2010-Combustion-Symposium_Wang.pdf

56
Formation of Nascent Soot and Other CondensedPhase Materials in Flames Hai Wang University of Southern California Work supported by NSF, SERDP and DOE (CEFRC)

Transcript of 2010-Combustion-Symposium_Wang.pdf

  • FormationofNascentSootandOtherCondensedPhaseMaterialsinFlames

    HaiWangUniversityofSouthernCalifornia

    WorksupportedbyNSF,SERDPandDOE(CEFRC)

  • WhyDoesCondensedPhaseMatterForm?

    G=H TS

    Progressvariable

    GastoSolidTransformation

    Type1:enthalpydriven(heatrelease)

    metaloxidescarbides,nitrides

    Type2:entropydriven

    sootC3H8 solidcarbon+4H2(H >0,butS >0)

  • DrivingForce Soot

    S

    ,

    G

    (

    k

    c

    a

    l

    /

    m

    o

    l

    -

    C

    )

    r

    r

    S

    ,

    G

    (

    k

    c

    a

    l

    /

    m

    o

    l

    -

    C

    )

    r

    r

    S

    ,

    G

    (

    k

    c

    a

    l

    /

    m

    o

    l

    -

    C

    )

    r

    r

    S

    ,

    G

    (

    k

    c

    a

    l

    /

    m

    o

    l

    -

    C

    )

    r

    r

    H

    ,

    T

    S

    ,

    G

    (

    k

    c

    a

    l

    /

    m

    o

    l

    -

    C

    )

    r

    r

    r

    H

    ,

    T

    S

    ,

    G

    (

    k

    c

    a

    l

    /

    m

    o

    l

    -

    C

    )

    r

    r

    r

    H

    ,

    T

    S

    ,

    G

    (

    k

    c

    a

    l

    /

    m

    o

    l

    -

    C

    )

    r

    r

    r

    H

    ,

    T

    S

    ,

    G

    (

    k

    c

    a

    l

    /

    m

    o

    l

    -

    C

    )

    r

    r

    r

    Sootformationisentropydriven(H2 goesfree).Condensedphasecarbonformsasanaerosol(kineticsdriven).

  • Condensedphasematerialisubiquitousinflames

    http://www.historyforkids.org/learn/science/fire.htm

    http://hearth.com/what/historyfire.html

    World'soldesttattoos(Tyroleaniceman,tzi)wereetchedinsoot(c.3,300BC)

    Lampblack(soot)usedinprehistoriccavepaintings(35,0035,0010,00010,000ybpybp)

    G. Nelson Eby, http://faculty.uml.edu/nelson_eby/Forensic%20Geology/PowerPoint%20Presentations.htm

  • SootMicrostructures/Composition

    http://www.atmos.umd.edu/~pedro/soot2.jpg

    3.5

    105106 atoms

    http://www.asn.ubordeaux.fr/images/soot.jpg Courtesy:Boehman

    Maturesoot:

    C/H ~8/1 =1.8g/cc

  • SootasaVersatileMaterial OldandNew

    daneshema.com

    sci.waikato.ac.nz

    carbonblack 3rdgenerationsolarcells

    directmethanolfuelcells

    renewableenergy

    heattransfer

    http://www.asn.ubordeaux.fr/images/soot.jpg

  • SootasParticulateAirPollutants

    http://www.spacemart.com/images/cruiseshipsmokestackemissionbg.jpg]

    http://www.sfgate.com/blogs/images/sfgate/green/2009/06/03/dieselsmoke.jpg

    http://www.soot.biz/images/soot/soot_250x251.jpg

    http://farm1.static.flickr.com/216/499969453_44089c6c1d.jpg

    http://www.parks.ca.gov/pages/491/images/sierra_3_steam_locomotive.jpg

  • SootandtheClimate Sootdepositionresponsiblefor95%polaricemelting

    Dirtysnowreducesicealbedo

    Browncloudscausesregionalwarming

    Contrailrelatedcloudalbedo

  • DrivingForcesbehindSootResearch(1)The80s &90s:Amajorbreakthrough inunderstandingcarbonformation willhavebeenachievedwhenitbecomespossibleinatleastonecasetoaccountfortheentirecourseofnucleationandgrowthofcarbon onthebasisofafundamentalknowledgeofreactionratesandmechanisms.

    Palmer&Cullis,1965

    Frenklach,Wang,Proc.Combust.Inst. 23(1990)1559.

    Frenklach,Wang,in:SootFormationinCombustion:MechanismsandModelsofSootFormation,Bockhorn,Ed.SpringerVerlag,Berlin,1994,pp162190.

    Colket,Hall,inSootFormationinCombustion:MechanismsandModelsofSootFormation, Bockhorn,Ed.SpringerVerlag,Berlin,1994,pp442468.

    Mauss, Schafer,andBockhorn,Combust.Flame 99,697705(1994)

    Bockhorn,ed.SootFormationinCombustion:MechanismsandModelsofSootFormation,SpringerVerlag,Berlin,1994.

    Kennedy Modelsofsootformationandoxidation,Prog.EnergyCombust.Sci. 23(1997)95132. Data:Jander &Wagner,Simulation:

    Kazakov,Wang,Frenklach(1994)

  • DrivingForcesbehindSootResearch(2)Themostrecentdecade:Predictivetoolsforcombustionenginedesigns

    Network Reactor Simulation

    Fuel-spray shear layer

    Recirculation zones

    Quench zones

    Burn-out zones

    Network Reactor Simulation

    Fuel-spray shear layer

    Recirculation zones

    Quench zones

    Burn-out zones

    Fuel injector/swirler

    Fuel-rich front end

    Quench Zone

    Lean, Burn-Out Zone

    Soot Mass w/Jet-A

    CourtesyofColket

    Bai,Balthasar,Mauss,FuchsProc.Combust.Inst. 27(1998)1623.Pitsch,Riesmeier,Peters Combust.Sci.Technol. 158(2000)389.Wen,Yun,Thomson,Lightstone Combust.Flame 135(2003)323.Wang,Modest,Haworth,TurnsCombust.Theor.Model. 9(2005)479.Lignell,Chen,Smith,Lu,LawCombust.Flame 151(2007)2.Mosback,Celnik,Raj,Kraft,Zhang,Kubo,KimCombust.Flame 156(2009)1156.

    Haworth Prog.EnergyCombust.Sci. 36(2010)168259.

  • KineticMechanismofSootFormation

    CourtesyofDAnna

    Bockhorn,DAnna,Sarofim,Wang,eds.,CombustionGeneratedFineCarbonaceousParticles,KarlsruheUniversityPress,2009.

  • KineticMechanismofSootFormation

    CourtesyofDAnna

    Bockhorn,DAnna,Sarofim,Wang,eds.,CombustionGeneratedFineCarbonaceousParticles,KarlsruheUniversityPress,2009.

    GasPhaseChemistry

    PAHChemistry

    Nucleation

    Massgrowth

  • RecentHighlights(1)

    AtomisticModelforParticleInception(AMPI),combiningkineticMonteCarloandmoleculardynamics,showevolutionofincipientsootstructures:

    CourtesyofVioli

  • RecentHighlights(2)

    Balthasar,Frenklach(2005)

    KineticMonteCarlosimulationexplainstheoriginofsphericityofnascentsootparticles

    10-1

    100

    101

    0.70.8

    0.91.0

    1.1

    (

    1

    /

    N

    )

    d

    N

    /

    d

    l

    o

    g

    (

    D

    p

    )

    Particle Diameter, Dp

    (nm)

    Distance from Burner, Hp (cm)

    246810

    2030

    10-1

    100

    101

    0.70.8

    0.91.0

    1.1

    (

    1

    /

    N

    )

    d

    N

    /

    d

    l

    o

    g

    (

    D

    p

    )

    Particle Diameter, Dp

    (nm)

    Distance from Burner, Hp (cm)

    246810

    2030

    Abidetal.(2009)C2H4O2Ar flame =2.1

    Eventually

  • RecentHighlights(3)

    ParticleSizeDistributions

    Chemicalmakeup

    CourtesyofKraft

    Stochasticsimulationswithdetailedchemistryandaerosoldynamicsareabletopredictparticlesizedistribution&sootchemicalcompositions

  • ExperimentsFacilitateModelComparison

    Measuredandcomputed(USCMechII)temperatureincloseagreement)removedtheneedtoshifttimezero.

    Burnerstabilizedstagnationflameapproach C2H4/O2/Ar flame( =2.1)

    Abidetal.(2009)

    Distance,H (cm)1.2

    5001.00.80.60.40.20.0

    1000

    1500

    T

    e

    m

    p

    e

    r

    a

    t

    u

    r

    e

    ,

    T

    (

    K

    )

    1.2

    Hp =0.55cm0.6

    0.7

    0.8

    1.0

    Distance,H (cm)1.2

    5001.00.80.60.40.20.0

    1000

    1500

    T

    e

    m

    p

    e

    r

    a

    t

    u

    r

    e

    ,

    T

    (

    K

    )

    1.2

    Hp =0.55cm0.6

    0.7

    0.8

    1.0

    1.2

    0.6

    0.7

    0.8

    1.0

    Diameter,Dp (nm)3 5 10 20 50

    108

    1010

    d

    N

    /

    d

    l

    o

    g

    D

    p

    Hp =0.55cm

    1.2

    0.6

    0.7

    0.8

    1.0

    Diameter,Dp (nm)3 5 10 20 50

    108

    1010

    d

    N

    /

    d

    l

    o

    g

    D

    p

    Hp =0.55cm

    cooling assembly

    1cmHp

    stagnation plate/sample probe (Ts)

    Tbr

    xu

    v

    to SMPScarrier N2

    DetailedPSDFsbymobilitysizingprovideaddedresolutiontoprobingsootnucleationandmass/sizegrowthchemistry

  • CurrentProblems&Questions

    PAH precursorchemistryanditsdependencyonfuelstructures;

    Whatisthemechanismofparticleinception?

    Isthecompositionofnascentsootidenticaltomaturesoot?

    IstheHACA mechanismcompete?

  • PAH PrecursorChemistry(1)

    +H+H

    +C2H2

    (H)

    +C2H2H

    +C2H2H

    +C2H2+H(H2)

    +H

    +H(H2)

    +H

    +H(H2)

    +H

    +H(H2)

    +H

    +H(H2)

    +H

    +H(H2)

    +H

    +C2H2+C2H2

    +H(H2)

    +H

    +H(H2)

    +H

    +C2H2(H)

    +H(H2)

    +H

    +H(H2)

    +H

    +C2H2H

    +C2H2H +H(H2)

    +H

    +H(H2)

    +H

    +C2H2 (H)

    TheHydrogenAbstractionCarbonAddition(HACA)Mechanism(Frenklach)

    Steinsstabilomersassootbuildingblock

    Capturethreeimportantfactorsofmolecularweightgrowth

    Flame PAHchemistry formation

    Hatom chain activationbranching

    C2H2 dominant buildingspecies block

    HighT heat Arrheniusrelease kinetics

  • PAH PrecursorChemistry(2) EarlierworkaimedatdevelopingconsistentthermodynamicJPhysChem 97(1993)3867.

    transportCombustFlame 96(1994)163.

    chemicalkineticJPhysChem98(1994)11465;CombustFlame 110(1997)173;ProcCombustInst 23(1990)1559.

    descriptionsofPAH formation

    Lessonslearned:PAH formationissensitivetoamultitudeofelementaryreactionsandlocalflameconditions.

    -0.5 0.0 0.5 1.0

    H+O2=O+OHHO2+H=OH+OH

    HO2+OH=O2+H2OHCO+O2=CO+HO2

    CH+H2=CH2+HCH2+O2=CO2+H+H

    CH2*+H2=CH3+HC2H2+O=CH2+CO

    C2H2+OH=C2H+H2OC2H2+H(+M)=C2H3(+M)

    HCCO+H=CH2*+COHCCO+CH3=C2H4+CO

    C2H3+O2=C2H3O+O

    C2H2+CH2*=C3H3+HC2H2+CH2=C3H3+H

    C3H3+OH=C3H2+H2OC3H3+OH=C2H3+HCO

    C3H3+C3H3=>A1c-C6H4+H=A1-

    C4H2+H=n-C4H3

    A1+H=A1-+H2A1+OH=A1-+H2O

    A1-+H(+M)=A1(+M)n-A1C2H2+C2H2=A2+H

    A2+OH=A2-1+H2OA2-1+H(+M)=A2(+M)

    A2C2HA*+H(+M)=A2C2HAA2C2HA+OH=A2C2HA*+H2

    A2C2HA*+C2H2=A3-4P2+H=P2-+H2

    P2-+C2H2=A3+HA3+H=A3-4+H2

    A3-4+H(+M)=A3(+M)A3-4+C2H2=A4+H

    Logarithmic Sensitivity Coefficient

    Main flamechemistry

    First aromaticring

    Aromatic growthchemistry

    Spectralsensitivityofpyreneconcentration90TorrburnerstabilizedC2H2/O2/Ar flame(Bockhorn),H =0.55cm

    Wang&Frenklach,C&F (1997)

  • PAH PrecursorChemistry(3)

    -0.5 0.0 0.5 1.0

    H+O2=O+OHHO2+H=OH+OH

    HO2+OH=O2+H2OHCO+O2=CO+HO2

    CH+H2=CH2+HCH2+O2=CO2+H+H

    CH2*+H2=CH3+HC2H2+O=CH2+CO

    C2H2+OH=C2H+H2OC2H2+H(+M)=C2H3(+M)

    HCCO+H=CH2*+COHCCO+CH3=C2H4+CO

    C2H3+O2=C2H3O+O

    C2H2+CH2*=C3H3+HC2H2+CH2=C3H3+H

    C3H3+OH=C3H2+H2OC3H3+OH=C2H3+HCO

    C3H3+C3H3=>A1c-C6H4+H=A1-

    C4H2+H=n-C4H3

    A1+H=A1-+H2A1+OH=A1-+H2O

    A1-+H(+M)=A1(+M)n-A1C2H2+C2H2=A2+H

    A2+OH=A2-1+H2OA2-1+H(+M)=A2(+M)

    A2C2HA*+H(+M)=A2C2HAA2C2HA+OH=A2C2HA*+H2

    A2C2HA*+C2H2=A3-4P2+H=P2-+H2

    P2-+C2H2=A3+HA3+H=A3-4+H2

    A3-4+H(+M)=A3(+M)A3-4+C2H2=A4+H

    Logarithmic Sensitivity Coefficient

    Main flamechemistry

    First aromaticring

    Aromatic growthchemistry

    Spectralsensitivityofpyreneconcentration90TorrburnerstabilizedC2H2/O2/Ar flame(Bockhorn),H =0.55cm

    Wang&Frenklach,C&F (1997)

    -0.1 0 0.1 0.2 0.3 0.4HO2+H=2OHCH3+HO2=CH3O+OH2CH3=H+C2H5C2H3+O2=CH2CHO+OC2H4+OH=C2H3+H2OC2H3+H=C2H2+H2C2H3(+M)=C2H2+H(+M)CH3+OH=CH2*+H2OCH3+H(+M)=CH4(+M)HCO+M=CO+H+MH+OH+M=H2O+MHCO+H2O=CO+H+H2OHCO+H=CO+H2CO+OH=CO2+H

    H+O2=O+OH

    = 1, T0 = 403 K

    detailed model

    simplified model

    Sensitivity Coefficient

    Youetal.Proc.Combust.Inst.(2009)

    ndodecaneairflamespeed

  • PAH PrecursorChemistry(3)

    -0.5 0.0 0.5 1.0

    H+O2=O+OHHO2+H=OH+OH

    HO2+OH=O2+H2OHCO+O2=CO+HO2

    CH+H2=CH2+HCH2+O2=CO2+H+H

    CH2*+H2=CH3+HC2H2+O=CH2+CO

    C2H2+OH=C2H+H2OC2H2+H(+M)=C2H3(+M)

    HCCO+H=CH2*+COHCCO+CH3=C2H4+CO

    C2H3+O2=C2H3O+O

    C2H2+CH2*=C3H3+HC2H2+CH2=C3H3+H

    C3H3+OH=C3H2+H2OC3H3+OH=C2H3+HCO

    C3H3+C3H3=>A1c-C6H4+H=A1-

    C4H2+H=n-C4H3

    A1+H=A1-+H2A1+OH=A1-+H2O

    A1-+H(+M)=A1(+M)n-A1C2H2+C2H2=A2+H

    A2+OH=A2-1+H2OA2-1+H(+M)=A2(+M)

    A2C2HA*+H(+M)=A2C2HAA2C2HA+OH=A2C2HA*+H2

    A2C2HA*+C2H2=A3-4P2+H=P2-+H2

    P2-+C2H2=A3+HA3+H=A3-4+H2

    A3-4+H(+M)=A3(+M)A3-4+C2H2=A4+H

    Logarithmic Sensitivity Coefficient

    Main flamechemistry

    First aromaticring

    Aromatic growthchemistry

    Spectralsensitivityofpyreneconcentration90TorrburnerstabilizedC2H2/O2/Ar flame(Bockhorn),H =0.55cm

    Wang&Frenklach,C&F (1997)

    Lessonslearned:PAH formationissensitivetoamultitudeofelementaryreactions.

    AccuratepredictionofPAH formationmayrequireaprecisioninmainflamechemistrycurrentlyunavailable.

    PAH formationcanbehighlysensitivetofuelstructures.

    4D01: Hansen,Kasper,Yang,Cool,Li,Westmoreland,Owald,KohseHinghaus, Fuelstructure

    dependenceofbenzeneformationprocessesinpremixedflamesfueledbyC6H12 isomers

    Possibly a large number of pathways toPAHshaveyetbeenconsidered.

  • PAH PrecursorChemistry(4)ThermodynamicOriginofPAH Formation/GrowthBeyondHACA

    C2H2 5 5 4 4 3 2 2 1 0H 1 0 1 0 0 1 0 0 1H2 0 1 1 2 2 2 3 3 3

    0.0

    0.5

    0.5

    1.0

    G

    (

    k

    c

    a

    l

    /

    m

    o

    l

    -

    C

    )

    r

    +C2H2(H)+H(H2)

    +H(H2)

    +C2H2+C2H2(H)

    +H(H2)

    +C2H2

    +C2H2(H)

    +H (+M)

    +H (+M)

    +H (+M) +H (+M)

    +H (+M)

    C2H2 5 5 4 4 3 2 2 1 0H 1 0 1 0 0 1 0 0 1H2 0 1 1 2 2 2 3 3 3

    0.0

    0.5

    0.5

    1.0

    G

    (

    k

    c

    a

    l

    /

    m

    o

    l

    -

    C

    )

    r

    +C2H2(H)+H(H2)

    +H(H2)

    +C2H2+C2H2(H)

    +H(H2)

    +C2H2

    +C2H2(H)

    +H (+M)

    +H (+M)

    +H (+M) +H (+M)

    +H (+M)

    WhileHACA capturesthethermokinetic requirementsforPAH formation,itsreversibilityopensittocompetitionsfromotherpathways

  • PAH PrecursorChemistry(5)KnownPathwaysbeyondHACA

    0

    20

    40

    60

    80

    100

    120

    140

    2C3H3

    +H

    E

    n

    e

    r

    g

    y

    (

    k

    c

    a

    l

    /

    m

    o

    l

    )

    0

    20

    40

    60

    80

    100

    120

    140

    2C3H3

    +H

    E

    n

    e

    r

    g

    y

    (

    k

    c

    a

    l

    /

    m

    o

    l

    )

    Propargylcombination(Fahr&Stein1990)

    RatecoefficientcalculationrequirehighqualityPES (e.g.,CASPT2),RRKM/Masterequationmodeling,flexible,variational transitionstatetheory

    Sequentialdehydrogenationfromcycloparaffins (Westmoreland2007)

    Phenyladdition/cyclolizationpathway(Koshi2010)

    Fulvenallene+acetylene(Bozzelli 2009)

    Cyclopentadienyl+acetylene(Carvallotti etal.2007)

    Cyclopentadienyl+cyclopentadienyl(Colket1994;Mebel 2009)

    MillerandKlippenstein(2003)

  • PAH PrecursorChemistry(6)Recentadvanceinprobingflamebymolecularbeamsynchrotronphotoionizationmassspectrometrywillbecriticaltofurtherprogress.

    CourtesyofQi

    Photoionizationmassspectraofflamespeciesofburnerstabilizedaromatics/oxygen/50%argonflames(30Torr,C/O=0.68)determinedbymolecularbeamsynchrotronphotoionizationmassspectrometry.

    1:benzene2:toluene3:styrene4:ethylbenzene5:oxylene6:mxylene7:pxylene

  • PAH PrecursorChemistry Summary

    1. PAH formationissensitivetomainflamechemistry,localflameconditions,fuelstructureandcomposition.

    2. Forrealfuelsandtheirsurrogate,thenumberofpathwaystoaromaticsiscurrentlyundefined;anditremainstobeseenwhetherthisnumberisfinite.

    3. Requirestheoreticalapproachesbeyondonereactionatatimetypecalculations.

    4. Needtoaccountfortheformationofaromaticradicals

  • SootNucleation(1)

    C/H

    1.22

    ~2

    ~10

    C

    B

    A

    C/H

    1.22

    ~2

    ~10

    C

    B

    A

    Violi/DAnna

    Frenklach/WangMiller

    Homann

  • SootNucleation(2)

    Secondordernucleationkinetics dimerizationofsootprecursorsleadstoPersistentbimodality.

    FirstordernucleationkineticsgivesPSDFsthatarepersistentlyunimodal.

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    100 101 102 103

    D

    i

    m

    e

    n

    s

    i

    o

    n

    l

    e

    s

    s

    N

    u

    m

    b

    e

    r

    D

    e

    n

    s

    i

    t

    y

    ,

    n

    i

    /

    C

    o

    Particle Size Parameter, i

    1 2 3 4 5 10

    Particle Diameter, D (nm)

    Dimensionless time x = 1

    x = 5

    x = 20

    x = 50

    Zhaoetal.(2003a)

    10-10

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    100 101 102 103Di

    m

    e

    n

    s

    i

    o

    n

    l

    e

    s

    s

    N

    u

    m

    b

    e

    r

    D

    e

    n

    s

    i

    t

    y

    ,

    y

    Particle Size, i

    x = 10x = 20

    x = 50

  • SootNucleation(3)

    Zhaoetal.2003

    Porous plug burner

    Porous plug burner

    Shielding Ar C2H4/O2/Ar Cooling water

    Kr85

    NDMA

    P

    Model 3080Electrostatic Classifier

    Model 3025A

    UCPC

    Exhaust

    SMPS System

    Secondary air

    P1

    Diluent

    N2 at 29.5 lpm

    P2

    Exhaust

    Flow meter

    Filter

    orifice

    Cooling water

    Cooling water

    Sample Probe System

    Kr85

    NDMA

    P

    Model 3080Electrostatic Classifier

    Model 3025A

    UCPC

    Exhaust

    SMPS System

    Kr85

    NDMA

    P

    Model 3080Electrostatic Classifier

    Model 3025A

    UCPC

    Exhaust

    SMPS System

    Secondary air

    P1

    Diluent

    N2 at 29.5 lpm

    P2

    Exhaust

    Flow meter

    Filter

    orifice

    Cooling water

    Cooling water

    Sample Probe System

    10-4

    10-3

    10-2

    10-1

    100

    101

    102H = 0.55 cm H = 0.60 cm H = 0.65 cm

    10-4

    10-3

    10-2

    10-1

    100

    101

    102H = 0.7 cm H = 0.8 cm H = 0.9 cm

    N

    o

    m

    r

    a

    l

    i

    z

    e

    d

    D

    i

    s

    t

    r

    i

    b

    u

    t

    i

    o

    n

    F

    u

    n

    c

    t

    i

    o

    n

    ,

    n

    (

    D

    )

    /

    N

    10-4

    10-3

    10-2

    10-1

    100

    101

    102

    4 6 8 10 30 503

    H = 1.0 cm

    4 6 8 10 30 503

    H = 1.1 cm

    4 6 8 10 30 503

    H = 1.2 cm

    Particle Diameter, D (nm)

    MeasuredPSDFsareindeedbimodal

  • SootNucleation(5)Massspectrumoffragmentsfromphotoionizationofnascentsootshowperiodicity

    100Torracetyleneoxygenflame( =3.25)

    CourtesyofGrotheer

  • SootNucleation(1)

    C/H

    1.22

    ~2

    ~10

    C

    B

    A

    C/H

    1.22

    ~2

    ~10

    C

    B

    A

    Violi/DAnna

    Frenklach/WangMiller

    Homann

  • SootNucleation(6)

    10-1

    100

    101

    0.70.8

    0.91.0

    1.1

    (

    1

    /

    N

    )

    d

    N

    /

    d

    l

    o

    g

    (

    D

    p

    )

    Particle Diameter, Dp

    (nm)

    Distance from Burner, Hp (cm)

    246810

    2030

    10-1

    100

    101

    0.70.8

    0.91.0

    1.1

    (

    1

    /

    N

    )

    d

    N

    /

    d

    l

    o

    g

    (

    D

    p

    )

    Particle Diameter, Dp

    (nm)

    Distance from Burner, Hp (cm)

    246810

    2030

    Abidetal.(2009)

    T

  • SootNucleation(1)

    C/H

    1.22

    ~2

    ~10

    C

    B

    A

    C/H

    1.22

    ~2

    ~10

    C

    B

    A

    Possible,butnotgeneral Violi/DAnna

    Frenklach/WangMiller

    Homann

  • SootNucleation(7)

    10

    100

    10 100

    coroneneB

    i

    n

    d

    i

    n

    g

    E

    n

    e

    r

    g

    y

    (

    c

    k

    a

    l

    /

    m

    o

    l

    )

    Number of C atoms

    ovalene

    circumcoronene

    chrysene benzo[ghi]perylenepyrene

    anthracene & phenanthrene

    naphthalene

    10-5

    10-4

    10-3

    10-2

    10-1

    100200

    400

    600

    800

    1 2 3 4 5 6 7

    R

    e

    l

    a

    t

    i

    v

    e

    C

    o

    n

    c

    e

    n

    t

    r

    a

    t

    i

    o

    n

    Number of Aromatic Rings

    B

    o

    i

    l

    i

    n

    g

    /

    S

    u

    b

    l

    i

    m

    a

    t

    i

    o

    n

    T

    e

    m

    p

    e

    r

    a

    t

    u

    r

    e

    (

    K

    )

    10

    100

    10 100

    coroneneB

    i

    n

    d

    i

    n

    g

    E

    n

    e

    r

    g

    y

    (

    c

    k

    a

    l

    /

    m

    o

    l

    )

    Number of C atoms

    ovalene

    circumcoronene

    chrysene benzo[ghi]perylenepyrene

    anthracene & phenanthrene

    naphthalene

    10-5

    10-4

    10-3

    10-2

    10-1

    100200

    400

    600

    800

    1 2 3 4 5 6 7

    R

    e

    l

    a

    t

    i

    v

    e

    C

    o

    n

    c

    e

    n

    t

    r

    a

    t

    i

    o

    n

    Number of Aromatic Rings

    B

    o

    i

    l

    i

    n

    g

    /

    S

    u

    b

    l

    i

    m

    a

    t

    i

    o

    n

    T

    e

    m

    p

    e

    r

    a

    t

    u

    r

    e

    (

    K

    )

    HerdmanandMiller(2008)

    Bindingenergyofcoronene=25kcal/mol

  • SootNucleation(8)

    6

    0 1

    1+ 1 4exp 1 i Bi i B

    H E h k Th k T

    3 2 23 01

    422

    6

    1

    2ln

    ln 11

    i B

    i B

    u B

    h k Ti Bh k Ti

    h pS BR m ek T

    h k T ee

    Is25.4kcal/molenoughtobindapairofcoronenetogether?

    2coronene (coronene)2

    Assumptions:vi =200cm1

    B (cm1)=1510xMW2.12

    2 =1-100

    -50

    0

    50

    100

    150

    0 500 1000 1500 2000 2500

    G

    o

    (

    k

    c

    a

    l

    /

    m

    o

    l

    )

    T (K)

    Binding

    Nonbinding

    G toopositivetoallowbindingabove700K Entropytearsthedimerapart.

    OvaleneE0 =35kcal/molCircumcoroneneE0 =63kcal/molEventheywouldnotbind>1600K.

  • -60

    -40

    -20

    0

    20

    40

    60

    0 500 1000 1500 2000 2500

    G

    o

    (

    k

    c

    a

    l

    /

    m

    o

    l

    )

    T (K)

    coroneneovalene

    circumcoronene

    SootNucleation(8)

    6

    0 1

    1+ 1 4exp 1 i Bi i B

    H E h k Th k T

    3 2 23 01

    422

    6

    1

    2ln

    ln 11

    i B

    i B

    u B

    h k Ti Bh k Ti

    h pS BR m ek T

    h k T ee

    Is25.4kcal/molenoughtobindapairofcoronenetogether?

    2coronene (coronene)2

    Assumptions:vi =200cm1

    B (cm1)=1510xMW2.12

    2 =1OvaleneE0 =35kcal/molCircumcoroneneE0 =63kcal/molEventheywouldnotbind>1600K.

  • SootNucleation(1)

    C/H

    1.22

    ~2

    ~10

    C

    B

    A

    C/H

    1.22

    ~2

    ~10

    C

    B

    A

    Violi/DAnna

    Frenklach/Miller

    Homann

    Possible,butnotgeneral

  • SootNucleation(9) Polyacenesaresingletdiradicals(thougharguable).

    Groundstatepolyacenesarecloseshellsinglets,buttheadiabaticS0T1excitationenergyisonly13kcal/molforheptacene Hajgatetal.(2009).

    Applicationsinorganiclightemittingdiodesandorganicsemiconductorsandcapacitors.

  • SootNucleation(10)

    Zigzagedgesofgraphenehavelocalizedelectronicstates

    Kobayashi1993;Klein1994

    Zigzagedgeshaveanopenshellsingletgroundstate

    e.g.,Fujita etal.1996;Nakada 1996

    Finitesizedgrapheneshaveradicalorevenmultiradicalcharacteristics.

    e.g.,Nakano etal.2008,Nagai2010

    Sidechaincaninduceradicalcharacteristics

    Nakano etal.2007

    Nonlinearopticsapplications.

    i = 1 2 3 4

    j = 1

    2

    3

    i j y i j y1 1 0.000 1 3 0.0372 1 0.050 2 3 0.2173 1 0.149 3 3 0.5104 1 0.281 4 3 0.806

    zigzag edge

    A

    r

    m

    c

    h

    a

    i

    r

    e

    d

    g

    e

    i = 1 2 3 4

    j = 1

    2

    3

    i j y i j y1 1 0.000 1 3 0.0372 1 0.050 2 3 0.2173 1 0.149 3 3 0.5104 1 0.281 4 3 0.806

    i j y i j y1 1 0.000 1 3 0.0372 1 0.050 2 3 0.2173 1 0.149 3 3 0.5104 1 0.281 4 3 0.806

    zigzag edge

    A

    r

    m

    c

    h

    a

    i

    r

    e

    d

    g

    e

    Nagaietal.2010UBHandHLYP/631G(D)calculations0 y 1y =0:closeshellsinglety =1:openshellsinglet(diradical)

  • SootNucleation Summary

    If PAHswithradicalsdoplayaroleinsootnucleation,weneedto

    UnderstandthenatureandstructuresofthesePAHspecies,

    Determinetheirbindingenergieswithrelevantspecies,includingaromatics,

    Probetheminflames(howeversmalltheirconcentrationsmaybe),

    Accountforthemechanismoftheirformation.

  • SootMassGrowth(1)

    SiH + H Si + H2 (1)Si + H SiH (2)Si + C2H2 Si+2H + H (3)

    1

    3 2 231 2

    Hmol C-atom 2 S -H C Hcm s H

    fs i

    b

    kkk

    ThemassgrowthrateisproportionaltoHatomconcentration

    HACA Mechanism

  • SootMassGrowth(2)Babysootisentirelyunlikematuresoot.

    Comparisonofmobility andTEMmeasurementsshowsnascentsootisliquidlike ratherthanbeingcarbonizedandrigid.

    SmallangleneutronscatteringandthermocoupledensitometrysuggestthatnascentsoothasC/H ~1 and =1.5g/cc.

    Photoionizationaerosolmassspectrometry indicatesthatnascentsootisrichinaliphatics(inadditionaromatics).

    Thepresenceofaliphaticssuggeststhatnascentsootisnotalwayspurelyaromatic.

    ThemassofnascentsootcontinuetoincreaseinpostflamewhereHatomsaredepleted,incontrasttoHACA prediction presenceofpersistentfreeradicalsonsootsurface?

    Wangetal.2003;Oktem etal.2005,Zhaoetal.2007

  • SootMassGrowth(3)C2H4O2Ar flame( =2.07,Tf =173650K)

    Sunnysideupmorphology(TEM&AFM)suggestsanaromaticcorealiphaticshellstructure.

    MicroFTIR measurementsagainshowaliphaticdominance Thermaldesportion/chemicalionization(extremesoft)showbroadmassspectrum,

    suggestingthatnascentsootisalkylated. Thelargealiphatic/aromaticratioagainsuggestthattheinitialaromaticcoremaycontain

    persistentfreeradicals. Abidetal.2008;Cainetal.2010

  • SootMassGrowth(4)Evidencesupportingpersistentfreeradicals

    ElectronSpinResonancespectraofanthracite,acoalcontaining littletonooxygenatedcompounds,showameasurableconcentrationoffreeradicals(Retcofsky,Stark&Friedel 1968).

    Sootvolumefractionobservedtowardsthestagnationsurfacecan bepredictedonlyifsootsurfacepersistsitsradicalnature(Wangetal1996).

    SootfrompyrolysisofC2H4,C2H2 andjetfuelsurrogateshasappreciableamountsoffreeradicalsofaromatic nature.Thespinconcentrationsis~1021 pergram(1in50everyCatoms) (Eddings,Sarofim&Pugmire 2005).

    Soot,anotherwisehydrophobicmaterial,hastheabilitytouptakewater(Popovicheva 2003).

    BindingenergybetweenCH3 andH2O is1.5kcal/mol(CrespoOtero etal.2008),increasesto24kcal/molforC2C4 alkylradicals(Lietal.2009).

  • SootMassGrowth SummaryNascentsoothasaromaticcore/aliphaticshellstructure.

    SootmassgrowthwithoutthepresenceofHatom.

    Immediatequestionsandhypothesis:IsHACA mechanismcomplete?Dopersistentfreeradicalsexistonnascentsootsurfaces?

    Resonantlystabilizedfreeradicalsofsemiquinoneandphenoxylorigins(Dellinger2001).

    Radicalsduetostrainenergyinhexaphenylethaneandacenaphthenederivatives(Damesetal.2010).

  • SootMassGrowth SummaryRadicalsduetostrainenergyinhexaphenylethaneandacenaphthenederivatives(Dames,Sirjean,Wang2010).

    0

    10

    20

    30

    40

    50

    60

    70

    0 2 4 6 8

    M06-2X/6-31+G(d,p) electronic energy*M06-2X/6-31+G(d,p) Isodesmicexpt60

    ONIOM62

    C

    e

    n

    t

    r

    a

    l

    B

    D

    E

    (

    k

    c

    a

    l

    /

    m

    o

    l

    )

    7

    9

    11

    13

    1

    4

    5

  • SootMassGrowth SummaryNascentsoothasaromaticcore/aliphaticshellstructure.

    SootmassgrowthwithoutthepresenceofHatom.

    Immediatequestionsandhypothesis:IsHACA mechanismcomplete?Dopersistentfreeradicalsexistonnascentsootsurfaces.

    Resonantlystabilizedfreeradicalsofsemiquinoneandphenoxylorigins(Dellinger2001).

    Radicalsduetostrainenergyinhexaphenylethaneandacenaphthenederivatives(Damesetal.2010).

    Delocalizedaromatic radicalsonzigzagedgespropagatedintosootstructures(Cainetal.2010 3D02).

  • SootFormation

    CurrentPrevious(Calcote1982,Bockhorn1994)

    fuel + oxidizer

    CO, H2, CO2, H2O, C2H2

  • TheScienceofSootFormation

    A.Ciajolo andA.TregrossiSysiphus rollingasootparticleuphill.

    OurView NaturesView

    http://www.historyforkids.org/learn/science/fire.htm

  • TheScienceofSootFormation

    A.Ciajolo andA.TregrossiSysiphus rollingasootparticleuphill.

    OurView NaturesView

    Sysiphus stoping asootparticlefallingoffapotentialenergycliff.

  • OtherCondensedPhaseMatters

    Whenwearestuck

    Axelbaum variousnanoparticlesynthesis

    Calcote carbideandnitride

    Frenklach diamondthinfilmsandparticles,SiC andSinanoparticles

    Kennedy YandEu oxidenanoparticles

    Harris diamondthinfilms

    Howard fullerenesandcarbonnanotubes

    Roth variousoxidenanoparticles

    Zachariah synthesis,characterizationandfundamentaltheoriesofnanoparticles

  • OtherCondensedPhaseMatters MetalOxide

    H

    ,

    T

    S

    ,

    G

    (

    k

    c

    a

    l

    /

    m

    o

    l

    -

    C

    )

    r

    r

    r

    H

    ,

    T

    S

    ,

    G

    (

    k

    c

    a

    l

    /

    m

    o

    l

    -

    C

    )

    r

    r

    r

    H

    ,

    T

    S

    ,

    G

    (

    k

    c

    a

    l

    /

    m

    o

    l

    -

    C

    )

    r

    r

    r

    H

    ,

    T

    S

    ,

    G

    (

    k

    c

    a

    l

    /

    m

    o

    l

    -

    C

    )

    r

    r

    r

    Metaloxideformationissimpler,kineticallyandthermodynamically,thansootformation

  • TitaniaTiO2

    SilicateSiO2

    CourtesyofPratsinis

    CourtesyofPratsinis

    OtherCondensedPhaseMatters MetalOxide

  • UnintendedBenefitsofSootResearch

    Trickslearnedinsimplifyingfluiddynamicsandvariousaspectsofthermodynamicsandchemicalkineticsleadtobetterdesignsformaterialssynthesis.

    Characterizationmethodsforsootformationextendtheiruseinmaterialscharcaterization.

  • UnintendedBenefitsofSootResearch

    Collectionplate

    Nozzle Collectionplate

    Nozzle

    0

    2

    4

    3 4 5 6 7 8 9 10 20

    [

    d

    N

    /

    d

    l

    o

    g

    (

    D

    p

    )

    ]

    /

    N

    Dp (nm)0

    2

    4

    3 4 5 6 7 8 9 10 20

    [

    d

    N

    /

    d

    l

    o

    g

    (

    D

    p

    )

    ]

    /

    N

    Dp (nm)

    5 minute

    Alumina substrate

    14 m

    1070 ppm TTIP, 300 RPM 5 minute

    Alumina substrate

    14 m

    1070 ppm TTIP, 300 RPM

    increased precurso

    r concentration

    unburned gas& precursor

    substrate

    unburned gas& precursor

    substrate

    0

    100

    200

    300

    10 15 20 25 30

    Time (hrs)

    R

    e

    s

    i

    s

    t

    a

    n

    c

    e

    ,

    R

    (

    M

    )

    12 3

    45

    6

    0

    5

    10

    15

    20

    25

    0

    2

    4

    6

    8

    10

    12

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

    C

    u

    r

    r

    e

    n

    t

    D

    e

    n

    s

    i

    t

    y

    ,

    i

    (

    m

    A

    /

    c

    m

    2

    )

    P

    o

    w

    e

    r

    D

    e

    n

    s

    i

    t

    y

    ,

    p

    (

    m

    W

    /

    c

    m

    2

    )

    Voltage,V(V)

    9.2% photoconversion efficiency

    (a)

    (b)

    (c) (d)

    Collectionplate

    Nozzle Collectionplate

    Nozzle

    0

    2

    4

    3 4 5 6 7 8 9 10 20

    [

    d

    N

    /

    d

    l

    o

    g

    (

    D

    p

    )

    ]

    /

    N

    Dp (nm)0

    2

    4

    3 4 5 6 7 8 9 10 20

    [

    d

    N

    /

    d

    l

    o

    g

    (

    D

    p

    )

    ]

    /

    N

    Dp (nm)

    5 minute

    Alumina substrate

    14 m

    1070 ppm TTIP, 300 RPM 5 minute

    Alumina substrate

    14 m

    1070 ppm TTIP, 300 RPM

    increased precurso

    r concentration

    unburned gas& precursor

    substrate

    unburned gas& precursor

    substrate

    0

    100

    200

    300

    10 15 20 25 30

    Time (hrs)

    R

    e

    s

    i

    s

    t

    a

    n

    c

    e

    ,

    R

    (

    M

    )

    12 3

    45

    6

    0

    5

    10

    15

    20

    25

    0

    2

    4

    6

    8

    10

    12

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

    C

    u

    r

    r

    e

    n

    t

    D

    e

    n

    s

    i

    t

    y

    ,

    i

    (

    m

    A

    /

    c

    m

    2

    )

    P

    o

    w

    e

    r

    D

    e

    n

    s

    i

    t

    y

    ,

    p

    (

    m

    W

    /

    c

    m

    2

    )

    Voltage,V(V)

    9.2% photoconversion efficiency

    (a)

    (b)

    (c) (d)

    Chemicalsensors:(1)280,(2)140,(3)93,(4)46,(5)18and(6)5PPMCOexposure

    DyeSensitizedSolarCellusingFlamefabricatedphotoanode

    ScalableonedimensionalmesoporousTiO2 filmsynthesis

  • UnintendedBenefitsofSootResearch

    Collectionplate

    Nozzle Collectionplate

    Nozzle

    0

    2

    4

    3 4 5 6 7 8 9 10 20

    [

    d

    N

    /

    d

    l

    o

    g

    (

    D

    p

    )

    ]

    /

    N

    Dp (nm)0

    2

    4

    3 4 5 6 7 8 9 10 20

    [

    d

    N

    /

    d

    l

    o

    g

    (

    D

    p

    )

    ]

    /

    N

    Dp (nm)

    5 minute

    Alumina substrate

    14 m

    1070 ppm TTIP, 300 RPM 5 minute

    Alumina substrate

    14 m

    1070 ppm TTIP, 300 RPM

    increased precurso

    r concentration

    unburned gas& precursor

    substrate

    unburned gas& precursor

    substrate

    0

    100

    200

    300

    10 15 20 25 30

    Time (hrs)

    R

    e

    s

    i

    s

    t

    a

    n

    c

    e

    ,

    R

    (

    M

    )

    12 3

    45

    6

    0

    5

    10

    15

    20

    25

    0

    2

    4

    6

    8

    10

    12

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

    C

    u

    r

    r

    e

    n

    t

    D

    e

    n

    s

    i

    t

    y

    ,

    i

    (

    m

    A

    /

    c

    m

    2

    )

    P

    o

    w

    e

    r

    D

    e

    n

    s

    i

    t

    y

    ,

    p

    (

    m

    W

    /

    c

    m

    2

    )

    Voltage,V(V)

    9.2% photoconversion efficiency

    (a)

    (b)

    (c) (d)

    Collectionplate

    Nozzle Collectionplate

    Nozzle

    0

    2

    4

    3 4 5 6 7 8 9 10 20

    [

    d

    N

    /

    d

    l

    o

    g

    (

    D

    p

    )

    ]

    /

    N

    Dp (nm)0

    2

    4

    3 4 5 6 7 8 9 10 20

    [

    d

    N

    /

    d

    l

    o

    g

    (

    D

    p

    )

    ]

    /

    N

    Dp (nm)

    5 minute

    Alumina substrate

    14 m

    1070 ppm TTIP, 300 RPM 5 minute

    Alumina substrate

    14 m

    1070 ppm TTIP, 300 RPM

    increased precurso

    r concentration

    unburned gas& precursor

    substrate

    unburned gas& precursor

    substrate

    0

    100

    200

    300

    10 15 20 25 30

    Time (hrs)

    R

    e

    s

    i

    s

    t

    a

    n

    c

    e

    ,

    R

    (

    M

    )

    12 3

    45

    6

    0

    5

    10

    15

    20

    25

    0

    2

    4

    6

    8

    10

    12

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

    C

    u

    r

    r

    e

    n

    t

    D

    e

    n

    s

    i

    t

    y

    ,

    i

    (

    m

    A

    /

    c

    m

    2

    )

    P

    o

    w

    e

    r

    D

    e

    n

    s

    i

    t

    y

    ,

    p

    (

    m

    W

    /

    c

    m

    2

    )

    Voltage,V(V)

    9.2% photoconversion efficiency

    (a)

    (b)

    (c) (d)

    Chemicalsensors:(1)280,(2)140,(3)93,(4)46,(5)18and(6)5PPMCOexposure

    DyeSensitizedSolarCell usingFlamefabricatedphotoanode

    ScalableonedimensionalmesoporousTiO2 filmsynthesis

  • SummaryWhatisthevalueandfutureofsootresearch? Ononelevelthereisvalueincreatingmodelsasanintegralpartofenginedesigncodes,butthelargestimpactperhapswillbetoapplywhatwehavelearnedaboutsootformationinflamestomanydifferentprospectsofnanoparticlesynthesis.

    Thegreatestbenefitsofcurrentknowledgewilllienotinincrementalimprovementsinsootreductionbutincreatingparticlesofvalueinenergy,catalysisandyetunimaginedfields.