2-Fundamnetals of Corrosion

72
Fundamentals of Corrosion By Dr. Ir. Agus Solehudin

description

jdfha

Transcript of 2-Fundamnetals of Corrosion

  • Fundamentals of Corrosion By

    Dr. Ir. Agus Solehudin

  • DEFINISI KOROSI

    Korosi adalah Kerusakan material

    karena bereaksi dengan lingkungannya

  • Corrosion is the destructive attack of a metal by chemical or

    electrochemical reaction with its environment

  • MENGAPA LOGAM TERKOROSI?

    LOGAM KEMBALI KE ALAM

    E

    KOROSI

    LOGAM

    MINERAL MINERAL

    TEK.

    ANTI KOROSI

    t

  • IKATAN LOGAM

    Ikatan logam adalah gaya tarik menarik antara ion-ion

    positif dengan elektron-elektron pada kulit valensi dari

    suatu atom unsur logam

  • KOROSI ?

    PINDAHNYA ION LOGAM

    DARI LOGAM KE LINGKUNGAN

  • Gcell = nFEcell

  • SUMBER HETEROGENITAS

  • HETEROGENITAS

    STRATIFIKASI ENERGI

    atau POTENSIAL

    DI LOGAM

    DI LINGKUNGAN

  • PERBEDAAN FASA PADA BAJA : FERIT (ANODIK), SEMENTIT (KATODIK)

    BESI TUANG : DAERAH DEKAT GRAFIT

  • BUTIRAN HALUS = ANODIK

    BUTIRAN KASAR = KATODIK

  • TERBENTUKNYA

    DAERAH ANODIK

    DAERAH DIMANA ADA TEGANGAN SISA KARENA

    PENGERJAAN DINGIN (PEMBENGKOKAN, PEMUKULAN, PENGELASAN, DLL.

    ANODIK (AKAN TERKOROSI)

  • Grafit

    KOROSIF

    e

  • BAGIAN YANG LEBIH PANAS (ANODIK)

    AKAN TERKOROSI

    T

  • LAJU KOROSI DENGAN V2 LEBIH BESAR DARI V1

  • BAGIAN SEDIKIT DIBAWAH PERMUKAAN ELEKTROLIT

    KANDUNGAN OKSIGEN LEBIH RENDAH

    O2 rendah

  • e

    e

    e

    e

    SEL KOROSI

    K

    A

  • A K

    SEL LENGKAP

    _

    _

    _

    _ _

    _

    _ _

    _

  • ANODA

    KATODA

    ELEKTROLIT

    KONDUKTOR ANTARA ANODA DAN KATODA

    SYARAT TERJADINYA KOROSI

  • di ANODA : TERKOROSI

    TERJADI OKSIDASI

    ARUS KELUAR LOGAM

    di KATODA : TIDAK TERKOROSI

    TERJADI REDUKSI

    ARUS MASUK LOGAM

    APA YANG TERJADI DI PERMUKAAN

    LOGAM?

  • DI KATODA :

    ASAM : 2e + 2H+ H2

    BASA/NETRAL : 4e + O2 + H2O 4(OH)-

    2e + 2H2O H

    2 + 2(OH)-

    REDUKSI ION : ne + Mn+ M

    DI ANODA : M Mn+ + ne

  • 4/13/2014 by asolehudin 23

  • Steel Corrosion

    2 2 22 2 2Fe O H O Fe OH ( )

    21

    222 2 2 3Fe OH O H O Fe OH( ) ( )

    Initial Oxidation Reaction

    Secondary Oxidation Reaction

    Rust

  • Cu /Cu++ Mulia 0,337 Volt

    H2/H+ -0,000

    Ni/Ni+ -0,250

    Fe/Fe++ -0,440

    Zn/Zn++ -0,763

    Al/Al+++ -1,660

    Mg/Mg++ Aktif -2,370

  • Cu /Cu++ Mulia 0,337 Volt

    H2/H+ -0,000

    Ni/Ni+ -0,250

    Fe/Fe++ -0,440

    Zn/Zn++ -0,763

    Al/Al+++ -1,660

    Mg/Mg++ Aktif -2,370

  • Corrosion potential calculation

    Reduction Reaction must have higher potential than the oxidation reaction or

    they will not form a cathodic cell

    Fe e Fe 2 2 -0.440 V

    Zn e Zn 2 2 -0.763 V

    V V . . .440 763 0 323Relative measure of

    corrosion

  • Zn Fe

    + + + +

    +

    +

    + + +

    + +

    Apa Yang Terjadi?

    Zn Zn++ + 2e 2H+ + 2e H2

  • Fe Fe++ + 2e

    2H+ + 2e H2

    Fe + 2H+ Fe++ + H2

    Zn Zn++ + 2e

    2H+ + 2e H2

    2H+ + Zn Zn + H2

    Oksidasi Oksidasi

    Reduksi Reduksi

    Net Net

    REAKSI-REAKSI

  • Anoda Katoda

    e

    Ikor GALVANIK

  • di ANODA : TERKOROSI

    TERJADI OKSIDASI

    ARUS KELUAR LOGAM

    di KATODA : TIDAK TERKOROSI

    TIDAK TERKOROSI

    ARUS MASUK LOGAM

    APA YANG TERJADI?

  • BILA LOGAM DICELUPKAN

    DALAM LARUTAN

    TERKOROSI : LAMBAT

    CEPAT

    PASIF : LAPISAN PROTEKTIF (terkorosi sangat lambat)

    LAPISAN BERPORI (terkorosi lebih cepat)

    IMUN : TIDAK TERKOROSI

  • 4/13/2014 by asolehudin

    Ranks the reactivity of metals/alloys in seawater

    Platinum

    Gold

    Graphite

    Titanium

    Silver

    316 Stainless Steel

    Nickel (passive)

    Copper

    Nickel (active)

    Tin

    Lead

    316 Stainless Steel

    Iron/Steel

    Aluminum Alloys

    Cadmium

    Zinc

    Magnesium

    Based on Table 17.2, Callister 6e. (Source of Table 17.2 is M.G. Fontana, Corrosion Engineering, 3rd ed., McGraw-Hill Book Company,

    1986.)

    GALVANIC SERIES

  • 4/13/2014 by asolehudin 36

    Corrosion Mechanisms

    3 primary mechanisms : Mechanical Chemical Electrochemical

    Mechanical Corrosion is caused by stress and erosion.

    Chemical Corrosion is caused by a direct chemical reaction of the metal with its surroundings.

    Electrochemical Corrosion results from a chemical reaction involving the transfer of electrons.

  • 4/13/2014 by asolehudin 37

    Corrosion Mechanisms ELECTROCHEMICAL

    GALVANIC

    CREVICE - PITTING

    INTERGRANULAR

    STRAY CURRENT CORROSION.

    CHEMICAL

    H2S, Polysuphides, Sulphur

    ACID

    BIOLOGICAL EFFECTS - Sulphate Reducing Bacteria (SRB)

    H2 (Hydrogen) EMBRITTLEMENT.

    MECHANICAL

    EROSION

    CORROSION FATIGUE

    STRESS - Sulphide Stress, Chloride Stress

  • 4/13/2014 by asolehudin 38

    Electrochemical Corrosion Electro-Chemical Corrosion needs:

    An electrolyte ie. water with dissolved salts

    A corrodent , usually a dissolved gas, acid.

    Two separate simultaneous reactions occur :

    Anodic Reaction (Oxidation):

    Production of Electrons

    M ---- M++ + 2e-

    2 Cl- ------ Cl2 + 2e-

    Cathodic Reaction (Reduction)

    Consumption of Electrons

    2 H+ + 2 e- -------- H2 Acid

    2 H2O + 2 e- --------- H2 + 2 OH

    - Alkaline / netral

    O2 + 4 H+ + 4 e- ----------- 2H2O Acid

    2 H2O + O2 + e- ------------- 4OH- Alkaline / netral

  • 4/13/2014 by asolehudin 39

    Galvanic Corrosion Galvanic (Two Metal) Corrosion occurs when two dis-

    similar metals are immersed in a conductive medium.

    Corroding tendency is determined by the relative position of the metals in the Galvanic series.

    The metal with the larger tendency to corrode becomes the anode.

    The anode continues to corrode as long as a circuit is maintained.

    In a corrosion cell the anode and cathode may be on the same piece of metal. (Short circuited cell).

  • 4/13/2014 by asolehudin 40

    Galvanic Corrosion

  • 4/13/2014 by asolehudin 41

    Erosion Corrosion

  • 4/13/2014 by asolehudin 42

    Erosion Corrosion

  • 4/13/2014 by asolehudin 43

    Erosion Corrosion

  • 4/13/2014 by asolehudin 44

    Erosion Corrosion

  • 4/13/2014 by asolehudin 45

    Cavitation

  • 4/13/2014 by asolehudin 46

    Cavitation

  • 4/13/2014 by asolehudin 47

    Fretting

  • 4/13/2014 by asolehudin 48

    Pitting Corrosion

  • 4/13/2014 by asolehudin 49

    Pitting Corrosion

  • 4/13/2014 by asolehudin 50

    Pitting Corrosion

  • 4/13/2014 by asolehudin 51

    Pitting Corrosion

  • 4/13/2014 by asolehudin 52

    Pitting Corrosion

  • 4/13/2014 by asolehudin 53

    Pitting Corrosion

  • 4/13/2014 by asolehudin 54

    Pitting Corrosion

  • 4/13/2014 by asolehudin 55

    Pitting Corrosion

  • 4/13/2014 by asolehudin 56

    Pitting Corrosion

  • 4/13/2014 by asolehudin 57

    Pitting Corrosion

  • 4/13/2014 by asolehudin 58

    Pitting Corrosion

  • 4/13/2014 by asolehudin 59

    Pitting Corrosion

  • 4/13/2014 by asolehudin 60

    Pitting Corrosion

  • 4/13/2014 by asolehudin 61

    Pitting Corrosion

  • 4/13/2014 by asolehudin 62

  • 4/13/2014 by asolehudin 63

    Crevice Corrosion

  • 4/13/2014 by asolehudin 64

    Crevice Corrosion

  • 4/13/2014 by asolehudin 65

    Crevice Corrosion

  • 4/13/2014 by asolehudin 66

    Crevice Corrosion

  • 4/13/2014 by asolehudin 67

    Crevice Corrosion

  • 4/13/2014 by asolehudin 68

    Crevice Corrosion

  • 4/13/2014 by asolehudin 69

    Intergranular Corrosion

  • 4/13/2014 by asolehudin 70

    SCC

  • soal

    Example: A steel coupon of 4 x 2 x 1/8 inches is placed in an acid solution for one

    week, and loses 90 mg. Calculate the rate

    of corrosion in mpy. Assume that steel is

    iron only.

    d Fe = 7,8 gr/cm3

    4/13/2014 by asolehudin 71

  • Dr. Yves Gunaltun, 2009,Corrosion Control in Oil and Gas Production, Total E&P, France

    Denny A. Jones, 1992,Principles and Prevention of Corrosion, Macmillan Publishing Company, USA

    R. Winston Revie and Herbert H. Uhlig, 2008, Corrosion and Corrosion Control, John Wiley & Sons, Inc. Canada

    References