  Measurement  (pp.  14  –  15)  # Measurement  –  a  quantitative  observation;  always  

contains  a  number  AND  a  unit!  # Measurement  systems  –  English  (U.S.  and  a  few  

countries  in  Africa)  and  Metric  (everybody  else!)  # SI  System  –  (Le  Systeme  International)  in  1960  an  

international  agreement  was  reached  to  set  up  a  system  of  units  so  that  scientists  all  over  the  world  could  communicate  in  the  same  “language”;  all  units  based  on  the  Metric  system  

Page 8: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

# Volume  –  derived  from  length  (think  about  a  cube…1.0    cm  on  a  side,  volume  =  1.03  or  1.0  cm3)  

 # Mass  –  measure  of  the  resistance  of  an  object  to  a  change  in  its  state  of  motion  (intertia);  the  amount  of  matter  present  (NOT  the  same  as  weight!    Weight  refers  to  the  response  of  mass  to  gravity)  

# Temperature  –  the  average  kinetic  energy  of  a  substance  (measured  in  Kelvin,  °C,  or  °F)  

# Derived  unit  –  based  on  the  combination  of  units  (ex:    measure  length  on  3  sides  of  cube  to  get  

volume)    

# Scientific  Notation  –  exponential  form  to  represent  very  large  or  very  small  numbers  $ Negative  exponents  used  w/  very  small  numbers  (Ex:    0.001  "  1x10-­‐3)  $ Positive  exponents  used  w/  very  large  numbers  (Ex:  1000  "  1x103)  $ The  10x  is  used  to  represent  how  many  decimal  places  are  in  the  number  therefore  are  not  used  to  determine  

the  significant  figures  in  the  number    

Ex:    101.09  would  be  written  1.0109x102  (5  significant  figures)    

1.4 Uncertainty  in  Measurement  (pp.  20  –  25)  # Exact  numbers  (ex:    12  eggs  in  1  dozen,  60  s  in  1  min,  anything  that  can  be  counted)  do  not  contain  error  # Inexact  numbers:    any  number  that  is  measured,  numbers  with  some  error  (there  is  always  some  estimation  when  taking  a  

measurement)  # When  taking  a  measurement,  always  record  one  digit  more  than  the  last  marking  on  the  instrument  (that  is  the  estimated  

digit)  # Precision:    how  close  individual  measurements  are  to  one  another  (consistent,  repeatability)  # Accuracy:    how  close  an  individual  measurement  is  to  the  “right  answer”  

 The  results  of  several  dart  throws  show  the    difference  between    precise  and  accurate.        (a)  Neither  accurate  nor            precise  (large  random            errors).    (b)  Precise  but              not  accurate  (small                random  errors,  large    systematic  error).    (c)  Bull’s-­‐eye!  Both    precise  and  accurate    (small  random  errors,    no  systematic  error).    

     

 # Types  of  Error  

$ Random  error  (indeterminate)  –  equal  probability  of  a  measurement  being  high  or  low  $ Systematic  error  (determinate)  –  occurs  in  the  same  direction  each  time  

# Significant  figures:    all  digits  of  a  measured  quantity  (including  the  estimated  digit)  $ The  Rules!  

# Non-­‐zero  digits  are  significant  # A  zero  is  significant  if  it  is  terminating  AND  right  of  the  decimal  OR  if  it  is    

                                                                               sandwiched  between  significant  figures    

Exercise    1.1          Precision  and  Accurcy    To  check  the  accuracy  of  a  graduated  cylinder,  a  student  filled  the  cylinder  to  the  25-­‐mL  mark  using  water  delivered  from  a  buret  and  then  read  the  volume  delivered.    Following  are  the  results  of  five  trials:    Trial                                                                                        Volume  Shown  by                                                        Volume  Shown                                                                                                      Graduated  Cylinder                                                          by  the  Buret        1         25  mL                    26.54  mL      2         25  mL                    26.51  mL      3         25  mL                    26.60  mL      4         25  mL                    26.49  mL      5         25  mL                    26.57  mL    Average                                      25  mL                    26.54  mL    Is  the  graduated  cylinder  accurate?  No b/c volume shown by the buret is significantly different from the grad cyl. This is a systematic error b/c grad is low each time.

Page 9: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

 EXACT  AND  COUNTING  NUMBERS  HAVE  AN  INFINITE  NUMBER  OF  SIG  FIGS!                

# Significant  Figures  in  calculations:  $ Multiplication/division  –  answer  has  the  same  number  of  sig  figs  as  the  measurement  with  the  FEWEST  number  of  

sig  figs  

4.56  ×  1.4  =  6.38    6.4    

$ Addition/subtraction  –  answer  has  the  same  number  of  places  after  the  decimal  as  the  measurement  with  the  FEWEST  number  of  places  after  the  decimal  point  

12.11  18.0       ←  limiting  term  1.013  31.123    31.1  

 $ Log  functions  –  the  significant  figures  in  log  functions  are  only  counted  after  the  decimal  

pH  of  solution  with  [H+]  =  1.50x10-­‐3  M  pH  =  2.824  (3  sig  figs)  

 $ When  multiple  operations  are  present,  sig  figs  should  be  determined  by  order  of  operations  (this  is  the  CORRECT  

thing  to  do  –  although  most  of  the  time  you  can  look  at  the  problem  and  go  with  the  fewest  #  of  sig  figs  from  the  given  quantities)    

# Rounding  Rules:  $ Round  at  the  end  of  all  calculations  to  get  the  appropriate  number  of  significant  figures  $ Look  at  the  significant  figure  one  place  beyond  your  desired  number  of  significant  figures.    If  greater  than  5,  round  

up,  if  less  than  5  drop  the  digit.  $ Don’t  double  round  

Ex:    Round  4.348  to  2  s.f  "  4.3      

1.5 Dimensional  Analysis  (pp.  25  –  29)  # Problem  solving  strategy  # Conversion  factor  –  fraction  whose  numerator  and  denominator  are  the  same  quantity  

expressed  in  different  units  $ A  pin  measures  2.85  cm  in  length.    What  is  its  length  in  inches?  

2.54  cm  =  1  in    Conversion  factors  could  be  

2.54  𝑐𝑚 or  __1  𝑖𝑛__      

1  𝑖𝑛 2.54  𝑐𝑚  

Pick  the  one  that  lets  you  cancel  out  units!  

2.85  𝑐𝑚  ×  1  𝑖𝑛/2.54  𝑐𝑚  =  1.12  in                    

Exercise    1.2     Significant  Figures  Give  the  number  of  significant  figures  for  each  of  the  following  results.  a.  A  student’s  extraction  procedure  on  tea  yields  0.0105  g  of  caffeine.    3  b.  A  chemist  records  a  mass  of  0.050080  g  in  an  analysis.    5  c.  In  an  experiment,  a  span  of  time  is  determined  to  be  8.050  ×  10-­‐3      s.    4  

Exercise    1.3     Unit  Conversions  A  pencil  is  7.00  in.  long.    What  is  its  length  in  centimeters?  

17.8 cm

Page 10: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

           

                                                               

   

 1.6 Temperature  (pp.  15  –  16)    

# Measure  of  the  average  kinetic  energy  of  a  substance  # Units  are  Kelvin,  °C,  °F  

$ 1  Kelvin  degree  =  1  Celsius  degree  $ 1  Celsius  degree  >  1  Fahrenheit  degree  

# Conversions  

TF  =    TC  +  32ºF  

TK  =  TC  +  273  K  TC  =  TK  -­‐  273ºC  

     

Exercise    1.8     Unit  Conversions  The  concentration  of  carbon  monoxide  in  an  urban  apartment  is  48  µg/m3.    What  mass  of  carbon  monoxide  (in  grams)  is  present  in  a  room  measuring  9.0  ft  x  14.5  ft  x  18.8  ft?  

3.3x10-6 g

Exercise    1.4     Unit  Conversions  You  want  to  order  a  bicycle  with  a  25.5-­‐in.  frame,  but  the  sizes  in  the  catalog  are  given  only  in  centimeters.    What  size  should  you  order?  

64.8 cm

Exercise    1.5     Unit  Conversions  A  student  has  entered  a  10.0-­‐km  run.    How  long  is  the  run  in  miles?  

6.21 mi

Exercise    1.6     Unit  Conversions  The  speed  limit  on  many  highways  in  the  United  States  is  55  mi/h.    What  number  would  be  posted  in  kilometers  per  hour?  

89 km/hr Exercise    1.7     Unit  Conversions  A  student  calculates  the  volume  of  a  cube  as  2.35  cm3.    What  is  the  volume  of  the  cube  in  mm3?  

2350 mm3

Exercise    1.9     Temperature  Conversions  Normal  body  temperature  is  98.6°F.    Convert  this  temperature  to  the  Celsius  and  Kelvin  scales.  

37 C & 310 K

Page 11: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

   

                                           

1.7 Density  (pp.  17  –  20)  # Density:    amount  of  mass  in  a  certain  volume  of  a  substance  

# 𝐷=𝑚𝑎𝑠𝑠/𝑣𝑜𝑙𝑢𝑚𝑒  # Units  for  density  of  a  solid  (g/cm3)  of  a  liquid  (g/mL)  # 1  mL  =  1  cm3  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                           

Exercise    1.12     Density  A  cylindrical  rod  formed  from  silicon  is  16.8  cm  long  and  has  a  mass  of  2.17  kg.    The  density  of  silicon  is  2.33  g/cm3.    What  is  the  diameter  of  the  cylinder?  

8.40 cm

Exercise    1.10     Temperature  Conversions  One  interesting  feature  of  the  Celsius  and  Fahrenheit  scales  is  that    -­‐40°C  and  -­‐40°F  represent  the  same  temperature.    Verify  that  this  is  true.  

Plug in -40 into one of the equations and solve for the unknown. You should get -40 also.

Exercise    1.11     Temperature  Conversions  Liquid  nitrogen,  which  is  often  used  as  a  coolant  for  low-­‐temperature  experiments,    has  a  boiling  point  of  77  K.    What  is  this  temperature  on  the  Fahrenheit  scale?  

-320.8 F

Exercise    1.11     Density  A  chemist,  trying  to  identify  the  main  component  of  a  compact  disc  cleaning  fluid,    finds  that  25.00  cm3    of  the  substance  has  a  mass  of  19.625  g    at  20°C.    The  following  are  the  names  and  densities  of  the  compounds  that  might  be  the  main  component.       Compound       Density  in  g  /  cm3  at  20°C       Chloroform         1.492     Diethyl  ether         0.714     Ethanol           0.789     Isopropyl  alcohol         0.785     Toluene           0.867    Which  of  these  compounds  is  the  most  likely  to  be  the  main  component  of  the  compact  disc  cleaner?  

Density of the liquid is 0.7850 g/mL… Ethanol

Page 12: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

                                   

1.8 Classification  and  Properties  of  Matter  (pp.  4  –  13)  # Describe  matter  by  physical  state  or  what  it’s  made  of  

$ States  of  matter:      # solid  (def.  shape/def.  volume,  almost  impossible  to  compress,  molecules  tightly  packed  in  specific  

arrangements,  molecules  “wiggle”  around  a  fixed  point)  # liquid  (def.  volume/indef.  shape,  can’t  be  easily  compressed,  molecules  packed  closer  together,  molecules  

still  vibrate  but  also  have  rotational  and  translational  motion  and  can  slide  past  one  another  but  are  still  close  together  

# gas  (indef.  Shape/indef.  volume,  particles,  molecules  are  in  constant  random  motion,  molecules  vibrate,  rotate,  translate  and  are  independent  of  each  other…so  they  are  VERY  far  apart  and  easily  compressed,  molecules  collide  with  each  other  and  walls  of  container)  

# vapor  –  the  gas  phase  of  a  substance  that  is  normally  a  solid  or  liquid  at  room  temperature  (ex:    water  vapor)  

# fluid  –  that  which  can  flow;  gases  and  liquids  $ Composition  

# Pure  substance:    (compounds  AND  elements)  has  specific  properties,  composition  is                                                                      always  the  same,  atoms  are  CHEMICALLY  combined,  therefore  must  be  chemically                                                                      separated  (common  method  is  electrolysis)  

$ Elements  –  can’t  be  broken  down  into  anything  except  atoms  of                                                                      that  element  (Robert  Boyle)  

$ Atoms  can  be  broken  down  into:  # Nuclei  and  electrons  # p+,  n0,  and  e-­‐  # quarks  

Electrolysis  is  an  example  of  a  chemical  change.  In  this  apparatus,  water  is  decomposed  to  hydrogen  gas  (filling  the  red  balloon)  and  Oxygen  gas  (filling  the  blue  balloon).    

$ Compounds  –  2+  elements  bonded  in  the  same  proportion  (ex:    water  is  H2O  –  always  11%                                                                        hydrogen  and  89%  oxygen)  

# Compounds  have  different  properties  than  the  elements  that  make  up  the  compound  # Sometimes  compounds  have  different  properties  depending  on  the  form  their  in  (ex:  

solid  NaCl  vs.  aqueous  NaCl)  # Mixture:    PHYSICAL  combinations  of  2+  pure  substances  (each  part  of  the  mixture  keeps  its  owns  

properties);  must  be  PHYSICALLY  separated  $ Heterogeneous  mixture:    composition  is  not  uniform  throughout  mixture  $ Homogeneous  mixture  (solution):    composition  is  uniform  

# Separation  of  Mixtures  $ Each  part  of  a  mixture  keeps  its  own  properties,  so  you  can  separate  the  mixture  based  on  

those  properties  $ Methods  of  separation:  

# Filtration  –  separate  based  on  size  of  particles  # Distillation  –  separate  based  on  boiling  point  # Chromatograpy  –  separate  based  on  substances’  ability  to  

attract  to  different  surfaces    

Exercise    1.13     Density  (a)    Is  density  an  extensive  or  intensive  property?    Justify  your  answer.  

       

(b) Is  density  temperature  dependent?    Justify  your  answer.  

Intensive b/c doesn’t matter how much is present; yes (ex: ice floats on water)

Page 13: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

     

 Paper chromatograph of ink. (a) A line of the mixture to be separate Is placed at one end of a sheet of porous paper. (b) The paper acts as a wick to draw up the liquid. (c) The component with the weakest attraction for the paper travels faster than those that cling to the paper.

   

# Properties  of  Matter      $ Physical  properties:    properties  describing  appearance,  can  be  measured  without  changing  the  identity  of  the  

compound  $ Chemical  properties:    describes  how  the  substance  reacts  or  what  its  made  of  $ Intensive  properties:    properties  that  DO  NOT  depend  on  how  much  of  the  substance  is  present  (ex:    melting  point,  

boiling  point,  density,  specific  heat  capacity,  heat  of  fusion,  temperature)  $ Extensive  properties:    properties  that  DO  depend  on  how  

much  is  there  (ex:    mass,  volume)  $ Physical  change:    changes  appearance  but  not  what  its  made  

of  (ex:    changes  in  state  of  matter)  $ Chemical  change  (reaction):    changes  into  new  substance,  

atoms  are  rearranged    

     

                 

       

Page 14: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

 AP Chemistry Summer Assignment: Quiz 1

1. Assuming identical conditions, in which state of matter do the particles present have the greatest amount of energy?

a. Solids b. Liquids c. Gases d. Both solid and liquids e. Both liquids and gases

2. If matter is uniform throughout, cannot be separated into other substances by physical processes, and

cannot be decomposed into other substances by chemical processes, it is a. An element b. A compound c. A homogenous mixture d. A heterogeneous mixture e. A mixture of compounds

3. Which of the following is an illustration of the law of constant proportions?

a. Water boils at 100oC at 1 atm pressure. b. Water is 11% hydrogen and 89% oxygen by mass. c. Water is a compound. d. Water and salt have different boiling points. e. Water reacts with nonmetal oxides making acids.

4. Which of the following is a mixture?

a. Pure water b. Sea water c. Sodium chloride d. Sodium e. Carbon dioxide

5. Which of the following is often easily separated into its components by simple techniques such as

filtering or decanting? a. Heterogeneous mixture b. Compounds c. Homogenous mixture d. Elements e. Solutions

Page 15: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

6. Considering a mixture consisting of sand in salt water; this mixture could be separated into its three components (sand, salt, and water) by first __________________the mixture and then ______________the remaining mixture.

a. Distilling, distilling b. Distilling, filtering c. Filtering, distilling d. Filtering, filtering e. Evaporating, filtering

7. Which of the following are chemical processes?

I. Rusting of a nail II. Freezing of water

III. Decomposition of water into hydrogen and oxygen gas IV. Dissolving of oxygen gas in water

a. II, III, and IV b. I, III, and IV c. I and III d. I and II e. I and IV

8. Which of the following is not an intensive property?

a. Density b. Temperature c. Melting point d. Volume e. Pressure

9. The correct value for the density of water is 1.0 g/ml. Which of the following sets of measurements is

precise but not accurate? a. 1.1 g/mL, 1.0 g/mL, 0.9 g/mL b. 1.0g/mL, 1.0g/mL, 0.8g/mL c. 0.6g/mL, 0.7g/mL, 0.6g/mL d. 1.1 g/mL, 0.1g/mL, 2.1 g/mL e. 1.1 g/mL, 1.2 g/mL, 0.8 g/mL

10. Which of the following base quantities has the wrong unit?

a. Mass in kg b. Amount of substance in g c. Length in m d. Temperature in K e. Time in s

Page 16: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

11. Convert 30 degrees Celsius to Kelvin. a. 30 b. 330 c. 303 d. 243 e. 273

12. Convert 80 degrees Fahrenheit to Celsius.

a. 27 b. 353 c. 176 d. -193 e. 80

13. Which of the following shows the relative temperature correctly?

a. 12oC > 310 K b. 43oC < 300 K c. 25oC > 250 K d. 158oC > 450 K e. All of the above show the relative temperatures correctly.

14. Of the following, which is the smallest mass?

a. 25 kg b. 2.5 x 10-2 mg c. 2.5 x 1015 pg d. 2.5 x 109 fg e. 2.5 x 1010ng

15. One angstrom, symbolized Å, is 10-10 m. If you have 1 cm3, how many Å3 that is?

a. 1024 b. 10-24 c. 1030 d. 10-30 e. 10-9

16. 45 m/s = _________km/h

a. 2.7 b. 0.045 c. 1.6 x 102 d. 2.7 x 103 e. 1.6 x 105

Page 17: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

17. The density of mercury is 13.6 g/cm3. The density of mercury is a. 1.36 x 10-2 kg/m3 b. 1.36 x 104 kg/m3 c. 1.36 x 108 kg/m3 d. 1.36 x 10-5 kg/m3 e. 1.36 x 10-4 kg/m3

18. In which one of the following numbers are all of the zeros significant?

a. 100.090090 b. 143.29 c. 0.05843 d. 0.1000 e. 0.0030020

19. How many significant figures should there be in the answer to the following computation?

(10.07 - 7.395)/2598.08 a. 1 b. 2 c. 3 d. 4 e. 5

20. A wooden object has a mass of 10.782 g and occupies a volume of 13.73 mL. What is the density of the

object determined to an appropriate number of significant figures? a. 8 x 10-1 g/mL b. 7.9 x 10-1 g/mL c. 7.86 x 10-1 g/mL d. 7.859 x 10-1 g/mL e. 7.8586 x 10-1 g/mL

Page 18: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

Answer Sheet Quiz 1 Question Answer

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 

Page 19: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

 Unit  1:    Atoms,  Molecules,  and  Ions  (Review)  Adapted  from  Atoms,  Molecules,  Ions  (NMSI,  Rene  McCormick)  and  Chemistry  (Brown/LeMay)    

1.9  Early  History  of  Chemistry  (pp.  38-­‐39)  # 1,000  B.C.—processing  of  ores  to  produce  metals  for  weapons  and  ornaments;  use  of  embalming  fluids  # 400  B.C.—Greeks—proposed  all  matter  was  make  up  of  4  “elements”  :  fire,  earth,  water  and  air  # Democritus  (460  –  370  BC):    hypothesized  that  matter  is  made  of  tiny  indivisible  particles  which  he  named  ‘atomos’  (atoms)  # Plato  &  Aristotle:    hypothesized  that  there’s  no  such  thing  as  an  indivisible  particle  (meaning  that  every  particle  can  be  

divided  into  smaller  pieces  that  make  it  up)  # Next  2,000  years—alchemy—a  pseudoscience  where  people  thought  they  could  turn  metals  into  gold.    Some  good  

chemistry  came  from  their  efforts—lots  of  mistakes  were  made!  # 16th  century—Georg  Bauer,  German  ,  refined  the  process  of  extracting  metals  from  ores  &    Paracelsus,  Swiss,  used  minerals  

for  medicinal  applications  # Robert  Boyle,  English—first  “chemist”  to  perform  quantitative  experiments  of  pressure  versus  volume.    Developed  a  

working  definition  for  “elements”.  # Isaac  Newton  (1642-­‐1727):    studied  properties  of  air  that  led  him  to  believe  atoms  (indivisible  particles)  existed    # 17th  &  18th  Centuries—Georg  Stahl,  German—suggested  “phlogiston”  flowed  OUT  of  burning  material.    An  object  stopped  

burning  in  a  closed  container  since  the  air  was  “saturated  with  phlogiston”  # Joseph  Priestley,  English—discovered  oxygen  which  was  originally  called  “dephlogisticated  air”  # John  Dalton  (1800s):    Dalton’s  Atomic  Theory  described  the  relationship  between  atoms  and  elements    

1.10    Fundamental  Chemical  Laws  (pp.    38  –  39)  # Late  1700’s  –  combustion  was  studied  extensively  which  led  to  the  discoveries  of  CO2,  N2,  H2,  &  O2  # More  experimentation  led  to  discovery  of  more  elements  # Antoine  Lavoisier:  

$ Explained  the  true  nature  of  combustion  $ Published  first  modern  chemistry  textbook  $ Stated  Law  of  Conservation  of  Mass:    Mass  can  neither  be  created  nor  destroyed.  $ Pushed  for  quantitative  experimentation  $ Beheaded  for  ties  to  government  during  French  Revolution  

# Joseph  Proust:  $ Law  of  Definite  Proportions:    A  given  compound  always  contains  the  exact  same  proportions  of  elements  by  mass.  

# Atom:    smallest  particle  of  an  atom  that  still  has  the  properties  of  that  element  $ An  element  contains  only  1  type  of  atom  $ A  compound  contains  atoms  of  2  or  more  elements  

# John  Dalton:      $ Law  of  Multiple  Proportions  (1808):    atoms  can  combine  in  different  ratios  to  produce  different  

compounds  (carbon  and  oxygen  can  combine  to  form  carbon  monoxide  and  carbon  dioxide  –  the  carbon  monoxide  is  formed  in  a  1:1  ratio  –  1  carbon  for  every  1  oxygen  while  the  carbon  dioxide  is  formed  in  a  1:2  ratio)  

 Dalton  considered  compounds  of  carbon  and  oxygen  and  found:  

  Mass  of  Oxygen  that  combines  with  1  gram  of  C  

Compound  I   1.33  g  Compound  II   2.66  g  

 Therefore  Compound  I  may  be  CO  while  Compound  II  may  be  CO2.  

 

Exercise  1.14       Law  of  Multiple  Proportions  The  following  data  were  collected  for  several  compounds  of  nitrogen  and  oxygen:     Mass  of  Nitrogen  That  Combines  With    1    g    of  Oxygen         Compound    A       1.750        g       Compound    B       0.8750    g       Compound    C       0.4375    g    

Ratio  for  A  to  C  is  different  even  though  all  contain  same  elements.  

Page 20: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

Show  how  these  data  illustrate  the  law  of  multiple  proportions.  1.11    Dalton,  Gay-­‐Lussac,  Avogadro  (pp.  38  –  39)  Dalton’s  ATOMIC  THEORY  OF  MATTER:    (based  on  knowledge  at  that  time):  1. All  matter  is  made  of  atoms.    These  indivisible  and  indestructible  objects  are  the  ultimate  chemical  particles.  2. All  the  atoms  of  a  given  element  are  identical,  in  both  weight  and  chemical  properties.    However,  atoms  of  different  

elements  have  different  weights  and  different  chemical  properties.  3. Compounds  are  formed  by  the  combination  of  different  atoms  in  the  ratio  of  small  whole  numbers.  4. A  chemical  reaction  involves  only  the  combination,  separation,  or  rearrangement  of  atoms;  atoms  are  neither  created  nor  

destroyed  in  the  course  of  ordinary  chemical  reactions.  **TWO  MODIFICATIONS  HAVE  BEEN  MADE  TO  DALTON’S  THEORY:  1.    Subatomic  particles  were  discovered.  2.    Isotopes  were  discovered.    

# 1809  Joseph  Gay-­‐Lussac,  French—performed  experiments  [at  constant  temperature  and  pressure]  and  measured  volumes  of  gases  that  reacted  with  each  other.  

 

# 1811  Avogardro,  Italian—proposed  his  hypothesis  regarding  Gay-­‐Lussac’s  work  [and  you  thought  he  was  just  famous  for  6.02  x  1023]  He  was  basically  ignored,  so  50  years  of  confusion  followed.  

 AVOGADRO’S  HYPOTHESIS:    At  the  same  temperature  and  pressure,  equal  volumes  of  different  gases  contain  the  same  number  of  particles.  

1.12    Early  Experiments  to  Characterize  the  Atom  (pp.  39  –  42)  

# Dalton,  Gay-­‐Lussac,  &  Avogadro  "  foundation  for  atom  being  the  basis  of  chemistry  # Through  research,  found  that  atoms  are  made  of  subatomic  particles  # Remember  that  opposite  charges  attract  and  like  charges  repel!  # Research  about  ELECTRONS:  

$ Cathode  rays  (1800s):    scientists  studied  how  charges  traveled  through  vacuums                

Page 21: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

 $ J.J.  Thomson  (1898  –  1903):  

# Found  that  when  high  voltage  was  applied  to  an  evacuated  tube  a  “ray”                                                                                                      (called  a  cathode  ray  b/c  it  came  from  the  (-­‐)  electrode  (cathode)  when                                                                                                      YOU  apply  a  voltage  across  it)  was  produced  

$ The  ray  was  produced  at  the  negative  electrode  $ Repelled  by  the  (-­‐)  pole  of  an  applied  electric  field,  E  

# Hypothesized  that  cathode  rays  were  made  of  (-­‐)  charged  particles  (later  called  electrons)  # Measured  the  deflection  of  beams  of  e-­‐  to  determine  the  mass  to  charge  ratio  of  the  e-­‐  

𝑒𝑚=(1.76x108  coulombs/g)  

           (e  is  the  charge  on  the  electron  in  Coulombs  (C)  and  m  is  the  mass)  # Hypothesized  that  electrons  made  up  only  a  little  of  the  mass  of  an  atom  # Found  that  the  cathode  rays  behaved  the  same  way  no  matter  what  material  was  used  

# Thomson  discovered  that  he  could  repeat  this  deflection  &  calculation  using  electrodes  of  different  metals,  so  all  metals  contained  electrons  and  therefore  all  atoms  contained  electrons  

# He  knew  all  atoms  were  neutral,  so  he  figured  there  must  be  some  (+)  charge  in  the  atom  too…led  to  the  plum  pudding  model  

$ Robert  Milikan  (1868-­‐1953):    # 1909  –  Milikan  sprayed  charged  oil  drops  into  a  chamber.    

He  stopped  the  effects  of  gravity  by  adjusting  the  voltage  across  2  charged  plates.    The  voltage  needed  to  keep  the  oil  drops  from  falling  and  the  mass  of  the  drops  were  used  to  calculate  the  charge  on  the  oil  drop  which  was  a  whole  number  multiple  of  the  charge  on  an  electron.  

# Measured  the  charge  of  an  electron  # From  the  charge  he  calculated  the  mass  (from  Thomson’s  

ratio)  # Mass  of  electron:    9.10x10-­‐28  g  (really  small  compared  to  

protons  and  neutrons)  # Research  about  the  NUCLEUS:  

$ Henri  Becquerel  (1852-­‐1908):    found  that  a  piece  of  mineral  containing  uranium  could  produce  its  image  on  a  photographic  plate  in  the  absence  of  light.    He  called  this  radioactivity  and  attributed  it  to  a  spontaneous  emission  of  radiation  by  the  uranium  in  the  sample.      

$ Pierre  and  Marie  Curie  (1867-­‐1934)  :    further  research  on  radioactive  properties  of  compounds  $ Three  types  of  radiation:  

# alpha,  α-­‐-­‐equivalent  to  a  helium  nucleus;  the  largest  particle  radioactive  particle  emitted;  7300  times  the  

mass  of  an  electron.        Since  these  are  larger  that  the  rest,  early  atomic  studies  often  involved  them.  

# beta,  β-­‐-­‐a  high  speed  electron.      OR    

# gamma,  γ-­‐-­‐pure  energy,  no  particles  at  all!      Most  penetrating,  therefore,  most  dangerous.    

$ Ernest  Rutherford  (1871  –  1937):      # Carried  out  experiments  to  test  

Thomson’s  model  of  the  atom  # Gold  Foil  Experiment:    directed  α  particles  

at  a  thin  sheet  of  gold  foil.    He  thought  that  if  Thomson’s  model  was  correct  then  the  α  particles  would  go  through  the  foil  easily  b/c  they  were  so  massive.      

Results:      # Most  α  particles  did  go  straight  through  the  foil,  but  many  more  than  expected  were  deflected  and  some  were  reflected  # Knew  the  plum  pudding  model  was  incorrect  # particles  that  were  deflected  must  have  come  close  to  a  dense  positive  center  

in  the  atom  # The  particles  that  were  reflected  had  a  “direct”  hit  with  the  positive  center  # Conceived  the  idea  of  a  nuclear  atom,  one  that  had  a  dense  positive  core    

Page 22: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

Particle   Mass  (kg)   Charge  

e-­‐   9.11  ×  10-­‐31   1-­‐  

p+   1.67  ×  10-­‐27   1+  

n0   1.67  ×  10-­‐27   None  

# The  nucleus  contains  most  of  the  mass  of  the  atom,  however  very  little  volume  (making  it  very  dense)  therefore  most  of  the  atom  is  empty  space  

$ James  Chadwick  (1891-­‐1972):    discovered  neutrons    

1.13    Modern  View  of  Atomic  Structure  (Introduction)  (pp.  43  –  46)  # Elements  -­‐  All  matter  composed  of  only  one  type  of  atom  is  an  element.    There  are  92  naturally  

occurring,  all  others  are  manmade.    # atom-­‐-­‐the  smallest  particle  of  an  element  that  retains  the  chemical  properties  of  that  element.  

(Entire  atom  has  a  diameter  of  about  100-­‐500  pm  or  1-­‐  5  Angstrom  (Å)  [  1  Å  =  10-­‐10  m])  $ nucleus-­‐-­‐contains  the  protons  and  the  neutrons;  the  electrons  are  located  outside  the  

nucleus.    Diameter  =  10-­‐13  cm.    The  electrons  are  located  10-­‐8cm  from  the  nucleus.    A  mass  of  nuclear  material  the  size  of  a  pea  would  weigh  250  million  tons!    Very  dense!  

$ proton-­‐-­‐positive  charge,  responsible  for  the  identity  of  the  element,  defines  atomic  number  

$ neutron-­‐-­‐no  charge,  same  size  &  mass  as  a  proton,  responsible  for  isotopes,  alters  atomic  mass  number  

$ electron-­‐-­‐negative  charge,  same  size  as  a  proton  or  neutron,  BUT  1/2,000  the  mass  of  a  proton  or  neutron,  responsible  for  bonding,  hence  reactions  and  ionizations,  easily  added  or  removed.  

               

# atomic  number(Z)-­‐-­‐The  number  of  p+  in  an  atom.    All  atoms  of  the  same  element  have  the  same  number  of  p+.  # mass  number(A)-­‐-­‐The  sum  of  the  number  of  neutrons  and  p+  for  an  atom.    A  different  mass  number  does  not  mean  a  

different  element-­‐-­‐just  an  isotope.  $ Atomic  Mass  Units  (amu):    used  to  measure  mass  of  atoms  b/c  if  measured  in  g,  the  masses  would  be  really  small  –  

too  small  to  really  easily  use  the  numbers  in  calculations  $ 1  amu  =  1.66054x10-­‐24  g  

 mass  number  →                   ←element  symbol            atomic  number→  

Exercise  1.15   Atomic  Symbols  Write  the  symbol  for  the  atom  that  has  an  atomic  number  of  9  and  a  mass  number  of  19.    How  many  electrons  and  how  many  neutrons  does  this  atom  have?                 F,  9  e  and  10  n  

 # Isotope   –   atoms   having   the   same   atomic   number   (#   of   p+)   but   a  

different  #  of  neutrons  $ Most  elements  have  at   least  2  stable   isotopes   (Al,  F,  &  P  only  

have  1)  $ H  isotopes  have  special  names:  

# 0  neutrons  =  hydrogen  # 1  neutron  =  deuterium  # 2  neutrons  =  tritium  

 1.14    Intro  to  the  Periodic  Table  (pp.  49  –  52)  

# Once  many  elements  were  known,  scientists  needed  an  organizational  system  # Periodic  table  grouped  elements  with  similar  properties  # Grouped  according  to  increasing  atomic  number  # Rows  =  periods  (don’t  necessarily  share  properties)  # Columns  =  groups  or  families  (share  similar  chemical  and  physical  properties  due  to  electron  configurations)  

Page 23: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

Current  Name   Original  Name   Symbol  

Antimony   Stibium   Sb  

Copper   Cuprum   Cu  

Iron   Ferrum   Fe  

Lead   Plumbum   Pb  

Mercury   Hydrargyrum   Hg  

Potassium   Kalium   K  

Silver   Argentum   Ag  

Sodium   Natrium   Na  Tin   Stannum   Sn  

Tungsten   Wolfram   W  

$ Group  1  –  Alkali  Metals  $ Group  2  –  Alkaline  Earth  Metals  $ Groups  3  –  12  –  Transition  Metals    (bottom  2  rows  are  inner  transition  metals)  $ Group  6  (oxygen  group)  –  Chalcogens  $ Group  7  –  Halogens  $ Group  8  –  Noble  Gases  (also  called  rare  gases  or  inert  gases)  

# Elements  to  the  left  of  the  staircase  are  metals  (except  H)  $ metals—malleable,  ductile  &  have  luster;  most  of  the  

elements  are  metals—exist  as  cations  in  a  “sea  of  electrons”  which  accounts  for  their  excellent  conductive  properties;  form  oxides  [tarnish]  readily  and  form  POSITIVE  ions  [cations].    Why  must  some  have  such  goofy  symbols?  

 # Elements  to  the  right  of  the  staircase  are  nonmetals  # Elements  touching  the  staircase  are  metalloids  or  semimetals              

1.15    Molecules  and  Molecular  Compounds  (pp.  52  –  55)  # Atoms  are  the  smallest  sample  of  an  element,  but  most  do  not  exist  as  single  atoms  by  themselves  –  most  of  the  time  you  

find  compounds,  not  pure  elements  $ Chemical  bond  –  force  that  hold  atoms  together  $ Electrons  are  responsible  for  bonding  and  chemical  reactivity  

# Covalent  bonds  –  atoms  share  electrons  and  make  molecules  # Molecule  –  2  or  more  atoms  bonded  together  (a  package  of  atoms  that  act  as  1  group)  Ex:    H2,  CO2,  H2O,  NH3,  O2,  CH4  

$ Smallest  unit  of  a  compound  that  retains  the  chemical  properties  of  the  compound  (the  characteristics  of  the  constituent  elements  are  lost)  

$ Diatomic  molecule  –  molecule  made  up  of  2  atoms  of  the  same  element  (H2,  N2,  O2,  F2,  Cl2,  I2,  Br2)  # Chemical  formula  –  tells  what  and  how  many  atoms  of  each  element  are  present  in  a  compound  # Molecular  compounds  are  made  of  molecules  (mostly  nonmetal  atoms)  

Page 24: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

# Molecular  formulas  –  formula  showing  the  actual  number  of  atoms  in  a  compound  # Empirical  formula  –  formula  showing  the  ratio  of  atoms  in  a  compound  (only  gives  relative  amounts  of  atoms,  not  actual);  

the  “reduced”  formula  $ Ex:    Molecular  Formula:    C3H9      Empirical  Formula:    CH3  

# Empirical  formulas  are  mainly  used  when  trying  to  identify  unknown  compounds  # Structural  formulas  –  formula  showing  how  atoms  are  bonded;  a  ‘picture’  of  a  molecule  showing  what  atoms  are  

connected,  bonds  are  shown  by  lines  [representing  shared  e-­‐  pairs];  may  NOT  indicate  shape  

H O H O H H

       

1.16    Ions  and  Ionic  Compounds  (pp.  55  –  59)  # ions-­‐-­‐formed  when  electrons  are  lost  or  gained  in  ordinary  chem.  reactions;  affect  size  of  atom  dramatically  

Generally  metals  lose  electrons  to  form  positive  ions  called  cations  Generally  nonmetals  gain  electrons  to  form  negative  ions  called  anions  

# Most  atoms  lose  or  gain  electrons  in  order  to  get  the  same  number  of  electrons  as  one  of  the  noble  gases;  charge  can  be                      predicted  by  an  atom’s  position  on  the  periodic  table  

 $ cations-­‐-­‐(+)  ions;  often  metals  since  metals  lose  electrons  to  become  +  charged  $ anions-­‐-­‐(-­‐)  ions;  often  nonmetals  since  nonmetals  gain  electrons  to  become  –  charged  $ polyatomic  ions-­‐-­‐  contain  atoms  joined  as  in  a  molecule,  only  the  group  of  atoms  has  a  charge;  properties  of  atoms  

and  the  ions  they  form  are  usually  very  different  

# ionic  solids—Electrostatic  forces  hold  ions  together.    Strong  \  ions  held  close  together  \  solids.  # Positive  ions  and  negative  ions  are  attracted  to  one  another  (b/c  opposite  charges),  making  an  ionic  

compound  # Ionic  compounds  usually  contain  a  metal  ion  and  a  nonmetal  ion  # Ions  in  ionic  compounds  form  in  a  rigid  lattice  structure.    It  takes  many  ions  to  make  a  unit  

of  an  ionic  compound.    So,  we  pretty  much  have  to  write  empirical  formulas  for  ionic  compounds…we  can  only  give  the  ratio  of  positive  ions  to  negative  ions  since  there  are  many  options  for  how  many  ions  can  be  present  to  make  a  unit  of  an  ionic  compound.  

 1.17    Naming  Simple  Compounds  (pp.  60  –  69)  # Organic  compounds  –  compounds  containing  carbon  (usually  with  H,  N,  O,  S,  or  halogens)  # Inorganic  compounds  –  everything  else!      # Names  and  Formulas  of  Ionic  Compounds  

$ Naming  Cations:  # Cations  formed  from  metal  atoms  have  the  same  name  as  the  metal      Ex:    Na+    sodium  ion;  Al3+    aluminum  ion  # If  a  metal  can  form  a  cation  with  more  than  1  charge  (mostly  these  are  transition  metals),  the  charge  is  shown  with  

a  roman  numeral  (or  the  latin  name  of  the  ion)  Ex:    Fe2+    iron(II)  or  ferrous  ion     Fe3+    iron(III)  or  ferric  ion                  Cu+    copper(I)    or  cuprous  ion     Cu2+    copper(II)  or  cupric  ion  

**for  Latin  names,  the  higher  charge  gets  the  “-­‐ic”  ending  where  the  lower  charge  is  “-­‐ous”  # Cations  formed  from  nonmetal  atoms  (must  be  polyatomic  ions)  end  in  –ium    Ex:    NH4

+    ammonium  ion      

Common  Cations  1+   2+   3+  

Al3+    aluminum  ion  Cr3+    cobalt(III)  or  cobaltic  ion  Fe3+    iron(III)  or  ferric  ion    

H+    hydrogen  ion  Li+    lithium  ion  Na+  sodium  ion  K+  potassium  ion  Cs+  cesium  ion  Ag+  silver  ion**  

Mg2+    magnesium  ion  Ca2+    calcium  ion  Sr2+    strontium  ion  Ba2+    barium  ion  Zn2+    zinc  ion**  Cd2+  cadmium  ion**   4+  

Page 25: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

Al3+    aluminum  ion  Cr3+    cobalt(III)  or  cobaltic  ion  Fe3+    iron(III)  or  ferric  ion    

4+  

NH4+  ammonium  ion  

Cu+    copper(I)  or  cuprous  ion  Co2+    cobalt(II)  or  cobaltous  ion  Cu2+    copper(II)  or  cupric  ion  Fe2+  iron(II)  or  ferrous  ion  Mn2+    manganese(II)  or  manganous  ion  Hg2

2+    mercury(I)  or  mercurous  ion  Hg2+    mercury(II)  or  mercuric  ion  Ni2+    nickel(II)  or  nickelous  ion  Pb2+  lead(II)  or  plumbous  ion**  Sn2+    tin(II)  or  stannous  ion**  

Sn4+    tin(IV)  or  stannic  ion**  Pb4+    lead(IV)  or  plumbic  ion**  

 

$ Naming  Anions:  # Most  anions  are  named  by  taking  the  name  of  the  nonmetal  atom  they  came  from  and  changing  the  ending  to  

–ide  Ex:    Cl-­‐    chloride  ion     O2-­‐    oxide  ion       N3-­‐  nitride  ion  

# Some  polyatomic  ions  end  in  –ide  as  well  (most  end  in  –ate  or  –ite)  Ex:    OH-­‐    hydroxide  ion     CN-­‐    cyanide  ion     O2

2-­‐    peroxide  ion  # Polyatomic  ions  containing  oxygen  (oxyanions):  

• Most  common  ion  ends  in  –ate  • Ion  with  same  charge  but  1  less  oxygen  ends  in  –ite  • Per-­‐    -­‐ate  and  hypo-­‐  -­‐ite  are  used  when  there  are  more  than  2  polyatomic  ions  with  the  same  

elements  with  the  same  charge  • Very  helpful  to  memorize  patterns  than  to  try  and  memorize  each  ion  individually!  • Anions  with  H  in  front  are  named  by  adding  hydrogen  (or  bi-­‐)  to  the  front  of  the  ion  name.    The  H+  

reduces  the  charge  of  the  ion  by  1    

Common  Anions  1-­‐   2-­‐   3-­‐  

H-­‐                        hydride  ion  F-­‐                        fluoride  ion  Cl  -­‐                                chloride  ion  Br-­‐                    bromide  ion  I-­‐                Iodide  ion  CN-­‐                  cyanide  ion  OH-­‐                hydroxide  ion  C2H3O2

-­‐    acetate  ion  NO3

-­‐              nitrate  ion  NO2

-­‐              nitrite  ion  MnO4

-­‐        permanganate  ion  ClO-­‐                hypochlorite  ion  ClO2

-­‐              chlorite  ion  ClO3

-­‐              chlorate  ion  

O2-­‐                        oxide  ion  S2-­‐                          sulfide  ion  CO3

2-­‐                carbonate  ion  CrO4

2-­‐              chromate  ion  Cr2O7

2-­‐            dichromate  ion  C2O4

2-­‐              oxalate  ion  SiO3

2-­‐                silicate  ion  SO4

2-­‐                  sulfate  ion  SO3

2-­‐                  sulfite  ion  S2O3

2-­‐                thiosulfate  ion  O2

2-­‐                        peroxide  ion  HPO4

2-­‐            biphosphate  (hydrogenphosphate)ion  HPO3

2-­‐            biphosphite  (hydrogen  phosphite)  ion  

N3-­‐          nitride  ion  P3-­‐                phosphide  ion  PO4

3-­‐        phosphate  ion  PO3

3-­‐          phosphite  ion  

Page 26: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

ClO4-­‐              perchlorate  ion  

BrO-­‐                hypobromite  ion  BrO2

-­‐              bromite  ion  BrO3

-­‐              bromated  ion  BrO4

-­‐              perbromate  ion  IO3

-­‐                      iodate  ion  HCO3

-­‐          bicarbonate  (hydrogen  carbonate)  ion  HSO4

-­‐          bisulfate  (hydrogen  sulfate)  ion  HSO3

-­‐          bisulfite  (hydrogen  sulfite)  ion  H2PO4

-­‐      dihydrogen  phosphate  ion  H2PO3

-­‐        dihydrogen  phosphate  ion  

$ Naming  Ionic  Compounds  Name  the  cation  then  name  the  anion!  Ex:    NaCl    sodium  chloride      FeCl3    iron(III)  chloride  or  ferric  chloride      NaClO3    sodium  chlorate    

$ Writing  formulas  for  Ionic  Compounds  Write  the  formula  for  the  cation.  Write  the  formula  for  the  anion.  Cross  over  &  Reduce.  Ex:    aluminum  phosphide    Al3+  P3-­‐  "  AlP  

 

Exercise  1.16   Nomenclature  Name  each  binary  compound.  a.    CsF     b.    AlC13     c.    LiH  

cesium fluoride; aluminum chloride; lithium hydride

   

Exercise  1.17   Nomenclature  Give  the  systematic  name  of  each  of  the  following  compounds.      a.    CuCl              b.    HgO   c.    Fe2O3     d.    MnO2   e.    PbC12  

copper(I) chloride; mercury(II) oxide; iron(III) oxide; manganese(IV) oxide; lead(II) chloride

                                     

             

TYPE  II:    Involve  a  transition  metal  that  needs  a  roman  numeral    Mercury  (I)  is  Hg2

+2    Exceptions:    these  never  need  a  roman  numeral  even  though  transition  metals.    MEMORIZE  Ag+,  Cd2+,  Zn2+    

Page 27: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

Exercise  1.18   Nomenclature  Give  the  systematic  name  of  each  of  the  following  compounds.    a.    CoBr2     b.    CaCl2     c.    Al2O3     d.    CrCl3  

cobalt(II) bromide; calcium chloride; aluminum oxide; chromium(III) oxide

     

Exercise  1.19     Nomenclature  Give  the  systematic  name  of  each  of  the  following  compounds.    a.    Na2SO4   b.    KH2PO4   c.    Fe(NO3)3   d.    Mn(OH)2  e.    Na2SO3   f.      Na2CO3   g.    NaHCO3   h.    CsC1O4  i.      NaOC1   j.      Na2SeO4   k.    KBrO3  

sodium sulfate; potassium dihydrogen phosphate; iron(III) nitrate; manganese(II) hydroxide; sodium sulfite; sodium carbonate; sodium bicarbonate; cesium perchlorate; sodium hypochlorite; sodium selenate; potassium bromate  # Names  and  Formulas  of  Acids  

$ Acid  –  compound  that  produces  H+  in  solution  (when  dissolved  in  water)  $ Usually  has  H  as  the  first  element  in  the  formula!  $ Acids  are  named  based  on  the  type  of  anion  present:  

# Monotomic  anion  (nonmetal  ion)  –  named  hydro___ic  acid  (the  stem  of  the  element  name  goes  in  the  ___)  # Polyatomic  anion  –  named  using  convention  –ate  "  -­‐ic  and  –ite  "  -­‐ous    

Ex:    HCl  –  hydrochloric  acid                HF  –  hydrofluoric  acid                HNO3  –  nitric  acid                          HNO2  –  nitrous  acid  

               H2SO4  –  sulfuric  acid                  H2SO3  –  sulfurous  acid  

**If  polyatomic  ion  ends  in  –ate,  the  acid  will  end  in  –ic.    If  the  polyatomic  ion  ends  in  –ite,  the  acid  will  end  in  –ous.    

o Writing  Formulas  for  Acids  H+  is  always  the  cation  Write  the  formula  for  the  anion  Cross  over  Ex:    phosphoric  acid      H+    PO4

3-­‐  "    H3PO4  

Page 28: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

# Names  and  Formulas  of  Molecular  Compounds  $ Element  further  to  the  left  on  the  periodic  table  is  usually  named  first  (except  O  –  usually  last  except  with  F)  $ If  both  elements  are  in  the  same  group,  the  one  with  the  larger  atomic  number  is  named  first  $ 2nd  element  ends  in  –ide  $ Greek  prefixes  are  used  to  indicate  how  many  atoms  of  each  element  are  present  (except  ‘mono’  –  it’s  only  used  on  the  

2nd  element  if  needed)  $ Prefixes:    1-­‐  mono,  2  –  di,  3  –  tri,  4  –  tetra,  5  –  penta,  6  –  hexa,  7  –  hepta,  8  –  octa,  9  –  nona,  10  -­‐  deca  

 Ex:      Cl2O    dichlorine  monoxide                  CO    carbon  monoxide      N2O4    dinitrogen  tetroxide    

Exercise  1.20     Nomenclature  Name  each  of  the  following  compounds.    a.    PC15     b.    PC13     c.    SF6     d.    SO3     e.    SO2     f.    CO2  

phosphorus pentachloride; phosphorus trichloride; sulfur hexafluoride; sulfur trioxide; sulfur dioxide; carbon dioxide  Exercise  1.21     Nomenclature    Give  the  systematic  name  for  each  of  the  following  compounds.    a.    P4O10     b.    Nb2O5   c.    Li2O2     d.    Ti(NO3)4   e.    H3PO4   f.    H3N  tetraphosphorus decaoxide; niobium(V) oxide; lithium peroxide; titanium(IV) oxide; phosphoric acid; hydronitric acid

 Exercise  1.22   Nomenclature  Given  the  following  systematic  names,  write  the  formula  for  each  compound.    a.    Vanadium(V)  fluoride     b.    Dioxygen  difluoride  c.    Rubidium  peroxide     d.    Gallium  oxide  VnF5; O2F2; Rb2O2; Ga2O3  # Naming  Simple  Organic  Compounds  

$ Hydrocarbon  –  compounds  that  contain  only  carbon  and  hydrogen  $ Carbon  can  bond  4  times  –  no  more,  no  less  $ Alkanes  -­‐    compounds  with  only  C-­‐C  single  bonds  

# All  alkanes  end  in  –ane  # General  formula:    CnH2n+2  

$ Alcohols  –  compounds  with  –OH  bonded  to  a  carbon  atom  # End  in  –ol  

$ Prefix  indicates  how  many  carbons  are  present  –  only  first  3  are  mentioned  here  Meth  =  1  carbon  Eth  =  2  carbons  Prop  =  3  carbons    

Ex:    methane  (CH4)                  Methanol  (CH3OH)    

Exercise  1.23   Nomenclature  Given  the  following  systematic  names,  write  the  formula  for  each  compound.    a.    ethene     b.    propyne   C2H2;  C3H4;  C3H7OH;  C2H5OH  c.    propanol     d.    ethanol      

Page 29: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

# Exceptions:  these  lovely  creatures  have  been  around  longer  than  the  naming  system  and  no  one  wanted  to  adapt!!  $ Water  (H2O)  $ Ammonia  (NH3)  $ Hydrazine  (N2H4)  $ Phosphine  (PH3)  $ nitric  oxide  (NO)  $ nitrous  oxide  (“laughing  gas”)  (N2O)  

Page 30: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

 AP Chemistry Summer Assignment: Quiz 2

1. What is the correct name for KClO3? a. Potassium Chloride b. Potassium Chlorate c. Potassium Chlorite d. Potassium Hypochlorite e. Potassium Perchlorate

2. What is the correct name for H2SO3?

a. Sulfuric acid b. Sulfurous acid c. Persulfic acid d. Hydrosulfuric acid e. Hyposulfuric acid

3. What is the correct name for HF?

a. Hydrofluoric acid b. Hydrogen fluoride c. Fluoric acid d. Fluorous acid e. Hydrogen (I) fluoride

4. What is the correct name for Cu2CO3?

a. Copper (II) carbonate b. Copper (I) carbonate c. Copper carbonate d. Copper carbon trioxide e. Copper (III) carbon oxide

5. What is the name of the following substance: P2Cl6 ? a. phosphorus (II) chloride b. diphosphorus hexachloride c. phosphorus (IV) chloride d. phosphorus chloride e. diphosphorus heptachloride

6. What is the correct name for OF2?

a. Oxygen difluoride b. Oxygen fluoride c. Monoxygen difluoride d. Oxyfluoric acid e. Oxygen (II) fluoride

Page 31: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

7. The formula of ammonium nitrite is

a. (NH4)3N b. NH3N c. NH4NO2 d. NH3NO3 e. NH4NO3

8. Which of the following polyatomic ions has the same charge as the hydroxide ion?

a. Ammonium b. Permanganate c. Oxide d. Nitride e. Chromate

9. Which  of  the  following  is  paired  incorrectly?  a. Ethane;  C2H6  b. Butane;  C4H8  c. Methanol;  CH2O  d. Ethyne;  C2H2 e. Propenal; C3H5OH

 10. Element M reacts with fluorine to form an ionic compound with the formula MF3. The M-ion has 18

electrons. What is the element M? a. P b. Sc c. Ar d. Ca e. Cr

11. Which pair of elements would you expect to exhibit the greatest similarity in their physical and chemical

properties? a. H and Li b. Cs and Ba c. Ga and Ge d. Ca and Sr e. C and O

12. When forming a positive ion, which of the following describes the change that an atom undergoes?

a. It loses protons b. It gains electrons c. It gains protons d. It loses electrons e. It loses neutrons

Page 32: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

13. What is the charge on the most common ion of sulfur? a. +2 b. +1 c. -1 d. -2 e. -3

14. Which of the following species has 13 neutrons, 10 electrons and a +1 charge?

a.

b. c.

d.

e.

15. Consider the following selected postulates of Dalton’s atomic theory: I. Each element is composed of extremely small particles called atoms.

II. Atoms are indivisible. III. Atoms of a given element are identical. IV. Atoms of different elements are different and have different properties.

Which of the postulates is (are) no longer valid? a. I and II b. II only c. II and III d. III only e. III and IV

16. A chemical reaction is observed in a sealed container where new products are formed, a gas is released

and there is a change of color. There is no change in mass. Which part of Dalton’s theory does this illustrate?

a. Law of conservation of mass b. Law of constant composition c. The existence of isotopes d. The existence of the small particles called atoms e. The fact that all atoms of the same element are identical

17. Which of the following statements is correct?

a. An electron has approximately 1/2000 mass of a proton b. A proton has approximately 1/10 mass of a neutron c. Neutrons have no mass and no charge d. All atoms of a particular element are identical e. Different ratios of atoms produce the same compounds

Page 33: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

18. Who is credited with the discovery of the neutron? a. Millikan b. Rutherford c. Chadwick d. Bohr e. Thompson

19. What do atoms of the isotopes 37Cl and 35Cl have in common?

a. They have same number of protons b. They have same number of neutrons c. They have same half-life d. They have same molar mass e. They have same diffusion constants

20. In Rutherford’s nuclear-atom model

a. The light subatomic particles, protons and neutrons reside in the nucleus b. Mass is spread essentially uniformly through the atom c. Protons are negatively charged and have much bigger mass than atom d. Nucleus is positive and essentially smallest part of the atom e. Electrons are negatively charged and take less space of the atom than the protons.

Page 34: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

Answer Sheet Quiz 2 Question Answer

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 

Page 35: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

 Unit  1:    Stoichiometry  (Review)  Adapted  from  Stoichiometry  (NMSI,  Rene  McCormick)  and  Chemistry  (Brown/LeMay)    

1.18  Atomic  Masses  (pp.  46  –  48)  # 12C—Carbon  12—In  1961  it  was  agreed  that  this  would  serve  as  the  standard  and  would  be  defined  to  have  a  mass  of  

EXACTLY  12  atomic  mass  units  (amu).    All  other  atomic  masses  are  measured  relative  to  this.      # mass  spectrometer—a  device  for  measuring  the  mass  of  atoms  or  molecules  

$ atoms  or  molecules  are  passed  into  a  beam  of  high-­‐speed  electrons  $ this  knocks  electrons  OFF  the  atoms  or  molecules  

transforming  them  into  cations  $ apply  an  electric  field  $ this  accelerates  the  cations  since  they  are  repelled  

from  the  (+)  pole  and  attracted  toward  the  (−)  pole  $ send  the  accelerated  cations  into  a  magnetic  field  $ an  accelerated  cation  creates  it’s  OWN  magnetic  field  

which  perturbs  the  original  magnetic  field  $ this  perturbation  changes  the  path  of  the  cation  $ the  amount  of  deflection  is  proportional  to  the  mass;  

heavy  cations  deflect  little  $ ions  hit  a  detector  plate  where  measurements  can    be  

obtained.  

$

Exact  by  definition  # average  atomic  masses—atoms  have  masses  of  whole  numbers,  HOWEVER  samples  of  quadrillions  of  atoms  have  a  few  

that  are  heavier  or  lighter  [isotopes]  due  to  different  numbers  of  neutrons  present  # percent  abundance-­‐-­‐percentage  of  atoms  in  a  natural  sample  of  the  pure  element  represented  by  a  particular  isotope                                                                                                                                                                          # percent  abundance  =                            number  of  atoms  of  a  given  isotope                            ×    100                                                                                                                                                                      

                                                                           Total  number  of  atoms  of  all  isotopes  of  that  element  # counting  by  mass—when  particles  are  small  this  is  a  matter  of  convenience.    Just  as  you  buy  5  lbs  of  sugar  rather  than  a  

number  of  sugar  crystals,  or  a  pound  of  peanuts  rather  than  counting  the  individual  peanuts….this  concept  works  very  well  if  your  know  an  average  mass.  

# mass  spectrometer  to  determine  isotopic  composition—load  in  a  pure  sample  of  natural  neon  or  other  substance.    The  

areas  of  the  “peaks”  or  heights  of  the  bars  indicate  the  relative  abundances  of   ,   ,  and    

Exercise  1.24     Average  Atomic  Mass    When  a  sample  of  natural  copper  is  vaporized  and  injected  into  a  mass  spectrometer,  the  results  shown  in  the  figure  are  obtained.    Use  these  data  to  compute  the  average  mass  of  natural  copper.  (The  mass  values  for  63Cu  and  65Cu  are  62.93  amu  and  64.93  amu,  respectively.) 63.55 amu

Page 36: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

 1.19    The  Mole  (pp.  90  –  96)  # mole—the  number  of  C  atoms  in  exactly  12.0  grams  of  12C;  also  a  number,  6.02  ×  1023    just  as  the  word  “dozen”  means  12  and  

“couple”  means  2.  # Avogadro’s  number—6.02  ×  1023,  the  number  of  particles  in  a  mole  of  anything  # Calculated  to  help  chemists  estimate  very  large  numbers  of  very  small  particles  

     

                         

 Exercise  1.25     Mole  Conversions  –  Mass/Particles  Americium  is  an  element  that  does  not  occur  naturally.  It  can  be  made  in  very  small  amounts  in  a  device  known  as  a  particle  accelerator.  Compute  the  mass  in  grams  of  a  sample  of  americium  containing  six  atoms.      

2x10-21 g  Exercise  1.26                                        Mole  Conversions  –  Mass/Particles  Aluminum  (A1)  is  a  metal  with  a  high  strength-­‐to-­‐mass  ratio  and  a  high  resistance  to  corrosion;  thus  it  is  often  used  for  structural  purposes.  Compute  both  the  number  of  moles  of  atoms  and  the  number  of  atoms  in  a  10.0-­‐g  sample  of  aluminum.      

2.23x1023 atoms  Exercise  1.27     Mole  Conversions  –  Moles/Mass  Cobalt  (Co)  is  a  metal  that  is  added  to  steel  to  improve  its  resistance  to  corrosion.  Calculate  both  the  number  of  moles  in  a  sample  of  cobalt  containing  5.00  ×  1020  atoms  and  the  mass  of  the  sample.  

8.31x10-4 mol; 0.0489 g Co  1.20    Molar  mass,  Molecular  weight,  and  Formula  weight  (pp.  88  –  89,  92  -­‐  93)  

# molar  mass,  MM-­‐-­‐the  mass  in  grams  of  Avogadro’s  number  of  molecules;  i.e.  the  mass  of  a  mole!  # molecular  weight,  MW-­‐-­‐sum  of  all  the  atomic  weights  of  all  the  atoms  in  the  formula  (must  have  a  correct  formula!)  # empirical  formula-­‐-­‐that  ratio  in  the  network  for  an  ionic  substance.  # formula  weight-­‐-­‐same  as  molecular  weight,  just  a  language  problem  [“molecular”  implies  covalent  bonding  while  A  

formula  implies  ionic  bonding  {just  consider  this  to  be  a  giant  conspiracy  designed  to  keep  the  uneducated  from  ever  

Moles  

Mass  (g)  

#  of  Particles  

Molarity  (mol/L)  

Volume  (L)  

Molar  Mass     g/mol  

6.02x1023  part    =    1  mol Mol/L  

22.4  L  =  1  mol        (gas  at  STP)  

Page 37: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

understanding  chemistry—kind  of  like  the  scoring  scheme  in  tennis}.    We’ll  use  MM  for  all  formula  masses.      # Units:    grams  per  mole  (g/mol)  # The  mass  of  1  atom  in  amu  =  the  mass  of  1  mole  of  atoms  of  that  element  in  g  

Ex:    1  formula  unit  of  NaCl  has  a  mass  of  58.5  amu  but  1  mole  of  NaCl  (6.02x1023  units  of  NaCl)  has  a  mass  of  58.5  g  # Significant  Figures:    It  is  correct  to  use  as  many  significant  figures  for  the  molar  mass  as  you  are  given  in  your  problem.    

However,  most  of  the  time  you’ll  be  fine  if  you  round  the  molar  masses  to  2  places  after  the  decimal.    

Exercise  1.28     Calculating  Molar  Mass  Juglone,  a  dye  known  for  centuries,  is  produced  from  the  husks  of  black  walnuts.  It  is  also  a  natural  herbicide  (weed  killer)  that  kills  off  competitive  plants  around  the  black  walnut  tree  but  does  not  affect  grass  and  other  noncompetitive  plants  [a  concept  called  allelopathy].  The  formula  for  juglone  is  C10H6O3.    a.    Calculate  the  molar  mass  of  juglone.        

174.16  g/mol  b.    A  sample  of  1.56  x  10-­‐2  g  of  pure  juglone  was  extracted  from  black  walnut  husks.  How  many  moles  of  juglone  does  this  sample  represent?  

8.96x10-5 mol

Exercise  1.29     Calculating  Molar  Mass  Calcium  carbonate  (CaCO3),  also  called  calcite,  is  the  principal  mineral  found  in  limestone,  marble,  chalk,  pearls,  and  the  shells  of  marine  animals  such  as  clams.    a.    Calculate  the  molar  mass  of  calcium  carbonate.      

100.09  g/mol  b.    A  certain  sample  of  calcium  carbonate  contains  4.86  moles.  What  is  the  mass  in  grams  of  this  sample?  What  is  the  mass  of  the  CO3

2-­‐  ions  present?  

486 g; 292 g  Exercise  1.30     Molar  Mass  and  Molecules  Isopentyl  acetate  (C7H14O2),  the  compound  responsible  for  the  scent  of  bananas,  can  be  produced  commercially.  Interestingly,  bees  release  about  1µg  (1  ×  10-­‐6  g)  of  this  compound  when  they  sting.  The  resulting  scent  attracts  other  bees  to  join  the  attack.  How  many  molecules  of  isopentyl  acetate  are  released  in  a  typical  bee  sting?        

5x1015  molecules  How  many  atoms  of  carbon  are  present?  

3x1016 atoms  

# ELEMENTS  THAT  EXIST  AS  MOLECULES  Pure  hydrogen,  nitrogen,  oxygen  and  the  halogens  exist  as  DIATOMIC  molecules  under  normal  conditions.    MEMORIZE!!!  Be  sure  you  compute  their  molar  masses  as  diatomics.    Others  to  be  aware  of,  but  not  memorize:  

• P4-­‐-­‐tetratomic  form  of  elemental  phosphorous;  an  allotrope  • S8—sulfur’s  elemental  form;  also  an  allotrope  

Page 38: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

• Carbon-­‐-­‐diamond  and  graphite  "covalent  networks  of  atoms      1.21    Percent  Composition  (pp.  89  –  90)  

# Percent  Composition  –  the  percent  by  mass  of  each  element  in  the  compound  # Two  common  ways  of  describing  the  composition  of  a  compound:  in  terms  of  the  number  of  its  constituent  atoms  and  

in  terms  of  the  percentages  (by  mass)  of  its  elements.    

Percent  (by  mass)  Composition:  law  of  constant  composition  states  that  any  sample  of  a  pure  compound  always  consists  of  the  same  elements  combined  in  the  same  proportions  by  mass.    

%  comp  =        mass  of  desired  element            ×  100                                                                                                                                                                                        Total  mass  of  compound                

Consider  ethanol,  C2H5OH  

Mass  %  of  C  =    2  mol  ×    =  24.02  g  

Mass  %  of  H  =  6  mol  ×      =        6.06  g  

Mass  %  of  O  =  1  mol  ×    =  16.00g  

          Mass  of  1  mol  of    C2H5OH  =  46.08  g      NEXT  THE  MASS  PERCENT  CAN  BE  CALCULATED:    Mass  percent  of  C  =  24.02  g  C      ×    100%    =    52.14%                46.08  g    Repeat  for  the  H  and  O  present.    

Exercise  1.31     Calculating  Mass  Percent  Carvone  is  a  substance  that  occurs  in  two  forms  having  different  arrangements  of  the  atoms  but  the  same  molecular  formula  (C10H14O)  and  mass.  One  type  of  carvone  gives  caraway  seeds  their  characteristic  smell,  and  the  other  type  is  responsible  for  the  smell  of  spearmint  oil.  Compute  the  mass  percent  of  each  element  in  carvone.  

79.94% C; 9.41% N; 10.65% O Exercise  1.32     Calculating  Mass  Percent  Penicillin,  the  first  of  a  now  large  number  of  antibiotics  (antibacterial  agents),  was  discovered  accidentally  by  the  Scottish  bacteriologist  Alexander  Fleming  in  1928,  but  he  was  never  able  to  isolate  it  as  a  pure  compound.  This  and  similar  antibiotics  have  saved  millions  of  lives  that  might  have  been  lost  to  infections.  Penicillin  F  has  the  formula  C14H20N2SO4.  Compute  the  mass  percent  of  each  element.  

Page 39: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

53.82% C; 6.47% H; 8.97% N; 10.26% S; 20.48% O

1.22    Determining  the  Formula  of  a  Compound  (pp.  96  –  100)  

             

# Empirical  formula  –  gives  the  relative  number  of  atoms  of  each  element  present  in  a  compound  $ hydrates—“dot  waters”  used  to  cement  crystal  structures.      $ anhydrous-­‐-­‐without  water  

# To  calculate  E.F.  from  %  composition  data:  1.  Assume  100  g  of  the  sample  (so  the  %  =  mass)  (if  given  grams  go  straight  to  step  2)  2. Convert  grams  of  each  element  in  the  sample  to  moles  3. Calculate  the  mole  ratio  (divide  all  moles  by  the  lowest  number  of  moles)  4. Ratio  =  subscripts  in  the  E.F.  

**If  in  #4  you  don’t  get  whole  numbers,  multiply  all  by  a  number  to  get  a  whole  number  **E.F.  must  have  the  lowest  whole  number  subscripts  possible  (lowest  ratio  possible)  

# Calculating  molecular  formula  from  empirical  formula  $ The  subscripts  in  the  M.F.  are  always  a  whole  number  multiple  of  the  subscripts  in  the  E.F.    [(empirical  formula)n,  where  

n  is  an  integer]  $ To  find  M.F.,  you  have  to  know  the  molar  mass  of  the  molecular  formula  

Whole  Number  Multiple  =  molar  mass/empirical  mass  # Combustion  Analysis  

$ Way  of  analyzing  unknown  compounds  to  find  composition  $ When  faced  with  a  compound  of  “unknown”  formula,  one  of  the  most  common  techniques  is  to  combust  it  with  

oxygen  to  produce  CO2,  H2O,  and  N2    which  are  then  collected  and  weighed.  $ When  an  organic  compound  (a  hydrocarbon)  undergoes  combustion,  all  of  the  C  from  the  compound  is  converted  into  

CO2  and  all  of  the  hydrogen  is  converted  into  H2O.    You  can  find  out  how  much  of  each  was  in  the  original  sample  using  stoichiometry.  

 Example:    A  compound  is  composed  of  carbon,  nitrogen  and  hydrogen.    When  0.1156  g  of  this  compound  is  reacted  with  oxygen  [burned,  combusted],  0.1638  g  or  carbon  dioxide  and  0.1676  g  of  water  are  collected.        What  is  the  empirical  formula  of  the  compound?    Compound  +  O2    "  CO2  +    H2O    +    N2            but  NOT  balanced!!  

(You  can  see  that  all  of  the  carbon  ended  up  in  CO2  so…when  in  doubt,  FIND  THE  NUMBER  OF  MOLES!!)    

0.1638  g  CO2    ÷    44.01  g/mol    =    0.003781  moles  of  CO2  x  1  mol  C/1  mol  CO2    =  0.003781  moles  of  C    

(Next,  you  can  see  that  all  of  the  hydrogen  ended  up  in  H2O,  so….FIND  THE  NUMBER  OF  MOLES!!)      

0.1676  g  H2O  ÷  18.02  g/mol  =  0  .009301  moles  of  H2O  (BUT  there  are  2  moles  of  H  for  each  mole  of  water  [  think  “organ  bank”    one  heart  per  body,  one  C  per  molecule  of  carbon  dioxide—2  lungs  per  body,  2  atoms  H  in  water  and  so  on…]  so  DOUBLE  THE  NUMBER  OF  MOLES  TO  GET  THE  NUMBER  OF  MOLES  OF  HYDROGEN!!)  

0.009301  mol  H2O    =    0.01860  moles  of  H  The  rest  must  be  nitrogen,  BUT  we  only  have  mass  data  for  the  sample  so  convert  your  moles  of  C  and  H  to  grams:  

 

g  C  =  0.003781  moles  C  ×  12.01    =  0.04540  grams  C                            +  

g  H  =  0.01860  moles  H  ×  1.01          =  0.01879  grams  H                                 0.06419  grams  C  +  H    

SUBTRACT!      0.1156  g  sample  –  0.06419  g  thus  far  =  grams  N  left  =  0.05141  g  N      so….  

 

0.05141  g  N  ÷  14.01    =    0.003670  moles  N  

Page 40: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

 Chemical  formulas  represent  mole  to  mole  ratios,  so…divide  the  number  of  moles  of  each  by  the  smallest  #  of  moles  of  any  one  of  them  to  get  a  guaranteed  ONE  in  your  ratios…multiply  by  2,  then  3,  etc  to  get  to  a  ratio  of  small  whole  numbers!!    

Element   #  moles   ALL  Divided  by  0.003670  C   0.003781   1  H   0.01860   5  N   0.003670   1  

Therefore  the  correct  EMPIRICAL  formula  is  CH5N.    Next,  if  we  are  told  that  the  MM  is  31.06  g/mol,    then  simply  use  this  relationship:    (Empirical  mass)                                    ×                          n                      =                          MM    (12.01  +  5.05  +  14.01)                    ×                          n                      =                    31.06    

Solve  for  n    

n  =  0.999678…  or  essentially  one,  so  the  empirical  formula  and  the  molecular  formula  are  the  same.    Exercise  1.33     Determining  Empirical  &  Molecular  Formulas  Determine  the  empirical  and  molecular  formulas  for  a  compound  that  gives  the  following  analysis  (in  mass  percents):    

71.65%  C1                        24.27%  C                        4.07%  H    The  molar  mass  is  known  to  be  98.96  g/mol.  

CH2Cl; C2H4Cl2 Exercise  1.34     Determining  Empirical  &  Molecular  Formulas  A  white  powder  is  analyzed  and  found  to  contain  43.64%  phosphorus  and  56.36%  oxygen  by  mass.  The  compound  has  a  molar  mass  of  283.88  g/mol.  What  are  the  compound’s  empirical  and  molecular  formulas?  

P2O5; P4O10 Exercise  1.35     Determining  a  Molecular  Formula  Caffeine,  a  stimulant  found  in  coffee,  tea,  and  chocolate,  contains  49.48%  carbon,  5.15%  hydrogen,  28.87%  nitrogen,  and  16.49%  oxygen  by  mass  and  has  a  molar  mass  of  194.2  g/mol.  Determine  the  molecular  formula  of  caffeine.  

Page 41: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

C8H10N4O2  1.23    Chemical  Reactions  and  Equations  (pp.  80  –  88)  

# Chemical  reactions  are  the  result  of  a  chemical  change  where  atoms  are  reorganized  into  one  or  more  new  arrangements.    Bonds  are  broken  [requires  energy]  and  new  ones  are  formed  [releases  energy].  

# Chemical  equation  –  a  representation  of  a  chemical  reaction  $ Reactants  are  listed  on  the  left  side  of  the  arrow,  product  on  the  right  $ Coefficients  represent  the  relative  number  of  molecules  and/or  moles  required  for  the  reaction  $ Energy  is  included  SOMETIMES  (called  a  thermochemical  equation)  to  show  that  the  rxn  is  either  endothermic  or  

exothermic  (this  isn’t  info  you  have  to  figure  out,  you’ll  be  told  if  you’re  supposed  to  include  it  in  the  equation)  $ The  time  required  for  a  rxn  to  occur  is  not  included  

# Law  of  Conservation  of  Mass  (Lavoisier)  –  atoms  (matter)  can’t  be  created  or  destroyed,  so  the  number  of  atoms  on  the  left  of  the  arrow  has  to  be  the  same  as  the  atoms  on  the  right  

$ To  satisfy  the  law  of  conservation  of  mass,  balance  the  equation  # Write  correct  formulas  for  all  compounds  in  the  reaction  # Never  change  a  subscript  in  an  equation  # Use  coefficients  to  make  the  number  of  atoms  equal  on  each  side  of  the  arrow  

$ States  of  matter  for  each  compound  in  the  reaction  are  represented  by:  # (s)  =  solid  # (l)  =  liquid  # (g)  =  gas  # (aq)  =  aqueous  

Page 42: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

# Information  given  by  a  chemical  equation                        

 # Writing  &  Balancing  Equations  

$ Begin  with  the  most  complicated-­‐looking  thing  (save  the  elemental  thing  for  last).  $ If  you  get  stuck,  double  the  most  complicated-­‐looking  thing.  $ MEMORIZE  THE  FOLLOWING:  

# metals  +  halogens  "  MaXb  # CH  (and/or  O)  +  O2  "  CO2(g)  +  H2O(g)  # H2CO3  [any  time  formed!]  "  CO2  +  H2O;    in  other  words,  never  write  carbonic  acid  as  a  product,  it  

spontaneously  decomposes  [in  an  open  container]  to  become  carbon  dioxide  and  water.  # metal  carbonates  "  metal  OXIDES  +  CO2  

 

# Types  of  Chemical  Reactions  (general)  $ Combination  (Synthesis)  Reactions  (A  +  B  "  AB)  

# Reactants  can  be  single  elements  or  compounds  or  both!  # Product  must  be  one  compound  

$ Decomposition  Reactions  (AB  "  A  +  B)  # Generally  require  energy  (endothermic)  # Reactant  must  be  one  compound  # Products  can  be  single  elements  or  compounds,  or  both!  

$ Combustion  in  Air  # Rapid  reactions  in  which  a  flame  is  produced  # Most  use  O2  in  air  as  a  reactant  # Organic  Combustion  

$ CxHy  +  O2  "  CO2  +  H2O  (complete  combustion)  $ Sometimes  incomplete  combustion  occurs…CxHy  +  O2  "  CO  +  H2O  (it  depends  on  how  much  

oxygen  is  there  as  to  whether  combustion  is  complete  or  incomplete)  $ Unless  you  are  told  otherwise,  assume  complete  combustion!  $ The  water  product  can  be  liquid  or  gaseous  depending  on  the  reaction  conditions  

 Exercise  1.36     Balancing  Equations  Chromium  compounds  exhibit  a  variety  of  bright  colors.  When  solid  ammonium  dichromate,  (NH4)2Cr2O7,  a  vivid  orange  compound,  is  ignited,  a  spectacular  reaction  occurs,  as  shown  in  the  two  photographs  on  page  105.  Although  the  reaction  is  actually  somewhat  more  complex,  let’s  assume  here  that  the  products  are  solid  chromium(III)  oxide,  nitrogen  gas  (consisting  of  N2  molecules),  and  water  vapor.  Balance  the  equation  for  this  reaction.  

(NH4)2Cr2O7 " Cr2O3 + N2 + 4H2O  

Exercise  1.37     Balancing  Equations  At  1000ºC,  ammonia  gas,  NH3(g),  reacts  with  oxygen  gas  to  form  gaseous  nitric  oxide,  NO(g),  and  water  vapor.  This  reaction  is  the  first  step  in  the  commercial  production  of  nitric  acid  by  the  Ostwald  process.  Balance  the  equation  for  this  reaction.  

Page 43: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

4NH3 + 5O2 " 4NO + 6H2O  1.24    Stoichiometric  Calculations:    Amounts  of  Reactants  and  Products  (pp.  100  –  104)  

# Coefficients  in  a  balanced  equation  represent  the  relative  numbers  of  molecules  (or  moles)  in  a  reaction  # Mole  ratio  allows  me  to  convert  between  compounds  present  in  a  reaction  # SOOOOOO  important  to  be  good  at  this…it’s  not  going  away!    If  you  see  a  reaction,  think  stoich!  # Can  solve  using  dimensional  analysis  or  a  new  way  –  either  way  is  fine,  whatever  is  easiest  for  you!  

$ you  have  to  be  proficient  at  the  following  no  matter  which  method  you  choose!:  # Writing  CORRECT  formulas—this  requires  knowledge  of  your  polyatomic  ions  and  being  able  to  use  

the  periodic  table  to  deduce  what  you  have  not  had  to  memorize.    Review  section  2.8  in  your  Chapter  2  notes  or  your  text.  

# Calculate  CORRECT  molar  masses  from  a  correctly  written  formula  # Balance  a  chemical  equation  # Use  the  mole  map  to  calculate  the  number  of  moles  or  anything  else!  

 Example:    What  mass  of  oxygen  will  react  with  96.1  grams  of  propane?

  Option  1:    Solve  using  dimensional  analysis:  1.  Write  the  balanced  equation:    C3H8  +  5O2  "  3CO2  +  4H2O  2. Use  D.A.  to  go  from  grams  of  propane  to  grams  of  oxygen:  

96.1  𝑔  𝐶3𝐻8  ×1  𝑚𝑜𝑙  𝐶3𝐻844.11  𝑔  𝐶3𝐻8×5  𝑚𝑜𝑙  𝑂21  𝑚𝑜𝑙  𝐶3𝐻8×32  𝑔  𝑂21  𝑚𝑜𝑙  𝑂2=349  𝑔  𝑂2       Option  2:    Solve  using  the  table  method:  1.  Make  a  table  

Molar Mass:

Balanced Eq’n

mole:mole # moles amount

     

2. Write  a  chemical  equation  paying  special  attention  to  writing  correct  chemical  formulas!  

Molar Mass:

Balanced Eq’n

C3H8

+

5 O2 "

3 CO2 +

4 H2O

mole:mole # moles amount

   3. Calculate  the  molar  masses  and  put  in  parentheses  above  the  formulas—soon  you’ll  figure  out  you  don’t  have  to  do  this  for  

every  reactant  and  product,  just  those  you’re  interested  in.  

Molar (44.11) (32.00) (44.01) (18.02)

Page 44: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

Mass: Balanced

Eq’n C3H8

+

5 O2 "

3 CO2 +

4 H2O

mole:mole # moles amount

   4. Look  at  the  coefficients  on  the  balanced  equation,  they  ARE  the  mole:mole  ratios!  

Molar Mass:

(44.11) (32.00) (44.01) (18.02)

Balanced Eq’n

C3H8

+

5 O2 "

3 CO2 +

4 H2O

mole:mole 1 5 3 4 # moles amount

 5. Next,  re-­‐read  the  problem  and  put  in  an  amount—in  this  example  it’s    96.1  g  of  propane.  

Molar Mass:

(44.11) (32.00) (44.01) (18.02)

Balanced Eq’n

C3H8

+

5 O2 "

3 CO2 +

4 H2O

mole:mole 1 5 3 4 # moles amount 96.1 g

 6. Find  the  number  of  moles  of  something…anything!    Use  the  mole  map  –  start  at  96.1  g,  divide  by  molar  mass  to  get  the  #  of  

moles  of  propane.  

Molar Mass:

(44.11) (32.00) (44.01) (18.02)

Balanced Eq’n

C3H8

+

5 O2 "

3 CO2 +

4 H2O

mole:mole 1 5 3 4 # moles 2.18 amount 96.1 g

     

7.  Use  the  mole:mole  ratio  to  find  moles  of  EVERYTHING!    If  1  =  2.18,  then  oxygen  is  5(2.18)  etc…(if  the  first  you  find  is  not  a  “1”  just  devide  to  make  it  “1”)    Leave  all  digits  in  your  calculator,  I  only  rounded  to  save  space!  

Molar Mass:

(44.11) (32.00) (44.01) (18.02)

Balanced C3H8 5 O2 3 CO2 4 H2O

Page 45: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

Eq’n + " + mole:mole 1 5 3 4

# moles 2.18 10.9 6.53 8.71 amount 96.1 g

 8. Re-­‐read  the  problem  to  determine  which  amount  was  asked  for…here’s  the  payoff…AP  problems  ask  for  several  amounts!    

First  we’ll  find  mass  of  oxygen  required  since  that’s  the  problem  asked.    10.9  mol  x  32  g/mol  =  349  g  O2  

Molar Mass:

(44.11) (32.00) (44.01) (18.02)

Balanced Eq’n

C3H8

+

5 O2 "

3 CO2 +

4 H2O

mole:mole 1 5 3 4 # moles 2.18 10.9 6.53 8.71 amount 96.1 g 349 g

 9. What  if  another  part  of  the  question  asked  for  liters  of  CO2  at  STP  (1  atm,  273  K)?    Use  the  mole  map.    Start  in  the  middle  

with  6.53  moles  x  22.4  L/mol  =  146  L  

Molar Mass:

(44.11) (32.00) (44.01) (18.02)

Balanced Eq’n

C3H8

+

5 O2 "

3 CO2 +

4 H2O

mole:mole 1 5 3 4 # moles 2.18 10.9 6.53 8.71 amount 96.1 g 349 g 146 L

 10. What  if  another  part  asked  how  many  water  molecules  are  produced?    Use  the  mole  map.    Start  in  the  middle  with  8.71  

moles  x  6.02x1023  molecules/1  mol  =  5.24x1024  molecules  water  

Molar Mass:

(44.11) (32.00) (44.01) (18.02)

Balanced Eq’n

C3H8

+

5 O2 "

3 CO2 +

4 H2O

mole:mole 1 5 3 4 # moles 2.18 10.9 6.53 8.71 amount 96.1 g 349 g 146 L 5.24x1024

molec.  Either  way  –  table  method  or  D.A  –  whatever  is  easier  and  makes  more  sense  to  you!  

Exercise  1.38     Stoichiometry  Solid  lithium  hydroxide  is  used  in  space  vehicles  to  remove  exhaled  carbon  dioxide  from  the  living  environment  by  forming  solid  lithium  carbonate  and  liquid  water.  What  mass  of  gaseous  carbon  dioxide  can  be  absorbed  by  1.00  kg  of  lithium  hydroxide?   919 g

Page 46: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

Exercise  1.39     Stoichiometry  Baking  soda  (NaHCO3)  is  often  used  as  an  antacid.  It  neutralizes  excess  hydrochloric  acid  secreted  by  the  stomach:    

NaHCO3(s)  +  HCl(aq)  →  NaCl(aq)  +  H2O(l)  +  CO2(aq)        

     

Milk  of  magnesia,  which  is  an  aqueous  suspension  of  magnesium  hydroxide,  is  also  used  as  an  antacid:  Mg(OH)2(s)  +  2HCl(aq)  →  2H2O(l)  +  MgCl2(aq)  

         

 Which  is  the  more  effective  antacid  per  gram,  NaHCO3  or  Mg(OH)2  ?  

Mg(OH)2  

1.25    Calculations  involving  a  Limiting  Reactant  (pp.  104  –  108)  # How  to  Recognize  a  L.R.  problem:    you’ll  be  given  2  amounts  for  the  reactants  in  the  problem!    One  of  the  reactants  will  be  

the  limiting  reactant  and  the  other  will  be  in  excess    $ Limiting  reactant-­‐  reactant  that  is  completely  used  up  in  a  reaction  (also  called  the  limiting  reagent)  $ Excess  reactant  –  reactant  that  is  not  used  up  in  the  reaction  (you’ll  have  some  left  over  when  the  reaction  is  done)  

 Example:    Suppose  25.0  kg  of  nitrogen  reacts  with  5.00  kg  of  hydrogen  to  form  ammonia.    What  mass  of  ammonia  can  be  produced?    Which  reactant  is  the  limiting  reactant?    What  is  the  mass  of  the  reactant  that  is  in  excess?

# To  Solve:    (use  D.A.  or  the  table  method  –  I’ll  show  table  method  since  that’s  new!)  1.  Set  up  your  table  like  before  only  now  you’ll  have  2  amounts  to  start  with:  

Molar Mass: (28.04) (2.02) (17.04) Balanced Eq’n N2 + 3 H2 " 2 NH3

mole:mole 1 3 2 # moles amount 25,000 g 5,000 g  

2. Find  the  #  of  moles  of  both  reactants  you’re  given  info  about  

Molar Mass:

(28.02) (2.02) (17.04)

Balanced Eq’n

N2 + 3 H2 "

2 NH3

mole:mole 1 3 2 # moles 892 moles 2,475 moles amount 25,000 g 5,000 g

 

Page 47: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

3.  To  find  which  reactant  is  limiting,  pick  one  –  either  N2  or  H2  –  it  doesn’t  matter.    Let’s  pick  H2.    Calculate  how  much  N2  is  used  if  all  of  the  H2  is  used  up.    

WHAT  IF  I  used  up  all  the  moles  of  hydrogen?    I’d  need  1/3  ×  2,475  moles    =    825  moles  of    nitrogen.    Clearly  I  have  EXCESS  moles  of  nitrogen!!  Therefore,  hydrogen  limits  me.  

OR  WHAT  IF  I  used  up  all  the  moles  of  nitrogen?    I’d  need  3  ×  892  moles    =    2,676  moles  of  hydrogen.    Clearly  I  don’t  have  enough  hydrogen,  so  it  limits  me!!  Therefore  nitrogen  is  in  excess.  

Either  way,  I’ve  established  that  hydrogen  is  the  limiting  reactant  so  I  modify  the  table:  

Molar Mass: (28.02) (2.02) (17.04) Balanced Eq’n N2 + 3 H2

" 2 NH3

mole:mole 1 3 2 # moles 825 mol used

892 moles

2,475 moles

1650 mol produced

amount 825 mol (28.02) =

23,116 g used

25,000 g

5,000 g

1650 mol (17.04)

= 28,116 g produced

1,884 g excess!!  Here’s  the  question  again,  let’s  clean  up  any  sig.fig  issues:    Suppose  25.0  kg  of  nitrogen  reacts  with  5.00  kg  of  hydrogen  to  form  ammonia.    (3  sig.  fig.  limit)  

What  mass  of  ammonia  can  be  produced?    23,100  g  produced  =  23.1  kg  (always  polite  to  respond  in  the  unit  given.  Which  reactant  is  the  limiting  reactant?    hydrogen—once  that’s  established,  N2  doesn’t  matter  anymore!  

What  is  the  mass  of  the  reactant  that  is  in  excess?  1,884  g  =  1.88  kg  excess  nitrogen!!  

Exercise  1.40     Stoichiometry:  Limiting  Reactant  Nitrogen  gas  can  be  prepared  by  passing  gaseous  ammonia  over  solid  copper(II)  oxide  at  high  temperatures.  The  other  products  of  the  reaction  are  solid  copper  and  water  vapor.  If  a  sample  containing  18.1  g  of  NH3  is  reacted  with  90.4  g  of  CuO,  which  is  the  limiting  reactant?  How  many  grams  of  N2  will  be  formed?  

10.7 g

 

# Theoretical  yield  –  how  much  product  you’ll  make  when  all  of  the  limiting  reactant  has  been  used  up  (this  assumes  perfect  conditions  and  gives  a  maximum  amount  –  not  likely!)  

# Actual  yield  –  amount  of  product  actually  made  𝐴𝑐𝑡𝑢𝑎𝑙  𝑌𝑖𝑒𝑙𝑑/𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙  𝑌𝑖𝑒𝑙𝑑×100=%  𝑌𝑖𝑒𝑙𝑑

 

Page 48: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

Exercise  1.41         Calculating  Percent  Yield  Methanol  (CH3OH),  also  called  methyl  alcohol,  is  the  simplest  alcohol.  It  is  used  as  a  fuel  in  race  cars  and  is  a  potential  replacement  for  gasoline.  Methanol  can  be  manufactured  by  combination  of  gaseous  carbon  monoxide  and  hydrogen.  Suppose  68.5  kg  CO(g)  is  reacted  with  8.60  kg  H2(g).  Calculate  the  theoretical  yield  of  methanol.  If  3.57  ×  104  g  CH3OH  is  actually  produced,  what  is  the  percent  yield  of  methanol?    

52.3  %    

Page 49: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

 AP Chemistry Summer Assignment: Quiz 3

$ The atomic masses in periodic table are not integral numbers. For example, carbon is listed as 12.01115 instead of 12.0000. Why? f. Our technology does not allow for exact measurement of such a small quantity. g. Atoms gain or lose electrons easily and that changes their mass significantly. h. Atomic masses listed in the periodic table are weighted averages of naturally occurring isotopes. i. Atomic masses are measured in real samples that are always contaminated with other elements. j. There is a theoretical uncertainty in the masses of atoms.

21. What is the average atomic mass of a sample of naturally occurring X, if it is comprised of the following

isotopes: 47% 51X, 36% 52X, and 17% 56X? a. 56.00 b. 51.00 c. 53.00 d. 54.34 e. 52.21

22. What is the mass of one atom of sulfur?

a. 6.02 x 1023 g b. 32.0 g c. 5.32 x 10-23 g d. 1.93 x 1025 g e. 6.02 x 10-23 g

23. What is molar mass of urea (NH2)2CO, a compound used as a nitrogen fertilizer?

a. 44.0 b. 43.0 c. 60.1 d. 8.0 e. 32.0

24. Two moles of a particular group I bromide have mass of 206 g. Identify the group I metal.

a. Li b. Na c. K d. Rb e. Cs

25. How many individual ions does one mole of barium phosphate contain?

a. 6.02 x 10 23 b. 3.01 x 10 24 c. 5 d. 2 e. 1.2 x 10 24

Page 50: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

26. What is the % by mass of Beryllium chloride? a. 50% Be, 50% Cl b. 33% Be, 67% Cl c. 25% Be, 75% Cl d. 11.25% Be, 88.75% Cl e. 10.1% Be, 89.9% Cl

27. Which hydrocarbon pair below have identical mass percentage of C?

a. C3H4 and C3H6 b. C2H4 and C3H4 c. C2H4 and C4H2 d. C2H4 and C3H6 e. C3H9 and C6H6

28. A 16.0 g sample of a hydrocarbon undergoes combustion to produce 36.0 g of water. What is the

percentage of hydrogen in the hydrocarbon? a. 2.11% b. 9.23% c. 25.0% d. 54.9% e. 73.1%

29. An empirical formula always indicates

a. Which atoms are attached to which in a molecule b. How many of each atom are in the molecule c. The simplest whole-number ratio of different atoms in a compound d. The isotopes of each atom in a compound e. The geometry of a molecule

30. The empirical formula of a compound with molecules containing 12 carbon atoms, 14 hydrogen atoms,

and 6 oxygen atoms is a. C12H14O6 b. CHO c. CH2O d. C6H7O3 e. C2H4O

31. A sulfur oxide is 50% by mass sulfur. What is its empirical formula?

a. SO b. SO2 c. S2O d. S2O4 e. SO3

Page 51: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

32. What is the molecular formula of a compound that is 5.88% hydrogen, the remainder being oxygen, and that has a molar mass of 34 g/mol?

a. H5O b. H5O2 c. H2O2 d. H2O e. HO

33. When the chemical reaction is written and balanced with the lowest possible integers, what coefficient

appears in front of the methane? Reaction: Methane combusts in oxygen. a. 1 b. 2 c. 3 d. 4 e. 6

34. When following chemical reaction is balanced using lowest possible integers, what is the total sum of

the coefficients? H3PO4 + Ba(OH)2 ! Ba3(PO4)2 + H2O a. 2 b. 3 c. 4 d. 12 e. 15

35. Consider reaction: 4FeS2 + 11O2 !2Fe2O3 + 8SO2. How many moles of FeS2 will react with 6.00 mol of

oxygen? a. 6 b. 11 c. 2.18 d. 2.75 e. .545

36. Consider reaction: CaC2 + 2H2O! Ca(OH)2 + C2H2. If 16.0 g of calcium crabide is consumed in this

reaction how many liters of acetylene has been produced under STP? a. 5.58 b. 11.6 c. 22.4 d. 44.8 e. 34.0

37. Solid aluminum and gaseous oxygen react in a combination reaction to produce aluminum oxide. What

is the maximum amount of aluminum oxide produced in reaction of 2.7 g of Al and 2.7 g of O2? a. 0.023 mol b. 0.050 mol c. 0.056 mol d. 0.100 mol

Page 52: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

e. 0.125 mol

38. If 0.00250 mol of copper(II) carbonate are reacted with .00400 mol of HCl, to produce 0.06600 g of carbon dioxide, 0.02700 g of water and some other mass of copper(II) chloride, which is the limiting reactant?

a. Hydrochloric acid b. Copper(II) chloride c. Copper(II) carbonate d. Water e. Carbon dioxide

39. In the reaction: 2C4H10 + 13O2 ! 8CO2 + 10 H2O, 10.00 mol of carbon dioxide are formed from 10.0

mol of hydrocarbon. What is percentage yield for this reaction? a. 10% b. 25% c. 50% d. 80% e. 90%

Page 53: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

Answer Sheet Quiz 3 Question Answer

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Page 54: 2015 Summer Assignment...Tips for Learning the Ions Polyatomic Anions Most of the work on memorization occurs with these ions, but there are a number of patterns that can greatly reduce

 AP  Chemistry  Summer  Assignment  Stoichiometry  Free  Response  Questions    CLEARLY  SHOW  THE  METHOD  YOU  USED  AND  STEPS  INVOLVED  IN  ARRIVING  AT  YOUR  ANSWERS.  It  is  to  your  advantage  to  do  this,  because  you  may  earn  partial  credit  if  you  do  and  you  will  receive  little  or  no  credit  if  you  do  not.  Attention  should  be  paid  to  significant  figures.  Be  sure  to  write  all  your  answers  to  the  questions  on  your  own  paper,  labeling  each  question  part  (ex:    1a.)    1. Answer  the  following  questions  that  relate  to  chemical  reactions.      

(a) Iron(III)  oxide  can  be  reduced  with  carbon  monoxide  according  to  the  following  equation.    

Fe2O3(s)  +  3  CO(g)    →    2  Fe(s)  +  3  CO

2(g)  

               A  16.2  L  sample  of  CO(g)  at  1.50  atm  and  200.°C  is  combined  with  15.39  g  of  Fe2O3(s).    

 (i) How  many  moles  of  CO(g)  are  available  for  the  reaction?    (ii) What  is  the  limiting  reactant  for  the  reaction?  Justify  your  answer  with  calculations.    (iii) How  many  moles  of  Fe(s)  are  formed  in  the  reaction?    

 (b) In  a  reaction  vessel,  0.600  mol  of  Ba(NO

3)2(s)  and  0.300  mol  of  H

3PO

4(aq)  are  combined  with  distilled  

water  to  a  final  volume  of  2.00  L.  The  reaction  represented  below  occurs.      

3  Ba(NO3)2(aq)  +  2  H

3PO

4(aq)  →  Ba

3(PO

4)2(s)  +  6  HNO

3(aq)    

 (i) Calculate  the  mass  of  Ba

3(PO

4)2(s)  formed.    

(ii) Calculate  the  pH  of  the  resulting  solution.    (iii) What  is  the  concentration,  in  mol  L

–1,  of  the  nitrate  ion,  NO

3

–  (aq),  after  the  reaction  reaches  

completion?          2. The  molecular  formula  of  a  hydrocarbon  is  to  be  determined  by  analyzing  its  combustion  products  and      

investigating  its  colligative  properties.    (a) The  hydrocarbon  burns  completely,  producing  7.2  grams  of  water  and  7.2  liters  of  CO2  at  standard  

conditions.  What  is  the  empirical  formula  of  the  hydrocarbon?

(b) Calculate  the  mass  in  grams  of  O2  required  for  the  complete  combustion  of  the  sample  of  the  hydrocarbon  described  in  (a).

(c) The  hydrocarbon  dissolves  readily  in  CHCl3.  The  freezing  point  of  a  solution  prepared  by  mixing    

100.  grams  of  CHCl3  and  0.600  gram  of  the  hydrocarbon  is  −64.0oC.  The  molal  freezing-­‐point  depression  constant  of  CHCl3  is  4.68°C/molal  and  its  normal  freezing  point  is  −63.5°C.  Calculate  the  molecular  weight  of  the  hydrocarbon.

(d)  What  is  the  molecular  formula  of  the  hydrocarbon?