2 Corrosion Final

26
8/13/2019 2 Corrosion Final http://slidepdf.com/reader/full/2-corrosion-final 1/26 Corrosion Tommy Lundin

Transcript of 2 Corrosion Final

Page 1: 2 Corrosion Final

8/13/2019 2 Corrosion Final

http://slidepdf.com/reader/full/2-corrosion-final 1/26

CorrosionTommy Lundin

Page 2: 2 Corrosion Final

8/13/2019 2 Corrosion Final

http://slidepdf.com/reader/full/2-corrosion-final 2/26

© Metso

•Process• Corrosion

Page 3: 2 Corrosion Final

8/13/2019 2 Corrosion Final

http://slidepdf.com/reader/full/2-corrosion-final 3/26

© Metso

Introduction

• Oxidation (and thus corrosion) is the aim of the nature to reachequilibrium

• Therefore, all boilers will corrode

• The only thing we can influence is the rate

•This summary deals only with gas side corrosion processes

• Steam side corrosion is not considered in this summary, but it shouldnot be totally neglected 

• The flue gas moisture content may have a significant effect on thecorrosion process and corrosion rate of alloys

Page 4: 2 Corrosion Final

8/13/2019 2 Corrosion Final

http://slidepdf.com/reader/full/2-corrosion-final 4/26

© Metso

• High temperature oxidation

• Hot corrosion

• Active oxidation

• Smelt induced corrosion

• Sulfidation

• Acidic sulfates

Corrosion types in recovery boilers

Page 5: 2 Corrosion Final

8/13/2019 2 Corrosion Final

http://slidepdf.com/reader/full/2-corrosion-final 5/26

© Metso

Lower furnace:• Bottom tubes

• Wall tubes

• Air ports

Location of corrosion in recovery boilers

Upper furnace:• Superheaters

• Superheater ties

Second pass:• Boiler bank

• Economizers

Page 6: 2 Corrosion Final

8/13/2019 2 Corrosion Final

http://slidepdf.com/reader/full/2-corrosion-final 6/26

Page 7: 2 Corrosion Final

8/13/2019 2 Corrosion Final

http://slidepdf.com/reader/full/2-corrosion-final 7/26

© Metso

High temperature oxidation

• One of the main reasons for long-term tube wastage in boilers• Limits the use of low-alloyed  steels at high steam temperatures

• Present in most corrosion processes

• Increases corrosion rate as a secondary process in connection with

the primary mechanism• Can not be totally avoided, but can be controlled  by using high

chromium (Cr) alloys

Page 8: 2 Corrosion Final

8/13/2019 2 Corrosion Final

http://slidepdf.com/reader/full/2-corrosion-final 8/26

© Metso

0.0

5.0

10.0

15.0

20.0

25.0

30.0

100 280 460 640 820 1 000

Temperature (C)

   P  e  n  e   t  r  a   t   i  o  n   (  m  m   )

Carbon steel AISI 304 AISI 316

AISI 310 AISI 347

High temperature oxidation

• Oxidation typically occurs whenmetals are exposed totemperatures above 300 C

• Wüstite (FeO) formation above570 C increases the oxidation

rate of low-alloyed steels• Chromium (Cr) alloying

increases oxidation resistanceof the alloys

10 000 h, 5% O2

Page 9: 2 Corrosion Final

8/13/2019 2 Corrosion Final

http://slidepdf.com/reader/full/2-corrosion-final 9/26

Page 10: 2 Corrosion Final

8/13/2019 2 Corrosion Final

http://slidepdf.com/reader/full/2-corrosion-final 10/26

© Metso

Hot corrosion

• Main contributors to the FMT (T0) are chlorine (Cl) and potassium (K)• High amount of carbonates (CO3) i.e. carryover  lowers the FMT of

the deposits

• Even small amount of sulfides (0.1 wt.-%) in the deposits lowers theFMT about 50 C

41 Na2SO4 - 59 K2SO4  831

26 KCl - 74 K2SO4  689

50 NaCl - 50 KCl 656

48 NaCl - 52 Na2SO4  628

28 KCl - 38 NaCl - 14 K2SO4 - 20 Na2SO4  518

Deposit mixture (mol-%) FMT (°C)

Page 11: 2 Corrosion Final

8/13/2019 2 Corrosion Final

http://slidepdf.com/reader/full/2-corrosion-final 11/26

© Metso

Hot corrosion

• Main contributors to hot corrosion are chlorine (Cl) and alkalis (Na,K)

• Pure compounds rarely cause problems, but a mixture of compoundsmay produce an extremely low FMT

• Two non-corrosive compounds may form a low melting  mixture andmay become highly corrosive

• The main corrosion mechanism in hot corrosion is acidic  or basic  fluxing  

• In practice this mean that the metal or alloy dissolves into the melt

Page 12: 2 Corrosion Final

8/13/2019 2 Corrosion Final

http://slidepdf.com/reader/full/2-corrosion-final 12/26

© Metso

KVAERNER POWER

Chlorine influence on ash melting behaviour

• Chlorine (Cl) does not affectthe FMT of the deposits

• Increase in Cl content,increases the amount of meltin deposits

0

20

40

60

80

00

500 600 700 800

0,2%

1%

5%

Temperature, °C

   M  e   l   t ,   % 

T70

T15

Chlorine, wt-% in ash:

Page 13: 2 Corrosion Final

8/13/2019 2 Corrosion Final

http://slidepdf.com/reader/full/2-corrosion-final 13/26

© Metso

KVAERNER POWER

0

20

40

60

80

100

500 600 700 800

Potassium influence on ash melting behaviour

• Potassium (K) does notaffect the amount of melt inthe deposits

• Increase in K content,decreases the FMT

0,2%

2%

5%

Temperature, °C

   M  e   l   t ,   %

 

T70

T15

Potassium, wt-% in ash:

Page 14: 2 Corrosion Final

8/13/2019 2 Corrosion Final

http://slidepdf.com/reader/full/2-corrosion-final 14/26

© Metso

KVAERNER POWER

0

20

40

60

80

00

500 600 700 800

Sulfide influence on ash melting behaviour

• Sulfide (S2-) does not affectthe amount of melt in thedeposits

• Increase in S2- content,decreases the FMT

0%

0,1%

1%

Temperature, °C

   M  e   l   t ,   %

 

T70

T15

Sulfide, wt-% in ash:

Page 15: 2 Corrosion Final

8/13/2019 2 Corrosion Final

http://slidepdf.com/reader/full/2-corrosion-final 15/26

© Metso

Hot corrosion

• Gaseous potassium chloride (KCl) can react with chromium oxidescale, forming potassium chromates:

Cr 2O3(s) + 4 KCl(g) + 2 H2O(g) + 1.5 O2(g) 2 K2CrO4(s) + 4 HCl(g)

Cr 2O3(s) + 4 KCl(g) + 2.5 O2(g) 2 K2CrO4(s) + 2 Cl2(g)

Even low  concentrations (~5 ppm) of gaseous KCl can be verycorrosive

• The protective properties of the oxide scale are lost

• Gaseous KCl is blamed to be one of the main contributors to thebreakdown of the protecting oxide scale of alloys

Page 16: 2 Corrosion Final

8/13/2019 2 Corrosion Final

http://slidepdf.com/reader/full/2-corrosion-final 16/26

© Metso

 Active oxidation

• Active oxidation is a chlorine-induced  corrosion process- Initiated by the release of volatile chlorine from alkali chlorides or by the reaction

of alkali chlorides with the oxide scale

- Chlorine reacts selectively with Fe in the alloy, forming volatile iron chlorides

- Iron chlorides are oxidized, releasing chlorine back to the process

•Threshold temperature 450 °C

-  Active oxidation is not present when metal surfaces are below this temperature

• Activated oxidation is present only when potassium chloride (KCl) isavailable

Page 17: 2 Corrosion Final

8/13/2019 2 Corrosion Final

http://slidepdf.com/reader/full/2-corrosion-final 17/26

© Metso

 Active oxidation

• Chlorine acts as a catalyst and may initiate achlorine circulation process in the material

- Released chlorine will react again with the metal- Part of the chlorine will escape from the metal and

the process will eventually cease without anexternal Cl source

• Corrosion by activated oxidation processproceeds along the grain boundaries

- Intergranular oxidation- Present only in high chromium alloys

Page 18: 2 Corrosion Final

8/13/2019 2 Corrosion Final

http://slidepdf.com/reader/full/2-corrosion-final 18/26

Page 19: 2 Corrosion Final

8/13/2019 2 Corrosion Final

http://slidepdf.com/reader/full/2-corrosion-final 19/26

© Metso

KVAERNER POWER

Smelt induced corrosion

• Molten alkali hydroxides are blamed to

be responsible for the primary air port  corrosion

• Molten alkali hydroxide (MeOH) mayreact with chromium oxide scale, formingalkali chromates:

Cr 2O3(s) + 4 MeOH(l) + 1.5 O2(g)

2 Me2CrO4(dissolved) + 2 H2O(g)

• Formed alkali chromate dissolves into

the melt and is nonprotective 

Page 20: 2 Corrosion Final

8/13/2019 2 Corrosion Final

http://slidepdf.com/reader/full/2-corrosion-final 20/26

© Metso

Sulfidation

• Occurs when metals are exposed to temperatures above 200 °C ingases containing more than 1 ppm hydrogen sulfide gas (H2S)

• Reducing  conditions may be due to low air ratio or high unburntcarbon content

• Gaseous methyl mercaptan (CH3SH) increases corrosion rate attemperatures higher than 320 °C

• The presence of gaseous hydrogen chloride (HCl) increases thecorrosion rate in reducing conditions

• The corrosion rate is related to the formation of metal sulfides, which

contain large amount of defects

Page 21: 2 Corrosion Final

8/13/2019 2 Corrosion Final

http://slidepdf.com/reader/full/2-corrosion-final 21/26

© Metso

Sulfidation

• Sulfidation rate increases withtemperature

• High steam temperatures requirethe use of AISI 304 composite furnace wall tubing

• Alloy AISI 304 is applicable attemperatures below 350 C

• High nickel (Ni) alloys susceptible for sulfidation

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

250 270 290 310 330 350

Temperature (C)

   P  e  n  e   t  r  a   t   i  o  n   (  m  m   )

Carbon Steel AISI 304 AISI 316

AISI 310 AISI 347

1 000 ppm H2S, 20 000 h 

Page 22: 2 Corrosion Final

8/13/2019 2 Corrosion Final

http://slidepdf.com/reader/full/2-corrosion-final 22/26

Page 23: 2 Corrosion Final

8/13/2019 2 Corrosion Final

http://slidepdf.com/reader/full/2-corrosion-final 23/26

© Metso

 Acidic sulfates

by Dr. R. Backman, Åbo Akademi University

Page 24: 2 Corrosion Final

8/13/2019 2 Corrosion Final

http://slidepdf.com/reader/full/2-corrosion-final 24/26

© Metso

Prevention of corrosion

•Flue gas inlet  temperature into

- Superheater area

- Boiler bank

• Proper mixing  in the furnace-  Air delivery and staging

- Black liquor spraying and distribution

• Location of the burners

- CNCG burners preferentially below liquor guns

• Lower furnace materials

- High Cr alloy composite tubing

• Arrangement  of heat transfer surfaces

Page 25: 2 Corrosion Final

8/13/2019 2 Corrosion Final

http://slidepdf.com/reader/full/2-corrosion-final 25/26

© Metso

Prevention of corrosion

• High Cr  content of alloys increases oxidation resistance- Wüstite formation above 570 °C 

- Cr content preferably higher than 20%

- Intergranular oxidation of austenitic steels 

• High Ni  content increases resistance to chlorine-induced  corrosion

- Ni susceptible to sulfidation

• High Cr alloys vulnerable to alkali  chromate formation- Favored in high potassium atmospheres

Page 26: 2 Corrosion Final

8/13/2019 2 Corrosion Final

http://slidepdf.com/reader/full/2-corrosion-final 26/26

© Metso

Summary

• Gaseous HCl  is not causing problems in oxidizing  conditions, whensteam temperature is below 550 °C

• Alkali chlorides are the main cause for corrosion- Low FMT   molten phase corrosion

- Sulfation of chlorides active oxidation

- Cracking  of oxide scales enhanced oxidation

• Threshold  material temperatures- 450 °C for chlorine-induced corrosion

- 480 °C for hot corrosion