2006Optical Lithography

download 2006Optical Lithography

of 41

Transcript of 2006Optical Lithography

  • 8/19/2019 2006Optical Lithography

    1/41

    1

    Martina Ryssel

    Indo-German Winter Academy 2006

    Optical LithographyMartina Ryssel

  • 8/19/2019 2006Optical Lithography

    2/41

    2

    Martina Ryssel

    Optical Lithography - Outline

    1. Introduction

    2. Lithography Process

    3. Photoresist

    4. Mask Technology

    5. Beyond the Basics

    1

  • 8/19/2019 2006Optical Lithography

    3/41

    3

    Martina Ryssel

    Optical Lithography - Introduction

    1   Lithography in the Integrated Circuit Production Process

    new layer

    lithography

    etching   implantation/diffusion

    test

  • 8/19/2019 2006Optical Lithography

    4/41

    4

    Martina Ryssel

    Optical Lithography - Introduction

    1   Lithography Classification by Wavelenght

     Optical lithography   = 100 - 450 nm

     X-ray lithography   = 0.5 – 2 nm

     Electron beam lithography   = 0.02 – 0.01 nm

     Ion beam lithography  

  • 8/19/2019 2006Optical Lithography

    5/41

    5

    Martina Ryssel

    Optical Lithography - Introduction

    Optical Lithography Light Sources (I)1

     Mercury arc lamp

    400 500 600 700

    Wavelength (nm)

           I

          n       t      e      n      s       i       t      y

    Spectrum of

    an Hg-Lamp

    I-Line

    H-Line

    G-Line

  • 8/19/2019 2006Optical Lithography

    6/41

    6

    Martina Ryssel

    Optical Lithography - Introduction

    Optical Lithography Light Sources (II)1

     Excimer laser

    Typical gases: KrF 248 nmArF 193 nmF2   157 nm

    transparency limit of optical materials

  • 8/19/2019 2006Optical Lithography

    7/41

    7

    Martina Ryssel

    Optical Lithography - Outline

    1. Introduction

    2. Lithography Process

    3. Photoresist

    4. Mask Technology

    5. Beyond the Basics

    2

  • 8/19/2019 2006Optical Lithography

    8/41

    8

    Martina Ryssel

    Optical Lithography - Process

    2

    Lithography Process

    pattern transfer

  • 8/19/2019 2006Optical Lithography

    9/41

    9

    Martina Ryssel

    2

    Optical Lithography - Process

    Substrate Preparation

    Cleaning: removes contaminations

    Dehydration bake: evaporates any moisture present at the

    surface of the wafer

     Application of primer: promotes adhesion of the photoresist byproviding a hydrophobic surface

    Most commonly used: Hexamethyldisilizane (HMDS)

  • 8/19/2019 2006Optical Lithography

    10/41

    10

    Martina Ryssel

    Photoresist Application

    2

    Optical Lithography - Process

    Spin-on method : used to get resist onto the substratewith the required uniform thickness

    The resulting thickness depends on:

     Spinning speed and time

     Resist viscosity and quantity

     Nature and concentration of solvent

     Humidity

     Substrate material and topography ...

  • 8/19/2019 2006Optical Lithography

    11/41

    11

    Martina Ryssel

    2

    Optical Lithography - Process

    Prebake (soft bake)

    Prebake is used to drive the solvent from the resist

      film thickness is reduced

      post-exposure bake and development properties are changed

      adhesion is improved

      the film becomes less sticky and thus less susceptible toparticulate contamination

  • 8/19/2019 2006Optical Lithography

    12/41

    12

    Martina Ryssel

    Exposure – Contact and Proximity

    2

    Optical Lithography - Process

    N-Silicon

    PR

    UV Light~10 μm   Mask

    N-Silicon

    PR

    UV Light   MaskContact Lithography

    Proximity Lithography

    better resolutioncheaper

    defects

    surface bow and warp can bend mask

    diffraction effects

    less problems with defects

  • 8/19/2019 2006Optical Lithography

    13/41

    13

    Martina Ryssel

    2

    Optical Lithography - Process

    Exposure – Projection

    mirror

    lightsource

    filter

    condenser lense

    reticle

    reduction lense

    wafer

    movable waferstage

  • 8/19/2019 2006Optical Lithography

    14/41

    14

    Martina Ryssel

    2

    Optical Lithography - Process

    Exposure - Numerical Aperture

     NA = n · sinα = D/2f 

    αSi-wafer

    mask

    D = lens diameterf = focal length

    Rayleigh criterion:(minimum resolvable feature size)

     NAk  x  λ 

    1min   =

    k1 depends on several parameters(structures, mask, resist, illumination)

  • 8/19/2019 2006Optical Lithography

    15/41

    15

    Martina Ryssel

    Post-Exposure Bake

    2

    Optical Lithography - Process

    standard photoresist:

    PEB to reduce the standingwave effect

    photoresist

    λ  /nP

     R

    substrate

    overexposure

    underexposure

    photoresist

    substrate

     Also: important process stepfor chemically amplified

    resists (see there)

  • 8/19/2019 2006Optical Lithography

    16/41

    16

    Martina Ryssel

    Development

    2

    Optical Lithography - Process

    Puddle Spray

    developerpuddle

    wafer

    Wafer is spin-rinsed after development

    Developer (for example

    tetramethyl ammonium

    hydroxide, TMAH)

    dissolves the softened

    part of photoresist

  • 8/19/2019 2006Optical Lithography

    17/41

    17

    Martina Ryssel

    Postbake

    2

    Optical Lithography - Process

    • Evaporation of all solvents in PR

    • Improvement of etch and implantation resistance

    • Improvement of PR adhesion with surface

    • Polymerize and stabilize photoresist

    PR

    Substrate Substrate

    normal baking over baking

    PR

    But : Overbaking can cause degradation of image by flowing resist

  • 8/19/2019 2006Optical Lithography

    18/41

    18

    Martina Ryssel

    2

    Pattern Transfer

    Optical Lithography - Process

     subtractive transfer (etching)

     additive transfer (selective deposition   lift off)

     and impurity doping (ion implantation)

  • 8/19/2019 2006Optical Lithography

    19/41

    19

    Martina Ryssel

    Lift-off 

    2

    Optical Lithography - Process

    photoresist

    substrate andadditional layer

    photomask

    deposited layer

    Steep resist flanks are required for this method!

  • 8/19/2019 2006Optical Lithography

    20/41

    20

    Martina Ryssel

    Optical Lithography - Process

    Strip

    2

      After pattern transfer, the remaining resist has to be

    removed.

    This can be done by

    - dissolving in acid (f.e. H2O2 and H2SO4)

    - plasma stripping

    21i l i h h li

  • 8/19/2019 2006Optical Lithography

    21/41

    21

    Martina Ryssel

    Optical Lithography - Outline

    1. Introduction

    2. Lithography Process

    3. Photoresist

    4. Mask Technology

    5. Beyond the Basics

    3

    22O ti l Lith h Ph t i t

  • 8/19/2019 2006Optical Lithography

    22/41

    22

    Martina Ryssel

    Positive and NegativePhotoresist

    3

    Optical Lithography - Photoresist

    Etching

    Positive resist becomessoluble with exposure tolight.

    Negative resist becomes

    insoluble.

    23O ti l Lith h Ph t i t

  • 8/19/2019 2006Optical Lithography

    23/41

    23

    Martina Ryssel

    3

    Optical Lithography - Photoresist

    Chemistry of Standard Resists

    - long molecule chains are dissolved by exposure to light

    (positive resist)-Example: DNQ (Diazonaphthoquinone) + Novolack

    - long molecule chains are produced by exposure to light(negative resist)

    24Optical Lithography Photoresist

  • 8/19/2019 2006Optical Lithography

    24/41

    24

    Martina Ryssel

    3

    Chemically Amplified Resist

    Optical Lithography - Photoresist

    - Resist molecules are photoacid generators (PAG)

    - PAGs produce acid when exposed to light

    - Acid acts like a catalyst in dissolving the molecule chains

    Incident light   Post exposure bake

    25Optical Lithography Photoresist

  • 8/19/2019 2006Optical Lithography

    25/41

    25

    Martina Ryssel

    Photoresist Characteristics

    3

    Optical Lithography - Photoresist

    T o d a y :  

    Line edge roughness: molecular structure of resist becomes important

    positive resistnegative resist

    log(dose) log(dose)

    Sensitivity : Exposure dose where resist is totally dissolved (positive)

    Contrast :

    Film Thickness after Develop

    100

    0log

    1

     D

     D

    =γ 

    (inverse of curve slope)

    26Optical Lithography - Photoresist

  • 8/19/2019 2006Optical Lithography

    26/41

    26

    Martina Ryssel

    3

    Optical Lithography - Photoresist

    Photoresist Characteristics (secondary)

    -Low particle content

    -Low ion content

    -Good substrate adhesion

    -Good thermal stability

    -Easy removability

    27Optical Lithography - Outline

  • 8/19/2019 2006Optical Lithography

    27/41

    27

    Martina Ryssel

    Optical Lithography - Outline

    1. Introduction

    2. Lithography Process

    3. Photoresist

    4. Mask Technology

    5. Beyond the Basics4

    28Optical Lithography – Mask Technology

  • 8/19/2019 2006Optical Lithography

    28/41

    28

    Martina Ryssel

    4

    Example

    Optical Lithography Mask Technology

    29Optical Lithography – Mask Technology

  • 8/19/2019 2006Optical Lithography

    29/41

    29

    Martina Ryssel

    4

    Production

    Optical Lithography Mask Technology

    Quartz substrateCr/CrO2 layer (sputtering)

    PR coating

    Pattern writing byE-beam lithography

    Development and etching PR removal

    Source: PKL

    30Optical Lithography – Mask Technology

  • 8/19/2019 2006Optical Lithography

    30/41

    Martina Ryssel

    4

    Optical Lithography Mask Technology

    Pellicles

    Protection for photomasks (projection lithography)

    193nm: Organic pellicles

    Below 193 nm:Transparency and durability problems

    31Optical Lithography – Mask Technology

  • 8/19/2019 2006Optical Lithography

    31/41

    Martina Ryssel

    4

    Phase Shift Masks

    Opt ca t og ap y as ec o ogy

    Alternating PSM Attenuated PSM

    Phase shift

    without PS

    with PS

    Amplitude(wafer)

    Intensity(wafer)

    Amplitude(mask)

    Source: ASML

    32Optical Lithography – Mask Technology

  • 8/19/2019 2006Optical Lithography

    32/41

    Martina Ryssel

    4

    p g p y gy

    Optical Proximity Correction (OPC)

    Mask modifications to reduce image imprecisions

    Serifs/Hammerheads   improved precision at corners

    33Optical Lithography – Mask Technology

  • 8/19/2019 2006Optical Lithography

    33/41

    Martina Ryssel

    4

    p g p y gy

    Optical Proximity Correction (II)

    Dummy structures below resolution limit improved result due to more homogeneous

    distribution of etchant

    34Optical Lithography - Outline

  • 8/19/2019 2006Optical Lithography

    34/41

    Martina Ryssel

    1. Introduction

    2. Lithography Process

    3. Photoresist

    4. Mask Technology

    5. Beyond the Basics

    5

    35Optical Lithography – Beyond the Basics

  • 8/19/2019 2006Optical Lithography

    35/41

    Martina Ryssel

    5

    Immersion Lithography

    α 

    λ λ 

    Δ sinnk

    NAkx

    ⋅⋅=⋅= 11

     Advantages:

    - Higher numericalaperture can be achieved

    - smaller patterns without

    smaller wavelengths   But: - expensive technique- defects in the liquid- complex process

    36Optical Lithography – Beyond the Basics

  • 8/19/2019 2006Optical Lithography

    36/41

    Martina Ryssel

    5

    EUV Lithographymask station

    wafer station

    optics

    EUV radiation

    collector optic Optics and masksneed to be reflective

     Needs vacuum

    high absorption ofEUV radiation

    Source:Plasma (laser or gas discharge stimulated)

    37Optical Lithography – Beyond the Basics

  • 8/19/2019 2006Optical Lithography

    37/41

    Martina Ryssel

    5

    X-ray Lithography

    Source: Synchrotron X-rays

    Problems: expensive, complex masks required (f.e. gold on SiC,produced by electron beam writing)

    38Optical Lithography – Beyond the Basics

  • 8/19/2019 2006Optical Lithography

    38/41

    Martina Ryssel

    Electron Beam Lithography

    5

    Scaleresolution of ~20nm

    MasksNo physical mask-plates are needed

    Cost and Maintenance

    TimeThe electron beam must be scanned across patterned areas pixel bypixel

    FabricationConventional fabrication techniques such as metal lift-off andetching can become difficult at sub-micron length scales

    39Optical Lithography – Beyond the Basics

  • 8/19/2019 2006Optical Lithography

    39/41

    Martina Ryssel

    5

    Ion Beam Lithography ion source

    focussing

    ion beam

    ion separator

    unwanted ions

    aperture

    objective lenses

    aperture

    control electrodes

    substrate

    table

    similar to electron beam lithography,but using a focused ion beam

    Scales below 100nm

    No masks needed

    Ion implantation

    Ion/Atom scattering

    40Optical Lithography - Sources

  • 8/19/2019 2006Optical Lithography

    40/41

    Martina Ryssel

    Görtler, Strowitzki: Kompakte, hochrepetierende Excimerlaser für industrielle Anwendungen, TuiLaser AG

    MICROLITHOGRAPHY From Computer Aided Design (CAD) to Patterned Substrate, Cornell Nanofabrication Facility,Microlithography Manual

    pi.physik.uni-bonn.de/hertz/bilingual/Vorlesungen/Atomphysik_WS0607/AtomphysikKB2.pdf

    http://www.lpm.u-nancy.fr/webperso/nanomag/download/Cours%20Micro-Nano/Techno%20CMOS_Chihiwu/ch06%20rev1.ppt

    Thomas Zell: Lithography, 3. Dresdner Sommerschule Mikroelektronik

    Prof. Dr. Herberger (FHM), Praktikum Mikroelektronik, WS 06/07

    Uwe Stamm, Heinrich Schwoerer und Rainer Lebert, Strahlungsquellen für die EUV-Lithographie

    H. Kück, Übersicht über gängige Belichtungsverfahren der Mikrotechnik, izfm, Uni Stuttgart

    Vorlesung Nanobiotechnologie, Zentrum für NanoBiotechnologie, Universität für Bodenkultur Wien

    Prof. Heiner Ryssel, Vorlesung Technologie Integrierter Schaltungen, Lehrstuhl Elektronische Bauelemente, FAU Erlangen

    Andreas Erdmann, Lithography Course, Part 1, Fraunhofer Institut IISB, Erlangen

    Prof. Dr. Roland Zengerle, Vorlesung Mikrosystemtechnik 1

    Kurt Ronse, Optical Lithography, The Microelectronics Training Center, IMEC

    Prof. Heiner Ryssel und Andreas Erdmann, Optik für die Mikro- und NanoelektronikReiser, Huang, The molecular mechanism of novolak–diazonaphthoquinone resists, European Polymer Journal

    http://www.lithoguru.com/scientist/lithobasics.html

    http://sst.pennnet.com/Articles/Article_Display.cfm?Section=ARCHI&Subsection=Display&ARTICLE_ID=205024&p=28

    Andrew Wagner: Resist Sensitivity and Contrast Experiment, Rochester Institute of Technology

    41Indo-German Winter Academy 2006

  • 8/19/2019 2006Optical Lithography

    41/41

    Martina Ryssel

    Optical Lithography

    Thank you for your kind attention!