2010 EN1998 Bridges BKolias

download 2010 EN1998 Bridges BKolias

of 110

Transcript of 2010 EN1998 Bridges BKolias

  • 8/4/2019 2010 EN1998 Bridges BKolias

    1/110

    EUROCODESBridges: Background and applications

    Dissemination of information for training Vienna, 4-6 October 2010 1

    Overview of Seismic issues for bridge

    es gn

    Basil KoliasDENCO SA

    Athens

  • 8/4/2019 2010 EN1998 Bridges BKolias

    2/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 2

    Dissemination of information for training Vienna, 4-6 October 2010 2

    Overview of the presentation

    1. Example of ductile piers

    concrete deck rigidly connected to piers designedfor ductile behaviour

    2. Example of limited ductile piers

    Seismic desi n of the eneral exam le: Brid e onhigh piers designed for limited ductile behaviour

    3. Example of seismic isolation

    Seismic design of the general example: Bridge on

    squat piers designed with seismic isolation

  • 8/4/2019 2010 EN1998 Bridges BKolias

    3/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 3

    Dissemination of information for training Vienna, 4-6 October 2010 3

    1 Example of ductile piers

    Bridge description

    3 span voided slab bridge (overpass), withspans 23.0m, 35.0m and 23.0m. Total length of

    82.50m.

    Piers: single cylindrical columns D=1.20m,. .

    for M1 and 8.5m for M2.

    Sim l su orted to abutments throu h a air of

    sliding bearings.

    Foundation of piers and abutments through

    piles.

  • 8/4/2019 2010 EN1998 Bridges BKolias

    4/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 4

    Dissemination of information for training Vienna, 4-6 October 2010 4

    Example of ductile piers

    Longitudinal section

    A1 M1 M2 A2

  • 8/4/2019 2010 EN1998 Bridges BKolias

    5/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 5

    Dissemination of information for training Vienna, 4-6 October 2010 5

    Example of ductile piers

    Plan view

  • 8/4/2019 2010 EN1998 Bridges BKolias

    6/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 6

    Dissemination of information for training Vienna, 4-6 October 2010 6

    Example of ductile piers

    Cross section of deck d = 1.65m

    Pier cross section D = 1.20m

  • 8/4/2019 2010 EN1998 Bridges BKolias

    7/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 7

    Dissemination of information for training Vienna, 4-6 October 2010 7

    Linear Analysis Methods

    Equivalent Linear Analysis:Elastic force analysis with forces from

    unlimited elastic response divided by theglobal behaviour factor = q.=

    (except for very low periods T< TB)

    esponse spec rum ana ys s:Multi-mode spectrum analysis

    Fundamental mode analysisqu va en s a c oa ana ys s

    With several models of varying simplification

  • 8/4/2019 2010 EN1998 Bridges BKolias

    8/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 8

    Dissemination of information for training Vienna, 4-6 October 2010 8

    Linear Analysis Methods

    Basic prerequisite:

    Stiffness of Ductile Elements iers :

    secant stiffness at the theoretical yield,based on bilinear fit of the actual curve

    My

    = My/ yYield of first bar

    My = Rd

    Guidance for estimation of stiffness in Annex C

  • 8/4/2019 2010 EN1998 Bridges BKolias

    9/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 9

    Dissemination of information for training Vienna, 4-6 October 2010 9

    Linear Analysis Methods

    Stiffness of concrete deck

    Bending stiffness: uncracked stiffness both

    -

    open sections or slabs: may be ignored

    restressed box sections: 50% of

    uncracked

    reinforced box sections: 30% of

    uncracked

  • 8/4/2019 2010 EN1998 Bridges BKolias

    10/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 10

    Dissemination of information for training Vienna, 4-6 October 2010 10

    Linear Analysis Methods

    Ductility Classes

    Limited Ductile Behaviour:

    q 1.50 (behaviour factor)

    min= 7 (curvature ductility)

    Ductile Behaviour:

    1.50 < q 3.50min = 13

  • 8/4/2019 2010 EN1998 Bridges BKolias

    11/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 11

    Dissemination of information for training Vienna, 4-6 October 2010 11

    Ductility Classes

    BehaviourBehaviourBehaviour

    DuctileDuctileDuctile

    Displacement

  • 8/4/2019 2010 EN1998 Bridges BKolias

    12/110

  • 8/4/2019 2010 EN1998 Bridges BKolias

    13/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 13Dissemination of information for training Vienna, 4-6 October 2010 13

    Regular / Irregular bridges

    Criterion based on the variation of local required

    ri = qMEd i/MRd I =

    qx Seismic moment / Section resistance

    A bridge is considered regular when the

    irregularity index:

    ir i i 0

    Piers contributing less than 20% of the average

    force per pier are not considered

  • 8/4/2019 2010 EN1998 Bridges BKolias

    14/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 14Dissemination of information for training Vienna, 4-6 October 2010 14

    Regular / Irregular bridges

    For regular bridges: equivalent elastic-

    specified, without checking of local ductilitydemands

    Irregular bridges are: either designed with reduced behaviour

    factor:

    qr= qo ir .

    -

    dynamic (time history) analysis

  • 8/4/2019 2010 EN1998 Bridges BKolias

    15/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 15Dissemination of information for training Vienna, 4-6 October 2010 15

    Design Seismic Action to EN 1998

    Two types of elastic response spectra:.

    5 types of soil: A, B, C, D, E. (+ S1,S2)

    4 period ranges:

    short < TB < constant acceleration < TC

  • 8/4/2019 2010 EN1998 Bridges BKolias

    16/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 16Dissemination of information for training Vienna, 4-6 October 2010 16

    Seismic action: Elastic response spectra Se(T)

    Ground motion: Dependence on ground type (A, B, C, D, E)

    max. values:AAgg == aaggS, vS, vgg == aaggSTSTCC/(2/(2) ), d, dgg = 0.025= 0.025 aaggSTSTCCTTDDRes onse s ectrum: AccelerationRes onse s ectrum: Acceleration SS TT as a function ofas a function ofTT

    15,21:0 ge

    TSaTSTT B

    ag: P.G.A.S: soil factor

    , .

    Se(T) /g S, geCB

    T

    SaTSTTT CeDC 5,2:

    2.5

    acceleration velocity displacement

    (1/) (1/ 2)

    DCTT1.0

    2geD,

    T

    C D

    q

  • 8/4/2019 2010 EN1998 Bridges BKolias

    17/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 17Dissemination of information for training Vienna, 4-6 October 2010 17

    Seismic action

    Response spectrum type 1= . ,

    TC=0.60s and TD=2.50s. Soil factorS=1.15.

    e sm c zone : Reference peak groundacceleration agR = 0.16g

    Im ortance factor = 1.0 Lower bound factor = 0.20

    e sm c ac ons n or zon a rec onsag =

    .agR = 1.0.0.16g=0.16g

    Behaviour factors 4.1.6 3 of EN 1998-2 :qx=3.5 (s=3.3>3, (s)=1.0) and

    qy=3.5 (s=6.7>3, (s)=1.0)

  • 8/4/2019 2010 EN1998 Bridges BKolias

    18/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 18Dissemination of information for training Vienna, 4-6 October 2010 18

    Methods of analysis

    Multi mode spectrum response analysis

    - .

    - Combination of responses in 3 directions. . - .

    of EN1998-1 (1 + 0.3 + 0.3 rule).

    >,

    Program: SOPHISTIK

    Fundamental mode method

    In the longitudinal direction

    (hand calculation for comparison/check)

  • 8/4/2019 2010 EN1998 Bridges BKolias

    19/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 19Dissemination of information for training Vienna, 4-6 October 2010 19

    Deck weights and other actions

    1. Self wei ht G : 6.89m2.73.5m + 9.97m2.9.0m .25kN/m3 =14903kN

    2. Additional dead (G2): qG2 = 43.65kN/m =sidewalks safety barriers road pavement2.25kN/m3.0.50m2 + 2.0.70kN/m + 7.5m. 23kN/m3.0.10m

    3. Effective seismic live load (LE): (20% of uniformly distributedtraffic load) qLE= 0.2 x 45.2 kN/m = 9.04kN/m

    4. Temperature action (T)*: +52.5o

    C / -45o

    C5. Creep & Shrinkage (CS)*: Total strain: -32.0x10-5

    * Actions 4, 5 applicable only for bearing displacements

    Deck seismic weight:

    WE=14903kN+(43.65+9.04)kN/m x 82.5m = 19250kN

  • 8/4/2019 2010 EN1998 Bridges BKolias

    20/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 20Dissemination of information for training Vienna, 4-6 October 2010 20

    Fundamental mode method

    Horizontal Stiffness in longitudinal directionFor cylindrical column of diameter 1.2m, Jun =

    .1.24/64 = 0.1018m4

    ssume e ec ve s ness o p ers eff un = . o e c ec e

    later).Concrete grade C30/37 with Ecm = 33GPa

    ssum ng o en s o e p ers xe , e or zon a s ness o

    each pier in longitudinal direction is:

    K1 = 12EJeff/H3

    = 12.

    33000MPa.

    (0.40.

    0.1018m4

    )/(8.0m)3

    = 31.5MN/m 2 = eff =

    . . . . . . = .

    Total horizontal stiffness: K= 31.5 + 26.3 = 57.8MN/m

    Total seismic weight: WE = 19250kN (see loads)

    =).81m/s(19250kN/9

    ==2m

    un amen a per o :

    .57800kN/mK

  • 8/4/2019 2010 EN1998 Bridges BKolias

    21/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 21Dissemination of information for training Vienna, 4-6 October 2010 21

    Fundamental mode method

    Spectral acceleration in longitudinal direction:

    S = a S / T /T = 0.16 .1.15. 2.5/3.5 0.60/1.16 = 0.068

    Total seismic shear force in piers:VE = SeWE/g = 0.068g.19250kN/g = 1309kN

    Distribution to piers M1 and M2 proportional to their stiffness:

    V1 = (31.5/57.8).1309kN = 713kNV2 = 1309 713 = 596kN

    Seismic moments My):

    full fixit of ier columns assumed at to and bottom

    My1 V1.H1/2 = 713kN.8.0m/2 = 2852kNmMy2 V2

    .H2/2 = 596kN.8.5m/2 = 2533kNm

  • 8/4/2019 2010 EN1998 Bridges BKolias

    22/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 22Dissemination of information for training Vienna, 4-6 October 2010 22

    Multimode response spectrum analysis

    1st mode (T=1.75s)

    (rotational MMy =3%)

    2nd mode (T=1.43s)

    (transverse MMy=95%)

    3rd mode (T=1.20s)

    (longitudinal MMx = 99%)

    4th mode (T=0.32s)

    (vertical MMz= 9%)

  • 8/4/2019 2010 EN1998 Bridges BKolias

    23/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 23Dissemination of information for training Vienna, 4-6 October 2010 23

    Comparison in longidudinal direction

    Fundamental

    mode

    Multimode

    response spectrum

    Effective period Teff 1.16s 1.20s

    for longitudinal

    direction

    (3rd mode)

    , zM2 596kN 556kN

    Seismic moment, My M1 2852kNm 2605...2672kNm

    M2 2533kNm 2327...2381kNm(values at top and

    bottom)

  • 8/4/2019 2010 EN1998 Bridges BKolias

    24/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 24Dissemination of information for training Vienna, 4-6 October 2010 24

    Required Longitudinal Reinforcement in Piers

    Pier concrete C30/37, fck=30MPa, Ec=33000MPa

    Reinforcing steel S500, fyk=500MPa

    .

    Cover to center of reinforcement c=8.2cm

    Combination N My Mz As2

    maxMy + Mz -7159 4576 -1270 198.7

    minMy + Mz -7500 -3720 1296 134.9

    maxMz + My -7238 713 4355 172.4

    minMz + My -7082 456 -4355 170.0

    Final reinforcement: 2532 (201.0cm2)

    MRD = 4779kNm

  • 8/4/2019 2010 EN1998 Bridges BKolias

    25/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 25Dissemination of information for training Vienna, 4-6 October 2010 25

    Verification of Longitudinal Reinforcement in Piers

    Moment Axial force interaction diagram for the

    bottom section of Pier M1-

    -25000

    -

    -15000

    Section with 2532

    Design combinations

    -

    -5000-6000 -4000 -2000 0 2000 4000 6000

    N(

    KN

    5000

    15000M (KNm)

  • 8/4/2019 2010 EN1998 Bridges BKolias

    26/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 26Dissemination of information for training Vienna, 4-6 October 2010 26

    Required Longitudinal Reinforcement in Piers

    Pier concrete C30/37, fck=30MPa, Ec=33000MPa

    Reinforcing steel S500, fyk=500MPa

    .

    Cover to center of reinforcement c=8.2cm

    Combination N My Mz As2

    maxMy + Mz -7528 3370 -1072 103.2

    minMy + Mz -7145 -4227 1042 168.0

    maxMz + My -7317 -465 3324 89.8minMz + My -7320 -674 -3324 92.5

    Final reinforcement: 2132 (168.8cm2)

    MRD = 4366kNm

  • 8/4/2019 2010 EN1998 Bridges BKolias

    27/110

  • 8/4/2019 2010 EN1998 Bridges BKolias

    28/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 28Dissemination of information for training Vienna, 4-6 October 2010 28

    Verification of sections

    Ductile Behaviour: Flexural resistance of lastic hin e re ions with

    design seismic effectsAEd (only in piers).AEd ARd-

    (shear of elements & joints and soil) are checked

    with capacity design effectsACd. For non-ductile failure modes:

    ACd ARd/Bd.

    Bd.

    Cd Local ductility () ensured by special detailing

    rules (confinement, restraining of compressed barsetc), i.e. without direct assessment of.

  • 8/4/2019 2010 EN1998 Bridges BKolias

    29/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 29Dissemination of information for training Vienna, 4-6 October 2010 29

    Capacity Design Effects

    AACdCd correspond to the section forces under

    assumed pattern of plastic hinges, where theflexural over-strength:

    Mo = oMRdhas developed with:

    o= 1.35 and

    Bd = 1.0

    However AACdCd qAqAEdEd==CdCd EdEd . .

    Simplifications for AACdCd satisfying the equilibrium

    conditions are allowed.

    Guidance is given in normative Annex G

  • 8/4/2019 2010 EN1998 Bridges BKolias

    30/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 30Dissemination of information for training Vienna, 4-6 October 2010 30

    Shear verification of piers (Capacity effects)

    Over strength moment Mo = o.MRd

    Over strength factoro = 1.35 is increased due to k = 0.22 > 0.1

    . .

    o = 1.35.[1+2.(0.22-0.1)2] = 1.35.1.029 = 1.39,

    Over strength moments:

    Mo1 = 1.39. 4779 = 6643kNm

    M = 1.39 . 4366 = 6069kNm

    Longitudinal direction (seismic actions in negative direction)

    VC1 = 2Mo1/H1 = 2x6643/8.0 = 1661kNVC2 = 2Mo2/H2 = 2x6069/8.5 = 1428kN

  • 8/4/2019 2010 EN1998 Bridges BKolias

    31/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 31Dissemination of information for training Vienna, 4-6 October 2010 31

    Shear verification of piers (Capacity effects)

    Capacity design in transverse direction

    VC2=1251kN

    E1

    VE1=680.3kN

    =

    Mo1=6643kNm

    VC1=1476kN

    Mo2=6069kNm VE2=450.2kN

    The base shear on each pier is calculated by VCi=(Mo/MEi). VEi

    according to simplifications of Annex G of EN 1998-2.Design for shear

    Design shear force VC1 = 1661kN and VC2 = 1428kN. Bd = 1.0For circular section effective depth: de = 0.60 + 2.0.52/ = 0.93m,

    Internal lever arm: z= 0.90 . de = 0.75. 0.93m = 0.84m

    Rd,s = sw s . z. ywd

    . co Bd, co = Pier M1: A

    sw

    /s = 1661kN / (0.84m . 50kN/cm2/1.15) = 45.5cm2/mPier M2: Asw/s = 1428kN / (0.84m

    . 50kN/cm2/1.15) = 39.1cm2/m

  • 8/4/2019 2010 EN1998 Bridges BKolias

    32/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 32Dissemination of information for training Vienna, 4-6 October 2010 32

    Confinement reinforcement

    Typical arrangements

    oops cross es

    Overlapping hoops

  • 8/4/2019 2010 EN1998 Bridges BKolias

    33/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 33Dissemination of information for training Vienna, 4-6 October 2010 33

    Mechanical confinement ratio wd

    wd = wfsd/fcd

    Geometric reinforcement ratio wRectangular Circular

    w = Asw/(sLb) 4Asp/(sLDw)

    Requirement

    0,01)(0,13 Lcd

    k

    cc

    creqw,

    f

    A

    2

    minw,reqw,rwd, 3;max

    minw,reqw,wd.c,

    Seismic Behaviour w,minDuctile 0,37 0,18

    Limited ductile 0,28 0,12

  • 8/4/2019 2010 EN1998 Bridges BKolias

    34/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 34Dissemination of information for training Vienna, 4-6 October 2010 34

    Special detailing rules: Confinement reinforcement

    Confinement reinforcement according to 6.2.1 of EN 1998-2

    Normalized axial force: k = Ed c. ck = . m . a = . > . Confinement of compression zone is required

    . w,min .Longitudinal reinforcement ratio:- Pier M1:

    L

    =201.0cm2/11300cm2=0.0178- Pier M2: =168.8cm2/11300cm2=0.0149

    Distance to spiral centerline c=5.8cm (Dsp=1.084m) Acc=0.923m

    2

    equ re mec an ca re n orcemen ra o w,req :- Pier M1: w,req = (Ac/Acc)..k+0.13

    .(fyd/fcd)(L-0.01) =(1.13/0.923).0.37.0.22+0.13.(500/1.15)/(0.85.30/1.5).(0.0178-

    . .- Pier M2: w,req = 0.116

  • 8/4/2019 2010 EN1998 Bridges BKolias

    35/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 35Dissemination of information for training Vienna, 4-6 October 2010 35

    Confinement Reinforcement

    For circular spirals

    wd,c = max(1.4.

    w,req; w,min) = max(1.4.

    0.126; 0.18) = 0.18

    w = wd,c

    .(fcd/fyd) = 0.18.(0.85.30/1.5)/(500/1.15) = 0.0070

    Asp/sL = w

    .Dsp/4 = 0.0070.1.084m/4 = 0.00190m2/m =

    19.0cm2/m

    Req. spacing for16 spirals sLreq = 2.01/19.0= 0.106m

    .sL

    allowed = min(6.3.2cm; 108.4cm/5) = min(19.2cm; 21.7cm) =

    19.2cm > 10.6cm

  • 8/4/2019 2010 EN1998 Bridges BKolias

    36/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 36Dissemination of information for training Vienna, 4-6 October 2010 36

    Buckling of longitudinal bars

    Avoidance of buckling of longitudinal bars

    -

    For steel S500 the ratio ftk/fyk = 1.15

    = 2.5.(ftk/fyk) + 2.25 = 2.5.1.15 + 2.25 = 5.125

    Maximum required spacing of spirals

    L

    L

    . . . .

    f f

  • 8/4/2019 2010 EN1998 Bridges BKolias

    37/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 37Dissemination of information for training Vienna, 4-6 October 2010 37

    Transverse reinforcement of piers

    Comparison of requirements for16 spiral

    Requirement Confinement Bucklingof bars Shear design

    At/sL

    (cm2

    /m)

    2x19.0=38 -M1: 45.5

    M2: 39.1

    maxsL(cm)

    19.2 16.4 8.5

    The transverse reinforcement is governed by the shear design.

    Reinforcement selected for both piers is one spiral of16/8.5

    (47.3cm2/m)

    C l l ti f it ff t

  • 8/4/2019 2010 EN1998 Bridges BKolias

    38/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 38Dissemination of information for training Vienna, 4-6 October 2010 38

    Calculation of capacity effects

    General procedure: combination G + Mo-G (acc. to G1 ofAnnex G of EN 1998-2)

    Alternative: G + Mo on continuous deck articulated to iers

    G G

    Permanent Load GMG1 MG2

    M M

    + (1) (2)

    MG1 MG2

    Ac: Over strength GMO1-MG1 MO1 MO2 MG1

    MG2MO2-MG2

    -MO1-MG1

    MO1-MG1

    MO1

    MO1

    MO2

    MO2

    MG1 MG2

    MG1 MG2MO2-MG2

    MO2-MG2

    general procedure alternative procedure

  • 8/4/2019 2010 EN1998 Bridges BKolias

    39/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 39Dissemination of information for training Vienna, 4-6 October 2010 39

    Calculation of capacity effects

    G loading Overstrength Mo(+x direction)

    Mo1=6643kNm Mo2=6069kNm

    Capacity effectsG + Mo(+x direction)G

    2430 228523402195M (kNm)

    3692 4296M (kNm) 6122 6491

    M (kNm)

    4491 3104

    6643 6069 6643 60692206 764

    40523207

    V (kN)V (kN)

    (+)

    6643 6069

    V (kN)

    6643 6069

    37953045

    (+)

    3211 4047 256.7187.4 263.8 161.9(-)

    (-)3398 4311

    (-)

    Reversed signs for x direction

    1661(+) 1428(+) 1661(+) 1428(+)

    alternative procedure isapplied

  • 8/4/2019 2010 EN1998 Bridges BKolias

    40/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 40Dissemination of information for training Vienna, 4-6 October 2010 40

    Verification of deck section for capacity effects

    Top layer: 4620 + 3316 (210.8cm2)Deck section, reinforcement and tendons

    Bottom layer: 2x3316 (182.9cm2)

    4 groups of 3 tendons of type DYWIDAG

    6815 (area of 2250mm

    2

    each)

    -200000

    Combination / location My (kNm) N (kN)Moment Axial force interaction diagram

    for deck section

    -150000

    - -

    Pier M1 right side (+x) 2206 -28300

    Pier M2 left side (+x) -6491 -29500

    Design combinations

    -

    -50000

    -60000 -40000 -20000 0 20000 40000

    N(K

    N)

    Pier M2 right side (+x) 764 -28100Pier M1 left side (-x) 1262 -28100

    Pier M1 ri ht side -x -6776 -295000

    50000M (KNm)

    Pier M2 left side (-x) 2101 -28300

    Pier M2 right side (-x) -5444 -29900

    C it ff t i f d ti

  • 8/4/2019 2010 EN1998 Bridges BKolias

    41/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 41Dissemination of information for training Vienna, 4-6 October 2010 41

    Capacity effects on pier foundation

    =

    ong u na rec on

    (pier M1 foundation for +x direction)

    Transverse direction(pier M1 foundation for +/- direction)

    Vz=1661kN Vy=1476kNVz=730kN

    M =124kNmy

    Mz=6643kNmX

    Di l t i li l i

  • 8/4/2019 2010 EN1998 Bridges BKolias

    42/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 42Dissemination of information for training Vienna, 4-6 October 2010 42

    Displacements in linear analysis

    Control of Displacements

    ssessmen o se sm c sp acemen E

    dE = ddEe.dEe = result of elastic analysis. = damping correction factor for 0.05.

    = dis lacement ductilit as follows:

    0.05

    .

    when TT0=1.25TC : d = q

    < = - + -

    Di l t i li l i

  • 8/4/2019 2010 EN1998 Bridges BKolias

    43/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 43Dissemination of information for training Vienna, 4-6 October 2010 43

    Displacements in linear analysis

    Provision of ade uate structure clearancefor the total seismic design displacements:

    Ed = E G 2 T w 2= .

    dG due to permanent and quasi-permanent actions(mainly shrinkage + creep).dT due to thermal actions.

    Roadway joint displacements:

    = + +

    Roadway joints over abutments

  • 8/4/2019 2010 EN1998 Bridges BKolias

    44/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 44Dissemination of information for training Vienna, 4-6 October 2010 44

    y j

    Roadway joint: dEd,J = 0.4dE + dG + 2dT, where 2 = 0.5

    Structure clearance: dEd = dE + dG + 2dT

    Displacements

    (mm)

    dGShrinkage

    +Creep

    dTTemper.variation

    dEEarthquake

    dEd,JRoadway

    joint

    dEdclearance

    opening +18,7 +10,7 +76,0 +54,5 +100,7Longitudinal closure 0 -8,5 -76,0 -34,7 -80,3

    , , ,

    Roadwa oint t e: T120

    Capacity in longitudinal direction: 60mmCapacity in transverse direction: 50mm

    Roadway joints over abutments

  • 8/4/2019 2010 EN1998 Bridges BKolias

    45/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 45Dissemination of information for training Vienna, 4-6 October 2010 45

    y j

    Detailing of back-wall for predictable (controlled) damage.

    (2.3.6.3 (5), EN 1998-2))

    Clearance of

    roadway joint

    Approach slab

    Structure

    clearance

    Minimum overlapping length

  • 8/4/2019 2010 EN1998 Bridges BKolias

    46/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 46Dissemination of information for training Vienna, 4-6 October 2010 46

    Minimum overlapping length

    Minimum overlapping (seating) length at moveable

    joint (according to 6.6.4 of EN 1998-2)

    lm = 0.50m > 0.40m

    . . . . . . 2. . .g . g C D . . . . . . .

    Lg = 400m (Ground type C)

    Leff= 82.50/2 = 41.25m

    Consequently deg = (2

    .dg/Lg)Leff= (2.0.068/400).41.25 = 0.014m < 2dg

    =lov

    es .

    lov = lm + deg + des == 0.50 + 0. 014 + 0.101 = 0.615m

    Available seating length: 1.25m > lov

    Conclusions for design concept

  • 8/4/2019 2010 EN1998 Bridges BKolias

    47/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 47Dissemination of information for training Vienna, 4-6 October 2010 47

    Conclusions for design concept

    Optimal cost effectiveness of a ductile system is

    achieved when all ductile elements (piers) have

    dimensions that lead to a seismic demand that is

    critical for the main reinforcement of all critical

    sec ons an excee s e m n mum e.g:min=

    This is difficult to achieve when the piers

    - have substantial height differences, or

    - have section larger than required.

    In such cases it may be economical to use:- limited ductile behaviour for low agR values

    - ex e connect on to t e ec se sm c

    isolation)

    2 E ample of limited d ctile piers

  • 8/4/2019 2010 EN1998 Bridges BKolias

    48/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 48Dissemination of information for training Vienna, 4-6 October 2010 48

    2 Example of limited ductile piers

    high piers designed for limited ductile behaviour

    Bridge description

    Com osite steel & concrete deckThree spans: 60m+80m+60m

    Pier dimensions:

    Height 40 m,External/internal diameter 4.0 m/3.2 m

    . .

    Bridge elevation and arrangement of bearings

  • 8/4/2019 2010 EN1998 Bridges BKolias

    49/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 49Dissemination of information for training Vienna, 4-6 October 2010 49

    Bridge elevation and arrangement of bearings

    Articulated Articulatedconnection

    Sliding Longitudinal,Articulated Transverse

    Y

    P1R P2R

    X

    C0L P1L P2L C3L

    Example of limited ductile piers

  • 8/4/2019 2010 EN1998 Bridges BKolias

    50/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 50Dissemination of information for training Vienna, 4-6 October 2010 50

    Example of limited ductile piers

    Design Concept

    Due to the hi h ier flexibilit :

    Hinged connection of the deck to both piersboth iers resist earth uake without

    excessive restraints

    High fundamental period Low spectral acceleration

    No need of high ductility or seismic isolation

    q= 1.5 (limited ductility)

    Design seismic action

  • 8/4/2019 2010 EN1998 Bridges BKolias

    51/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 51Dissemination of information for training Vienna, 4-6 October 2010 51

    Design seismic action

    Soil type B

    Importance factorI = 1.00

    Reference peak ground acceleration: aGr= . g

    Soil factor: S= 1.20, aGrS= 0.36g

    q= 1.50

    =

    Design seismic spectrum

  • 8/4/2019 2010 EN1998 Bridges BKolias

    52/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 52Dissemination of information for training Vienna, 4-6 October 2010 52

    Design seismic spectrum

    0.6

    0.7

    Ag=0.3,GroundType:BSoilFactor:1.2

    0.5(g)b= . , c= . , d= . , = .

    0.4

    e

    leratio

    0.2

    Ac

    0.1

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

    Period(sec)

    Seismic analysis

  • 8/4/2019 2010 EN1998 Bridges BKolias

    53/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 53Dissemination of information for training Vienna, 4-6 October 2010 53

    Seismic analysis

    Quasi permanent traffic load for the

    . .

    For bridges with severe traffic=, , ,

    Q is the characteristic load of UDL s stem of,Model 1 .For the 4 lanes of the deck:

    3 m x 9 + 3 m x 2.5 + 3 m x 2.5 + 2 m x 2.5

    Qk,1= 47.0 kN/m2,1Qk,1 = 9.4 kN/m

    Seismic analysis

  • 8/4/2019 2010 EN1998 Bridges BKolias

    54/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 54Dissemination of information for training Vienna, 4-6 October 2010 54

    Seismic analysis

    Structural Model

    XY X

    Z

    Y

    Z

    Seismic analysis

  • 8/4/2019 2010 EN1998 Bridges BKolias

    55/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 55Dissemination of information for training Vienna, 4-6 October 2010 55

    Seismic analysis

    A beam finite element model of the bridge is

    .

    Each composite steel concrete beam and

    The effective width of the main beams is

    assumed e ual to the total eometric width. The bending stiffness about the vertical axis

    of the two main beam sections is modified

    so that the sum of the stiffnesses is equal tothe relevant stiffness of the entire composite

    deck.

    Seismic analysis

  • 8/4/2019 2010 EN1998 Bridges BKolias

    56/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 56Dissemination of information for training Vienna, 4-6 October 2010 56

    y

    Effective Pier Stiffness

    2.3.6.1 1 of EN1998-2 defines the stiffness

    of the ductile elements (piers) to correspond

    to the secant stiffness at the theoretical yield

    point.

    This value depends on the axial force and on

    the final reinforcement of the element.

    It is estimated from the moment-curvature

    an e momen e gross ra o curves o

    the piers for the estimated final reinforcement

    . ,

    Jeff/Jgross 0.30

    Seismic analysis

  • 8/4/2019 2010 EN1998 Bridges BKolias

    57/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 57Dissemination of information for training Vienna, 4-6 October 2010 57

    y

    80000.0

    85000.0

    90000.0

    95000.0

    Bottom Section

    55000.0

    60000.0

    65000.0

    70000.0

    75000.0

    Nm)

    Top Section

    30000.0

    35000.0

    40000.0

    45000.0

    50000.0

    Moment( .

    0.0

    5000.0

    10000.0

    15000.0

    20000.0

    .

    N=15000kN

    N=20000kN

    0.0

    0E+

    00

    1.0

    0E03

    2.0

    0E03

    3.0

    0E03

    4.0

    0E03

    5.0

    0E03

    6.0

    0E03

    Curvature

    Moment-Curvature M- curve of Pier Section for = 1.5%

    Seismic analysis

  • 8/4/2019 2010 EN1998 Bridges BKolias

    58/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 58Dissemination of information for training Vienna, 4-6 October 2010 58

    y

    85000.0

    90000.0

    95000.0

    N=15000kN

    N=20000kNBottom Section

    60000.0

    65000.0

    70000.0

    75000.0

    80000.0

    Nm)

    35000.0

    40000.0

    45000.0

    50000.0

    55000.0

    Moment(k

    =1.5%

    10000.0

    15000.0

    20000.0

    25000.0

    30000.0

    Top Section

    0.0

    5000.0

    0.0

    0

    0.1

    0

    0.2

    0

    0.3

    0

    0.4

    0

    0.5

    0

    0.6

    0

    0.7

    0

    0.8

    0

    0.9

    0

    1.0

    0

    J/Jgross

    =e .

    ()eff/(EI) = (M/)/()

    Seismic analysis

  • 8/4/2019 2010 EN1998 Bridges BKolias

    59/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 59Dissemination of information for training Vienna, 4-6 October 2010 59

    y

    Eigenmodes Response Sectrum Analysis The first 30 eigenmodes of the structure

    were calculated and considered in the

    response spectrum analysis. e sum o mo a masses o ese mo es

    amounts to: 97.1% in the X and 97.2% in the

    . Combination of modal responses was carried

    .

    Following table shows the characteristics of the.

    Seismic analysis

  • 8/4/2019 2010 EN1998 Bridges BKolias

    60/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 60Dissemination of information for training Vienna, 4-6 October 2010 60

    y

    Modal Mass %

    First 10 eigenmodes

    NoSec X Y Z

    1 5.03 92.5% 0.0% 0.0%

    2 3.84 0.0% 76.8% 0.0%

    3 1.49 0.0% 0.0% 0.0%

    . . . .

    5 0.71 0.0% 0.5% 0.0%

    6 0.66 0.0% 8.4% 0.0%

    7 0.52 0.0% 0.0% 0.0%8 0.50 0.0% 0.0% 0.0%

    . . . .

    10 0.46 0.0% 0.0% 0.0%

    Seismic analysis

  • 8/4/2019 2010 EN1998 Bridges BKolias

    61/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 61Dissemination of information for training Vienna, 4-6 October 2010 61

    1st Mode - Longitudinal Period 5.02 sec c(Mass Participation Factor Ux:93%)

    Seismic analysis

  • 8/4/2019 2010 EN1998 Bridges BKolias

    62/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 62Dissemination of information for training Vienna, 4-6 October 2010 62

    2nd Mode -Traqnsverse Period 3.84 sec

    Mass Partici ation Factor U :77%

    Seismic analysis

  • 8/4/2019 2010 EN1998 Bridges BKolias

    63/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 63Dissemination of information for training Vienna, 4-6 October 2010 63

    3rd Mode - Rotation Period 1.49 sec

    Seismic analysis

  • 8/4/2019 2010 EN1998 Bridges BKolias

    64/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 64Dissemination of information for training Vienna, 4-6 October 2010 64

    11th Mode - Vertical Period 0.42sec

    (Mass Participation Factor Uz:63%)

    Seismic analysis

  • 8/4/2019 2010 EN1998 Bridges BKolias

    65/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 65Dissemination of information for training Vienna, 4-6 October 2010 65

    6680.6

    1-673

    4.83 6282.21-6279.87

    13324

    .92

    -1343

    3.36 8637.09

    -8633.13

    26256

    .58

    -2647

    3.46

    19836

    .-19

    999.

    14245.07

    -14237.88

    11345.81-11340.23

    3935

    4.93

    -396

    80.25

    3271

    9.57

    -3299

    0.67

    20622.12

    -20611.70

    17322.35

    -17313.55

    37.13

    -536

    70.89

    4620

    8.34-46587.88

    27881.8

    -27868.23

    24158.64-24146.62

    5

    Max bending moment distribution along pier P1

    2nd order effects for the seismic analysis

  • 8/4/2019 2010 EN1998 Bridges BKolias

    66/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 66Dissemination of information for training Vienna, 4-6 October 2010 66

    Geometric Imperfections of PiersAccording to 5.2 of EN 1992-2:2005:

    31 2

    1.58 10200i

    0i i

    le

    Imperfection Eccentricities

    0 i

    X 80 0.063

    .

    I di C t I tit t W k h E d 8 N D lhi 17 19 S t b 2009 67

    2nd order effects for the seismic analysis

  • 8/4/2019 2010 EN1998 Bridges BKolias

    67/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 67Dissemination of information for training Vienna, 4-6 October 2010 67

    The first and second order effect of imperfectioneccentricities ei,II including creep for = 2.0

    1(1 )lle e

    where

    ,

    v

    B EdNB: buckling load according to 5.8 of EN1992-1-1

    Direction ei = /ED ei,II /ei ei,II

    x 0.063 19.65 1.161 0.073

    y 0.032 78.62 1.039 0.033

    Indian Concrete Institute Workshop on Eurocode 8 New Delhi 17 19 September 2009 68

    2nd order effects for the seismic analysis

  • 8/4/2019 2010 EN1998 Bridges BKolias

    68/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 68Dissemination of information for training Vienna, 4-6 October 2010 68

    Second order effects due to seismic first ordereffects

    Two alternative approaches:

    1. To 5.8 of EN 1992-1-1 (nominal stiffness method)se o nom na s ness me o . . or eff=

    0.30 (EI)

    MF= 1+[/((NB/NEd)-1)]

    2 2B eff 1 0 1

    Longitudinal direction MF= 1.154= .

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 69

    Di i ti f i f ti f t i i Vi 4 6 O t b 2010 69

    2nd order effects for the seismic analysis

  • 8/4/2019 2010 EN1998 Bridges BKolias

    69/110

    Indian Concrete Institute Workshop on Eurocode 8 New Delhi, 17 19 September 2009 69Dissemination of information for training Vienna, 4-6 October 2010 69

    2nd order effects due to seismic 1st order effects2. To 5.4 of EN 1998-2 (followed in the example)

    Increase of bending moments at the plastic hinge

    section= . +q Ed Ed

    dEd: seismic displacement of pier top

    iCombination EN1992-1-1 EN1998-2

    . . .

    Ey+0.3x+2nd Ord Mx 27178.8 30508.3

    The Eff. Stiffness method of EN1992-1-1 may

    be unsafe for 1.5 < q 3.5

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 70

    Dissemination of information for training Vienna 4 6 October 2010 70

    Verification of piers

  • 8/4/2019 2010 EN1998 Bridges BKolias

    70/110

    p , pDissemination of information for training Vienna, 4-6 October 2010 70

    Flexure and axial force for pier base sectionDesign action effects:

    NEd = 19568 kN

    MEy = 59610 kNm

    Ex = m

    As,req = 678 cm2

    Internal perimeter 4928 (301 cm2) 1.5%

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 71

    Dissemination of information for training Vienna 4-6 October 2010 71

    Verification of piers

  • 8/4/2019 2010 EN1998 Bridges BKolias

    71/110

    Dissemination of information for training Vienna, 4-6 October 2010 71

    20000

    30000

    40000

    =1.5%

    =1.0%

    30000

    2000010000

    0

    10000

    N)

    70000

    60000

    50000

    40000

    A

    xialForce(k

    120000

    110000

    100000

    90000

    140000

    130000

    0

    10000

    20000

    30000

    40000

    50000

    60000

    70000

    80000

    Design Interaction Diagram of Pier Base Section

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 72

    Dissemination of information for training Vienna, 4-6 October 2010 72

    Verification of piers

  • 8/4/2019 2010 EN1998 Bridges BKolias

    72/110

    Dissemination of information for training Vienna, 4 6 October 2010 72

    Shear verificationDesign shear: Vx,d = 1887 Vy,d = 281

    1/3

    2 2, , 1908d x d y d V V V kN

    , , 1Rd c Rd c l ck cp w

    ,0.18 0.18

    0.12

    1.5

    Rd c

    c

    C

    (EN1998-2:2005, 5.6.3.3.(2))

    2 2 1.82.0 3.15s

    e

    rd r

    15EdN

    1 1 1.253150

    k

    d

    1 ..

    4.52cp

    c

    A

    ,2670

    2136Rd cv

    kN VV 2670kN

    No shear reinforcement required 1 .Bd

    ,

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 73

    Dissemination of information for training Vienna, 4-6 October 2010 73

    Verification of piers

  • 8/4/2019 2010 EN1998 Bridges BKolias

    73/110

    g

    Ductility requirements Confining reinforcement

    To 6.2.1.4 of EN 1998-2 for limited ductile

    , ,max(1.4 ;0.12) max(1.4 0.058;0.12) 0.12wd c w req

    , 0.28 0.13 ( 0.01)ydc

    w req k l

    cc cd

    fA

    A f

    4.52 19580 500000 1.50.28 0.13 (0.015 0.01) 0.058

    3.39 35000 4.52 35000 1.15

    35000 1.150.12 0.0064500000 1.5

    cdw w

    yd

    ff

    16/11sp spwcc l

    D A

    A s

    No buckling of reinforcement sL < 5dbL = 14 cm

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 74

    Dissemination of information for training Vienna, 4-6 October 2010 74

    3 Example of seismic isolation

  • 8/4/2019 2010 EN1998 Bridges BKolias

    74/110

    Bridge Elevation:

    -general example

    bridge

    Three spans

    (60m+80m+60m)

    Com osite steel &

    concrete deck

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 75

    Dissemination of information for training Vienna, 4-6 October 2010 75

    Pier Layout

  • 8/4/2019 2010 EN1998 Bridges BKolias

    75/110

    Transversesection:

    Longitudinalsection:

    Section A-A:

    ec on - :

    Section C-C:

    =

    Rectangular cross-section 5.0m x 2.5m

    Enlarged pier head 9.0m x 2.5m to support bearings

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 76

    Dissemination of information for training Vienna, 4-6 October 2010 76

    Bridges with Seismic Isolation

  • 8/4/2019 2010 EN1998 Bridges BKolias

    76/110

    Effect of period shift from Tin to Teff

    ad

    Period schift

    a d

    2Taag Displacement spectrum

    Acceleration spectrum

    T

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 77

    Dissemination of information for training Vienna, 4-6 October 2010 77

    Bridges with Seismic Isolation

  • 8/4/2019 2010 EN1998 Bridges BKolias

    77/110

    Effect of increasing damping (eff)

    d = 0.05

    reduces displacements

    but not necessarily forces

    n e

    eff

    0,05eff dd

    Teff 0,40,05

    0,10

    eff

  • 8/4/2019 2010 EN1998 Bridges BKolias

    78/110

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 79

    Dissemination of information for training Vienna, 4-6 October 2010 79

    Triple FPS bearings

  • 8/4/2019 2010 EN1998 Bridges BKolias

    79/110

    Photo of Triple PendulumTM Bearing Schematic Cross Section

    Concaves and Slider Assembly Concaves and Slider Components

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 80

    Dissemination of information for training Vienna, 4-6 October 2010 80

    Triple FPS bearings

  • 8/4/2019 2010 EN1998 Bridges BKolias

    80/110

    Section:

    h

    4 Stainless steel concave slidin

    Plan:

    surfaces & articulated slider

    Special low-friction sliding

    low horizontal stiffness (increasedflexibility)

    bearing capacity

    Protective seal

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 81

    Dissemination of information for training Vienna, 4-6 October 2010 81

    Triple FPS Force-Displ. relation

  • 8/4/2019 2010 EN1998 Bridges BKolias

    81/110

    (b)(c)

    a

    Adaptive behaviour,

    improved recentering (b) design earthquake: softening,

    (c) extreme events: stiffening, increased

    damping

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 82

    Dissemination of information for training Vienna, 4-6 October 2010 82

    General Loads

  • 8/4/2019 2010 EN1998 Bridges BKolias

    82/110

    1. Permanent loads: (from general example)Total

    support Self weight Minimum Maximum Total with Total withTime

    variation

    MN (bothbeams)

    construction load load equipment equipmentdue to creep& shrinkage

    C0 2.328 0.664 1.020 2.993 3.348 -0.172P1 10.380 2.440 3.744 12.819 14.123 0.206

    . . . . . .

    C3 2.377 0.664 1.019 3.041 3.396 -0.126

    Sum ofreactions

    25.343 6.209 9.528 31.552 34.871 0.000

    . -Lane Number 1: qq1,k = 3 m x 9 kN/m

    2 = 27.0 kN/m

    Lane Number 2: qq2,k =3 m x 2.5 kN/m2 = 7.5 kN/m

    Lane Number 3: qq3,k =3 m x 2.5 kN/m2 = 7.5 kN/m

    Residual area: qqr,k =2 m x 2.5 kN/m2 = 5.0 kN/m

    Total load = 47.0 kN/m

    3. 50% of thermal action: +25oC / -35oC

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 83

    Dissemination of information for training Vienna, 4-6 October 2010 83

    Seismic Action Design Spectra

  • 8/4/2019 2010 EN1998 Bridges BKolias

    83/110

    Se(T) (g) Constant velocitybranch (1/T)

    0agS

    Constant displacement

    branch (1/T2

    )agS

    0agS(TC/T)

    2

    TB TC TD T(s)

    g

    - . . ,EN1998-1 3.2.2.2 and 3.2.2.3

    Average importance: =1.00 = = High Seismicity Zone: agR=0.40g

    Ground Type B: S=1.20, TB=0.15s, TC=0.5s, TD=2.5s

    Horizontal s ectrum: s ectral am lification =2.5

    g g .

    Vertical spectrum: 0=3.0, S=1.00, avg=0.9ag,

    TB=0.05s, TC=0.15s, TD=1.0s

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 84

    Dissemination of information for training Vienna, 4-6 October 2010 84

    Seismic Action Ground Motions

  • 8/4/2019 2010 EN1998 Bridges BKolias

    84/110

    7 Ground Motions: 2 horizontal & 1 vertical components Semi-artificial accelerograms from modified records

    EN 1998-2, 3.2.3(6): 2.00

    1.40

    1.60

    1.80

    on

    (g)

    Damping 5%

    of ensemble of earthquakes

    1.3 x Elastic spectrum

    0.80

    1.00

    1.20

    ctralaccelerati

    0.20

    0.40

    0.60Spe

    0.00

    .

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

    Period (sec)

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 85

    Dissemination of information for training Vienna, 4-6 October 2010 85

    Triple FPS - Equivalent bilinear model

  • 8/4/2019 2010 EN1998 Bridges BKolias

    85/110

    F

    F0 =0.061W

    d:

    o - , . . . .

    d = Fo/W = effective friction coefficient = 0.061 16% R = effective pendulum length = 1.83m

    y = e ec ve y e sp acemen = . m

    F = shear force

    d = displacement

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 86

    Dissemination of information for training Vienna, 4-6 October 2010 86

    Design properties of isolators

  • 8/4/2019 2010 EN1998 Bridges BKolias

    86/110

    Design properties of the isolating system Nominal design properties (NDP) assessed by

    prototype tests, confirming the range accepted

    by the Designer.

    factors (aging, temperature, contamination,

    Design is required for: Upper Bound design properties (UBDP). ower oun es gn proper es .

    Bounds of Design Properties result either from-

    JJ) .

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 87

    Dissemination of information for training Vienna, 4-6 October 2010 87

    Isolator design properties

    Eff ti d l l th R 1 83

  • 8/4/2019 2010 EN1998 Bridges BKolias

    87/110

    Effective pendulum length: R=1.83m Yield displacement: Dy=0.2=0.005m

    properties (UBDP) and Lower bound design properties

    (LBDP) in accordance with EN 1998-2, 7.5.2.4 om na va ue range: 0 = . = . ~ .

    LBDP: (F0/W)min= minDPnom = 0.051

    UBDP: According to EN 1998-2 Annexes J and JJ Minimum isolator temperature for seismic design:

    Tmin,b=2Tmin+1 = 0.5 x (-20oC) + 5.0oC = -5.0oC where

    =0.5 is the combination factor for thermal actions,

    Tmin=-20oC the minimum shade air temperature at the site,

    1=+5.0oC for composite deck.

    factors: f1 - ageing: max,f1=1.1 (Table JJ.1, for normal environment,

    unlubricated PTFE, protective seal)

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 88

    Dissemination of information for training Vienna, 4-6 October 2010 88

    Isolator design properties

    f2 t t f2 1 15 (T bl JJ 2 f T i b 10 0o

    C

  • 8/4/2019 2010 EN1998 Bridges BKolias

    88/110

    f2 - temperature: max,f2=1.15 (Table JJ.2 for Tmin,b=-10.0 C,unlubricated PTFE)

    f3 - contamination max,f3=1.1 (Table JJ.3 for unlubricated

    PTFE and sliding surface facing both upwards and

    downwards)

    f4 cumulative travel max,f4=1.0 (Table JJ.4 for

    un u r ca e an cumu a ve rave . m

    Combination factorfi: fi=0.70 for Importance class II

    (Table J.2)

    om na on va ue o max ac ors: U,fi= max,fi- fi(J.5) f1 - ageing: U,f1 = 1 + ( 1.1 - 1) x 0.7 = 1.07

    - U,f2 . . .

    f3 - contamination U,f3 = 1 + (1.1 1) x 0.7 = 1.07 f4 cumulative travel U,f4 = 1 + (1.0 1) x 0.7 = 1.0

    UBDP = maxDPnomU,f1U,f2U,f3U,f4 (J.4)

    (F0/W)max = 0.071 x 1.07 x 1.105 x 1.07 x 1.0 = 0.09

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 89

    Dissemination of information for training Vienna, 4-6 October 2010 89

    Fundamental mode spectrum analysis

    E ti ti f d d d f d i ilib i

  • 8/4/2019 2010 EN1998 Bridges BKolias

    89/110

    Assume dcd,a Keff

    Estimation ofdmax= dcd from dynamic equilibrium

    rom s a c - re a on : max

    Keff= Fmax/dcd,a

    Fmax

    dcd,a

    eff

    eff 2K

    MT

    2

    cdeff

    iD,

    eff2

    1

    dK

    E

    Displacement spectrum= 0.05

    =2Tad

    dcd,r

    ,,2 0,05eff

    0,4

    0,10

    Iterations for dcd,r= deff= dcd,aTeffTDTC

    e

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 90

    Dissemination of information for training Vienna, 4-6 October 2010 90

    Fundamental Mode analysis (LBDP)

    F d t l d l i (EN1998 2 7 5 4)

  • 8/4/2019 2010 EN1998 Bridges BKolias

    90/110

    Fundamental mode analysis (EN1998-2, 7.5.4) Seismic weight: W= 36751kN (see loads)

    Assume dcd

    =0.15m

    Effective Stiffness of Isolation System (ignore piers): Keff= F / dcd = W x [ (F0/W) + dcd / R ] / dcd =

    36751kN x [0.051+0.15m/1.83m] / 0.15m =

    = Effective period of Isolation System: eq. (7.6)

    2.13s).81m/s(36751kN/9

    2m

    2T2

    eff

    Dissipated energy per cycle: EN1998-2, 7.5.2.3.5(4) E = 4 x W x F /W x d -D =

    eff

    4 x 36751kN x (0.051) x (0.15m-0.005m)

    ED

    = 1087.09 kNm

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 91

    Dissemination of information for training Vienna, 4-6 October 2010 91

    Fundamental Mode analysis (LBDP)

    Effective damping: eq (7 5) (7 9)

  • 8/4/2019 2010 EN1998 Bridges BKolias

    91/110

    Effective damping: eq. (7.5), (7.9) eff = ED,i / [2 x x Keff x dcd

    2] = 1087.09kNm / [2 x x

    . .

    eff= [0.10 / (0.05 + eff)]0.5 = 0.591

    Calculate design displacement dcd (EN 1998-2 Table7.1) dcd=(0.625/

    2) x ag x S x effx Teffx TC =

    0.625/

    2

    x 0.40 x 9.81m/s

    2

    x 1.20 x 0.591 x 2.13s x0.50s = 0.188m

    Check assumed displacement.

    Calculated displacement 0.188m

    o ano er era on

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 92

    Dissemination of information for training Vienna, 4-6 October 2010 92

    Fundamental Mode analysis (LBDP)

  • 8/4/2019 2010 EN1998 Bridges BKolias

    92/110

    Assume value for design displacement:=c .

    Effective Stiffness of Isolation System (ignore piers): Keff= F / dcd = W x [ (F0/W) + dcd / R ] / dcd =

    x . + . m . m . m =

    Keff= 28602 kN/m

    Effective period of Isolation System: eq. (7.6)

    smkN

    smkN

    K

    mT

    eff

    eff 27.2/28602

    )/81.9/36751(22

    2

    - , . . . .

    ED = 4 x W x (F0/W) x (dcd-Dy) =4 x 36751kN x (0.051) x (0.22m-0.005m)

    ED = 1611.90 kNm

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 93

    Dissemination of information for training Vienna, 4-6 October 2010 93

    Fundamental Mode analysis (LBDP)

    Effective damping: eq (7 5) (7 9)

  • 8/4/2019 2010 EN1998 Bridges BKolias

    93/110

    Effective damping: eq. (7.5), (7.9) eff = ED,i / [2 x x Keff x dcd

    2] = 1611.90kNm / [2 x x2 =. .

    eff= [0.10 / (0.05 + eff)]0.5 = 0.652

    Calculate design displ. dcd (EN1998-2 Table 7.1) cd= . x ag x x effx effx C = . x .

    x 9.81m/s2) x 1.20 x 0.652 x 2.27s x 0.5s = 0.22m

    Check assumed displacement Assumed displacement 0.22m

    Calculated displacement 0.22m

    Conver ence achieved

    Spectral acceleration Se (EN 1998-2 Table 7.1) Se= 2.5 x (TC/Teff) x eff x ag x S = 2.5 x (0.5s/2.27s) x

    . . . .

    Isolation system shear force (EN 1998-2 eq. 7.10)

    Vd= Keffx dcd = 28602 kN/m x 0.22m = 6292kN

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 94

    Dissemination of information for training Vienna, 4-6 October 2010 94

    Fundamental Mode analysis (UBDP)

    Fundamental mode analysis: Summary of results

  • 8/4/2019 2010 EN1998 Bridges BKolias

    94/110

    Fundamental mode analysis: Summary of results Seismic weight: W= 36751kN (see loads)

    cd .

    Effective stiffness Keff= 435410 kN/m

    Effective period Teff= 1.84s

    Dissipated energy per cycle ED = 1799.32 kNm Effective damping eff= 0.331, eff= 0.512

    S ectral acceleration S = 0.166

    Isolation system shear force Vd= 6096kN

    Pier shear forces for averaged vertical load, d

    Piers P1, P2: Vd= 2480kN

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 95

    Dissemination of information for training Vienna, 4-6 October 2010 95

    Comparison with non-isolated bridge

    Non-isolated bridge with fixed bearings at pier top

  • 8/4/2019 2010 EN1998 Bridges BKolias

    95/110

    Non-isolated bridge with fixed bearings at pier top Period: longitudinal Tx = 0.33s, transverse Ty= 0.17s

    - , .

    q = 3 . 5 x (s), where s=Ls/h the shear ratio

    Long. qx=3.5x1.0=3.5, Transverse: qy=3.5x0.82= 2.87

    Spectral acceleration in constant acceleration branch of

    spectrum Se= 2.5Sag/q

    Lon itudinal: S = 2.5x1.2x0.40 /3.5 = 0.34

    V=12495kNTransverse: Se = 2.5x1.2x0.40g/2.87 = 0.42gV=15435kN Isolated bridge with UBDP

    e .

    Reduction of forces with respect to non-isolated:- at 49% in longitudinal direction

    - at 40% in transverse direction

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 96

    Dissemination of information for training Vienna, 4-6 October 2010 96

    Non linear Time-History Analysis

    Newmark constant acceleration method

  • 8/4/2019 2010 EN1998 Bridges BKolias

    96/110

    Newmark constant acceleration method Rayleigh damping

    -

    Direction X Direction Y600N

    )400N

    )

    Force-Displacement Loops:

    -200

    0

    200

    400

    -0.300 -0.200 -0.100 0.000 0.100 0.200 0.300

    Force(

    -300

    -200

    -100

    0

    100

    200

    300

    -0.200 -0.100 0.000 0.100 0.200 0.300

    Force(

    EQ2

    - .

    0

    200

    400

    600

    Force(KN)

    - .

    0

    200

    400

    600

    Force(KN)

    EQ3

    -400

    -200-0.300 -0.200 -0.100 0.000 0.100 0.200 0.300

    Displ. (m) -400

    -200-0.300 -0.200 -0.100 0.000 0.100 0.200 0.300

    Displ. (m)

    200

    400

    rce(KN)

    400

    600

    rce(KN)

    -400

    -200

    0

    -0.300 -0.200 -0.100 0.000 0.100 0.200

    Displ. (m)

    Fo

    -400

    -200

    0

    200

    -0.300 -0.200 -0.100 0.000 0.100 0.200 0.300

    Displ. (m)

    Fo

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 97

    Dissemination of information for training Vienna, 4-6 October 2010 97

    Non linear Time-History Analysis

    Force-Displacement Loops (continued):

  • 8/4/2019 2010 EN1998 Bridges BKolias

    97/110

    EQ4100

    200

    300

    orce(KN)

    100

    200

    300

    400

    orce(KN)Force Displacement Loops (continued):

    -400

    -300

    -200

    -100-0.200 -0.150 -0.100 -0.050 0.000 0.050 0.100 0.150 0.200

    Displ. (m)

    600N)

    -400

    -300

    -200

    -100

    0

    -0.300 -0.200 -0.100 0.000 0.100 0.200

    Displ. (m)

    400N)

    -400

    -200

    0

    200

    400

    -0.300 -0.200 -0.100 0.000 0.100 0.200

    Force(

    -200

    -100

    0

    100

    200

    300

    -0.200 -0.100 0.000 0.100 0.200

    Force(

    EQ6

    - .

    0

    100

    200

    300

    -0 150 -0 100 -0 050 0 000 0 050 0 100 0 150

    Force(KN)

    - .

    0

    200

    400

    600

    Force(KN)

    EQ7

    -300

    -200

    -. . . . . . .

    Displ. (m)

    100

    200

    300

    rce(KN)

    -400

    -200-0.200 -0.100 0.000 0.100 0.200

    Displ. (m)

    200

    400

    rce(KN)

    -400

    -300

    -200

    -100

    0

    -0.200 -0.100 0.000 0.100 0.200

    Displ. (m)

    Fo

    -600

    -400

    -200

    0

    -0.300 -0.200 -0.100 0.000 0.100 0.200 0.300

    Displ. (m)

    Fo

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 98

    Dissemination of information for training Vienna, 4-6 October 2010 98

    Check of Lower Bound Action Effects

    Lower bound of action effects = 80% of

  • 8/4/2019 2010 EN1998 Bridges BKolias

    98/110

    Lower bound of action effects 80% of corresponding Fundamental Mode method

    results (EN 1998-2, 7.5.6(1) & 7.5.5(6):

    Applicable for design displacement dcd and totald

    o Displacement in X direction: d = dcd / df= 0,193m / 0,22m = 0,88 > 0,80 ok

    o Displacement in Y direction: d = dcd / df= 0,207m / 0,22m = 0,94 > 0,80 ok

    o Total shear in X direction: v = Vd / Vf= 6929,3kN / 6292kN = 1,10 > 0,80 ok

    o o a s ear n rec on: v = d f= , = , > , o

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 99

    Dissemination of information for training Vienna, 4-6 October 2010 99

    Bridges with Seismic Isolation

    Compliance criteria

  • 8/4/2019 2010 EN1998 Bridges BKolias

    99/110

    Compliance criteria Isolating system:

    Increased reliability is required for the

    isolating systemSeismic displacements increased by factor:

    IS = 1.50

    Sufficient lateral rigidity under service

    conditions is required.

    Adequate self-restoring capability

    Substructure

    Design for limited ductile behaviour: q 1.50

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 100

    Dissemination of information for training Vienna, 4-6 October 2010 100

    Displacement demand of isolators

    Max. total displacement EN 1998-2, 7.6.2(1) &(2):

  • 8/4/2019 2010 EN1998 Bridges BKolias

    100/110

    Max. total displacement EN 1998 2, 7.6.2(1) &(2):dtot = IS x dbi,d + do,i bi,d = es gn sp acement o so ator

    IS

    = 1.50 seismic displacement amplification factor

    d = offset dis lacement due to ermanent actions,,long term actions, 50% of thermal action

    Longitudinal: dm = 1.50 x 193mm + 25.5mm = 315mm

    Transverse: dm = 1.50 x 207mm = 311mm

    Pier P1 bearings:= + =m . .

    Transverse: dm = 1.50 x 193mm = 290mm

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 101

    Dissemination of information for training Vienna, 4-6 October 2010 101

    Lateral restoring capability

    EN 1998 2:2005 + Force dcd

  • 8/4/2019 2010 EN1998 Bridges BKolias

    101/110

    EN 1998-2:2005 + Kp, . .

    Check ratio dcd/dr 0.5 (7.7.1) Displdd UPDP give most unfavorable results

    Post-elastic stiffness Kp = W/R Force at zero dis lacement F = W x F /W

    .

    Maximum static residual displacement drdr= F0 / Kp = W x (F0/W) / (W/R) = (F0/W) x R = 0.09 x

    =. .

    Check ratio dcd/dr= 0.139m / 0.165m = 0.84 > 0.5

    equa e a era res or ng capa y w ou ncreaseof displacement demand (EN1998-2, 7.7.1(2))

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 102

    Dissemination of information for training Vienna, 4-6 October 2010 102

    Bridges with Seismic Isolation

    Lateral restoring capability

  • 8/4/2019 2010 EN1998 Bridges BKolias

    102/110

    Lateral restoring capabilityd

    dy/dcd

    0.6cd/1 35 d mi 0i du bi d

    1.rdd /01.35 d 1.20du du

    dcd/dr0.5

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 103

    Dissemination of information for training Vienna, 4-6 October 2010 103

    Design of Piers

    Action effects for pier design: EN 1998-2, 7.6.3(2)

  • 8/4/2019 2010 EN1998 Bridges BKolias

    103/110

    p g , ( ) Flexural design: q-factor corresponding to limited

    ductile / essentially elastic behaviour, i.e. q 1,50

    Confinement reinforcement not required when,

    Shear design with q= 1 and additional safety factor

    Bd1=1,25 (EN 1998-2, 5.6.2(2)P)

    Minimum longitudinal reinforcement to avoid brittlefailure: 0.5% in total

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 104

    Dissemination of information for training Vienna, 4-6 October 2010 104

    Design of Piers

    Provided reinforcement:

  • 8/4/2019 2010 EN1998 Bridges BKolias

    104/110

    5,0m

    0 53 0 53 0 53 0 53 0 53 0 53 0 53 0 53 0 53

    2,5m

    Stirrups : 4 two-legged 12/15 = 4 x 2 x 7,54cm2/m = 60,3 cm2/m

    Longitudinal reinforcement: 1 layer28/13,5 = 45,6 cm /m

    Perimetric Hoop: 1 two-legged 16/15 = 2 x 13,40cm2/m = 26.8 cm2/m

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 105

    Dissemination of information for training Vienna, 4-6 October 2010 105

    Action Effects on Foundation

    Action effects for f d ti d i

    Fz

    M

  • 8/4/2019 2010 EN1998 Bridges BKolias

    105/110

    foundation design:Fx My

    - , . . an

    5.8.2(2)P for bridges with

    Foundation PadLongitudinal Direction

    Analysis results multiplied

    by the q-factor used (i.e.

    Fy

    Foundation Pad

    Mx

    Tranverse Direction

    effectively using q= 1).

    Location EnvelopeFx Fy Fz Mx My Mz

    Max Fx envelope 783 111 4242 329 78 57C0, C3

    Max Fy envelope 470 695 4124 2003 47 191

    P1, P2Max Mx envelope 1095 2624 16394 33331 10950 747

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 106

    Dissemination of information for training Vienna, 4-6 October 2010 106

    Special Features of FPS isolators

    I l t h i t l f ti l t th

  • 8/4/2019 2010 EN1998 Bridges BKolias

    106/110

    Isolator horizontal forces are proportional to the

    ver ca so a or oa .

    Minimization of horizontal eccentricities

    are proportional to the mass.

    Motion characteristics (period, displacement

    acceleration etc) are ~ independent of the mass Vertical seismic motion causes short period

    load May lead to an increase of maximum forces

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 107

    Dissemination of information for training Vienna, 4-6 October 2010 107

    Special Features of FPS isolators

    Horizontal seismic components cause continuous

  • 8/4/2019 2010 EN1998 Bridges BKolias

    107/110

    Horizontal seismic components cause continuous

    Coupled isolator model should be used for T.H. non

    linear analysis Increase displacement demand of FMM as a stand

    alone analysis

    Assuming 0.5dcd to occur simultaneously

    transverse to max dcd, as estimated by the FMM,

    the displacement demand should be 1.15dcd Increase max forces b the same factor.

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 108

    Dissemination of information for training Vienna, 4-6 October 2010 108

    Comparison of TH and FMM analyses

    Seismic displacement and shear demand at the abutments

  • 8/4/2019 2010 EN1998 Bridges BKolias

    108/110

    Seismic displacement and shear demand at the abutments

    Method of analysisDisplacement

    demand

    longitudinal

    direction

    transverse

    direction

    Time-history

    analysis393 783 695

    FundamentalMode Method

    FMM

    405 683 683

    Indian Concrete Institute Workshop on Eurocode 8 - New Delhi, 17-19 September 2009 109

    Dissemination of information for training Vienna, 4-6 October 2010 109

    Other subjects covered by EN 1998-2

    Main design issues covered by EN 1998-2, notd lt ith i th t

  • 8/4/2019 2010 EN1998 Bridges BKolias

    109/110

    dealt with in the present:

    Non linear analysis of bridges: Static (push-over)

    and dynamic (time history) Spatial variability of the seismic action (for long

    bridges)

    y ro ynam c nteract on or mmerse p ers Verification of joints adjacent to plastic hinges

    u , w v

    and shock transmission units

    EUROCODESBridges: Background and applications

    Dissemination of information for training Vienna, 4-6 October 2010 110

  • 8/4/2019 2010 EN1998 Bridges BKolias

    110/110