1.Function

download 1.Function

of 11

Transcript of 1.Function

  • 8/22/2019 1.Function

    1/11

    1

    Additional Mathematics SPM Chapter 1

    Penerbitan Pelangi Sdn. Bhd.

    1Functions

    1. Diagram (i): Arrow diagram

    Diagram (ii): Ordered pairs

    Diagram (iii): Graph

    2. (a) 3

    (b) 2(c) (i) {2, 1, 1}

    (ii) {3, 3, 6}

    (iii) {3, 3, 6}

    (d) one-to-one

    3. (a) many-to-one

    (b) (i) {8, 9, 16}

    (ii) {9, 16}

    4. Sincex-coordinate is one more than y, then

    (a) x = 12,

    (b) y = 14.

    5. (a) one-to-many

    (b) Since image in setB is the square root of object

    in setA,

    theny = 9= 3

    6. (a) many-to-many

    (b) Range = {d, e,f}

    7. Diagram (i): one-to-one

    Diagram (ii): one-to-one

    Diagram (iii): is not a function because object c has

    no image.

    Diagram (iv): is not a funct ion because it is

    one-to-many relation.

    Diagram (v): many-to-one

    8. (a) 5

    (b) 4

    (c) f:xx + 3 orf(x) = x + 3

    (d) (i) {2, 4, 5}

    (ii) {5, 7, 8}

    9. f(x) = 3x2

    Image for object 1 =f(1)

    = 3(1)2

    = 3

    10. Givenf(x) = 2x 5 andf(x) = 10.

    2x 5 = 10

    x =15

    2

    Therefore, the object is

    15

    2 .

    11. h(x) = sinx

    h(90) = sin 90

    = 1

    12. g(x) = x 7

    5

    (a) g(2) = 2 7

    5

    = |1|

    = 1

    (b) g(x) = 4

    x 75 = 4

    x 7

    5= 4 or

    x 7

    5= 4

    x 7 = 20 x 7 = 20

    x = 27 x = 13

    13. f(x) = |x 5|

    Whenx = 2,

    f(x) = |2 5|

    = |7|

    = 7

    Whenx = 7,

    f(x) = |7 5|= 2

    Whenx 5 = 0

    x = 5

    Whenx = 0,

    f(x) = 0 5= 5= 5

  • 8/22/2019 1.Function

    2/11

    2

    Additional Mathematics SPM Chapter 1

    Penerbitan Pelangi Sdn. Bhd.

    x 2 0 5 7

    f(x) 7 5 0 2

    f(x)

    x2 5 7

    2

    0

    5

    7

    Range = 0 f(x) 7

    14. (a)f(x)

    x

    1

    090 180 270 360

    f(x) = cos x

    (b) Whenx = 120

    f(120) = cos 120

    = 12 =

    12

    Hence, the range off(x) is 0 f(x) 1.

    15. (a) (i) f(x) = x2 4

    Image for object 3 =f(3)

    = 32 4= 5

    (ii) Image for object 4 =f( 4)

    = ( 4)2 4

    = 12

    (b) (i)f(x)

    x4 2 0 2 3

    5

    12

    4

    Hence, the range off(x) is 0

    f(x)

    12.(ii) f(x) = 5

    x2 4 = 5

    x2 = 9

    x = 9= 3

    16. f(x) = 2x 1Whenx = 0,

    f(0) = 1= 1

    Whenx = 3,

    f(3) = 6 1= 5

    When 2x 1 = 0, x =

    12

    x 01

    2

    3

    f(x) 1 0 5

    f(x)

    x1

    5

    1

    2

    3

    0

    f(x) = 2x 1

    Therefore, the range off(x) is 5 f(x) 0.

    17. (a) f(7) = 3(7) 1

    = 20

    (b) f(3) = 5 +3

    3

    = 6

    18. Since the graph is a straight line,

    the gradient =3 0

    0 (2)

    =3

    2

    ,f(x)-intercept = 3

    Therefore, the equation isf(x) =3

    2

    x + 3.

    19. (a) fg(x) =f(1 6x)

    = 3(1 6x)

    = 3 18x

    (b) gf(x) =g(3x)

    = 1 6(3x)

    = 1 18x

    (c) f2(x) = ff(x)

    =f(3x)

    = 3(3x)

    = 9x

    (d) g2(x) =gg(x)

    =g(1 6x)

    = 1 6(1 6x)

    = 1 6 + 36x= 36x 5

    20. (a) hp(x) = h(x2 2x)

    = 2(x2 2x) + 3

    = 2x2 4x + 3

    (b) ph(x) =p(2x + 3)

    = (2x + 3)2 2(2x + 3)

    = (2x + 3)(2x + 3 2)

    = (2x + 3)(2x + 1)

  • 8/22/2019 1.Function

    3/11

    3

    Additional Mathematics SPM Chapter 1

    Penerbitan Pelangi Sdn. Bhd.

    21. (a) fg(2) =f[1 4(2)2]

    =f[1 16]

    =f(15)

    = 152

    + 3

    = 9

    2

    (b) gf(2) =g 22 + 3=g(2)

    = 1 4(2)2

    = 15

    22. (a) fg(x) = 4

    f(1 3x) = 4

    5(1 3x) = 4

    5 15x = 4

    15x = 1

    x =1

    15

    (b) gf(x) = 3 +x

    g(5x) = 3 +x

    1 3(5x) = 3 +x

    1 15x = 3 +x

    16x = 4

    x =4

    16

    =1

    4

    (c) f2(x) = 8x + 1

    ff(x) = 8x + 1 f(5x) = 8x + 1

    5(5x) = 8x + 1

    25x = 8x + 1

    17x = 1

    x =1

    17

    23. hg(x) = 4x2 2x + 5

    3g(x) 1 = 4x2 2x + 5

    3g(x) = 4x2 2x + 6

    g(x) =2

    3

    (2x2 x + 3)

    24. gh(x) =x

    2 + 1

    g(2 + 5x) =x

    2

    + 1 ........................

    Let 2 + 5x =y

    x =y 2

    5

    From ,

    g(y) =y 25

    2

    + 1

    =y 2

    10+ 1

    =y + 8

    10

    Therefore, g(x) =x + 8

    10

    25. (a) f(x) = 2x + 1

    f(2) = t

    2(2) + 1 = t

    t= 5

    (b) f1(t) = 2

    26. (a) g1(5) = 0

    (b) g(r) = 8

    5 + 2r= 8

    2r= 3

    r= 32

    (c) Let g1(7) =x,

    then 7 =g(x)

    = 5 + 2x

    2x = 2

    x = 1

    Hence,g1(7) = 1

    27. (a) Letf1(x) =y,

    then x =f(y)

    = 2y

    y =x

    2Hence,f1(x) =

    x2

    (b) Letg1(x) = y,

    then x =g(y)

    =y

    5

    y = 5x

    Hence,g1(x) = 5x

    (c) Let h1(x) = y,

    then x = h(y)

    = 3y + 1

    3y =x 1

    y =x 13

    Hence, h1(x) =x 1

    3

    (d) Letp1(x) = y,

    then x =p(y)

    =y

    2

    + 1

    y

    2

    =x 1

    y = 2(x 1)

    Hence,p1(x) = 2(x 1)

    = 2x 2

  • 8/22/2019 1.Function

    4/11

    4

    Additional Mathematics SPM Chapter 1

    Penerbitan Pelangi Sdn. Bhd.

    28. (a) t 3 = 0

    t= 3

    (b) Letf1(x) = y,

    then x =f(y)

    =2

    y 3

    y 3 =2

    x

    y =2

    x + 3

    Therefore, f1(x) =2

    x + 3,x 0

    (c) Let g1(x) = y,

    then x =g(y)

    =y

    y + 1

    x(y + 1) =y

    xy +x =y y xy =x

    y(1 x) = x

    y =x

    1 x

    Therefore, g1(x) =x

    1 x

    ,x 1

    29. (a) The inverse function off, f1, does not exist

    for the domain 5 x 5 because f1 is a

    many-to-one type of relation.

    (b) The inverse function off, f1, exists because f1

    is a one-to-one type of relation.

    1. (a) a

    (b) r

    (c) one-to-one

    2. (a) f(2) = 1

    (b) g(1) = 3

    (c) gf(2) =g(1)

    = 3

    3. (a) The objects of 5 are 0 and 1.

    (b) The images of 2 are 9 and 13.

    4. (a) one-to-one

    (b) f:xx2 orf(x) = x2

    5. f(x) =x n

    x

    f(4) = 2

    3

    4 n

    4

    = 2

    3

    4 n = 8

    3

    n = 4 +8

    3

    =20

    3

    6. (a) fg(x) = 5x

    4g(x) 1 = 5x

    4g(x) = 5x + 1

    g(x) =1

    4

    (5x + 1)

    (b) gf(x) = 9

    g(4x 1) = 9

    1

    4

    [5(4x 1) + 1] = 9

    5(4x 1) + 1 = 36

    5(4x 1) = 35

    4x 1 = 7

    x = 84

    = 2

    7. (a) hf(3) = 2

    (b) h1(2) = 6

    8. Letf1(x) = y,

    then x =f(y)

    = 3 4y

    4y = 3 x

    y =3 x

    4

    Therefore, f1(x) =3 x

    4Hence,f1g(x) =f1(1 + 2x)

    =3 (1 + 2x)

    4

    =3 1 2x

    4

    =2 2x

    4

    =2(1 x)

    4

    =1 x

    2

    9. f2

    (x) = ff(x)= f(p qx)

    =p q(p qx)

    =p pq + q2x

    f2(x) = q2x +p pq ................Compare to thef2(x) = x + 2.

    Therefore, q2 = 1

    q = 1

    and ppq = 2

    When q = 1, p p(1) = 2

    0 2

    Therefore, q = 1 is rejected.

  • 8/22/2019 1.Function

    5/11

    5

    Additional Mathematics SPM Chapter 1

    Penerbitan Pelangi Sdn. Bhd.

    When q = 1, p p(1) = 2

    p +p = 2

    2p = 2

    p = 1Hence,p = 1 and q = 1.

    10. (a) Letp1(x) = y,

    then x =p(y)

    =4

    y + 1

    x(y + 1) = 4

    y + 1 =4

    x

    y =4

    x 1

    Hence,p1(x) =4

    x

    1,x 0

    (b) p1(5) = 45

    1

    = 1

    5

    11. Letf1(x) = y,

    then x =f(y)

    =p 3y

    3y = x +p

    y = x

    3

    +p3

    f1(x) = x

    3

    +p3

    .....................

    Compare to thef1(x) =q

    2

    x +2

    3

    Therefore,q

    2

    = 1

    3

    q = 2

    3

    and p = 2

    12. (a) Let f1(x) = y,

    then x =f(y)

    = 4 + 5y

    y =x 4

    5

    Hence,f1(x) =x 4

    5

    (b) gf1(x) = gx 45

    =x 45

    2

    1

    =x 4

    10 1

    =x 4 10

    10

    =x 14

    10

    (c) hg(x) = 6 5x

    hx2 1 = 6 5x ................

    Let x2

    1 =y,

    thenx

    2

    = 1 + y

    x = 2 + 2y...............

    Therefore, becomes h(y) = 6 5(2 + 2y)= 6 10 10y

    = 4 10y

    Hence, h(x) = 4 10x

    1. (a)

    1

    2

    (b) x = 12 since element in setB is half of setA.

    2. (a) f1(15) = 3

    (b) codomain = {10, 15, 20, 30}

    3. Let f(x) = y,

    then x =f1(y)

    x =y + 1

    4

    y + 1 = 4x

    y = 4x 1

    Hence,f(x) = 4x 1

    4. fg(x) =fx2 + 3= 1 + 5x2 + 3= 1 +

    52

    x + 15

    =5

    2

    x + 16

    5. gf(3) =g(5)

    = 6

    6. (a) many-to-one

    (b) f:xx2 orf(x) = x2

    7. f(x) = 2x 2f(2) = 2(2) 2

    = 6= 6

    Therefore, the range is 2 f(x) 6.

  • 8/22/2019 1.Function

    6/11

    6

    Additional Mathematics SPM Chapter 1

    Penerbitan Pelangi Sdn. Bhd.

    8. h(x) =x + 5

    2

    h(q) = 8

    q + 52

    = 8

    q + 5 = 16

    q = 11

    9. fg(x) =x

    4

    + 7

    3g(x) 1 =x

    4

    + 7

    3g(x) =x

    4

    + 8

    g(x) =x

    12

    +8

    3

    10. h2(x) = hh(x)

    = h(ax + b)

    = a(ax + b) + b

    = a2x + ab + b..................................

    Compare with h2(x) = 4x + 9Therefore, a2 = 4

    a = 2

    and ab + b = 9 ......................................Since a 0,

    hence a = 2

    Substitute a = 2 into ,2b + b = 9

    3b = 9

    b = 3Hence, a = 2 and b = 3.

    11. hg(x) = hx2 = 3x2 1=

    32

    x 1

    Hence,p(x) = hg(x)

    12. (a) (i) Let h1(x) =y,

    then x = h(y)

    = 4y 3

    y =x + 3

    4

    h1(x) =x + 3

    4

    h1g(2) = h11 22 = h1(0)

    =0 + 3

    4

    =3

    4

    (ii) Let g1(x) =y,

    then x =g(y)

    = 1 y

    2

    y2

    = 1 x

    y = 2 2x

    g1(x) = 2 2x

    hg1(x) = h(2 2x)

    = 4(2 2x) 3

    = 8 8x 3

    = 5 8x

    (b) gh(x) =g(4x 3)

    = 1 4x 32

    = 1 2x 32 = 1 2x + 3

    2

    =5

    2

    2x

    =5 4x

    2

    ...........................

    Comparegh(x) =m nx

    2

    with ,

    Hence, m = 5 and n = 4.

    13.x 1 0

    23

    4

    f(x) 5 2 0 10

    f(x) = 2 3x

    Whenx = 1,

    f(1) = 2 3(1)= 2 + 3= 5

    Whenx = 4,

    f(4) = 2 12= 10= 10

    When f(x) = 0,

    2 3x = 0

    x =

    2

    3

    Whenx = 0,

    f(0) = 2 0= 2

    f(x)

    x1 42

    3

    0

    5

    10

    2

  • 8/22/2019 1.Function

    7/11

    7

    Additional Mathematics SPM Chapter 1

    Penerbitan Pelangi Sdn. Bhd.

    (a) The range for 0 x 4 is 0 f(x) 10.

    (b) Whenf(x) = 5

    2 3x = 5 or 2 3x = 5

    x = 73

    3x = 3 x = 1

    Therefore, the domain is 1 x7

    3

    .

    14. (a) f(2) = 7

    2

    a

    + b = 7 ...................................

    f(2) = 2

    2

    a + b = 2..................................

    + , 2b = 9

    b =9

    2

    Substitute b =9

    2

    into ,

    2

    a

    +9

    2

    = 7

    2

    a = 7

    92

    =14 9

    2

    =5

    2

    5a = 4

    a =4

    5

    (b) f(x) = x4

    5

    + 92

    =5x

    4

    +9

    2

    Letf1(4) =p,

    then 4 =f(p)

    =5

    4

    p +9

    2

    5

    4

    p = 4 9

    2

    = 1

    2

    p = 12 45 =

    25

    Hence,f1(4) = 2

    5

    15. (a) fg(x) = 4x 7

    f(x 3) = 4x 7 ..........................

    Let x 3 =y,

    then x =y + 3

    Therefore, becomesf(y) = 4(y + 3) 7= 4y + 12 7

    = 4y + 5

    Hence,f(x) = 4x + 5

    (b) Let f1(5) =p,

    then 5 =f(p)

    = 4p + 5

    p = 0

    Therefore, gf1(5) =g(0)

    = 0 3

    = 3

    (c) Let g1(x) =y, and Let f1(x) =y,

    then x =f(y)

    = 4y + 5

    y =x 5

    4f1(x) =

    x 5

    4

    then x =g(y)

    =y 3

    y =x + 3

    g1

    (x) =x + 3

    f1g1(x) = 2x 9

    f1(x + 3) = 2x 9

    (x + 3) 5

    4

    = 2x 9

    x 2 = 8x 36

    7x = 34

    x =34

    7

    16. (a) f2(x) =ff(x)

    =f xx + 2

    = xx + 2

    xx + 2 + 2

    =

    xx + 2

    x + 2(x + 2)

    x + 2

    =

    xx + 2

    3x + 4

    x + 2

    =x

    3x + 4

    ,x 4

    3

    (b) Let f1(x) = y,

    then x =f(y)

    =y

    y + 2

    x(y + 2) =y

    xy + 2x =y

    y xy = 2x

    y(1 x) = 2x

    y =2x

    1 x

    Hence,f1(x) =2x

    1 x

    ,x 1

  • 8/22/2019 1.Function

    8/11

    8

    Additional Mathematics SPM Chapter 1

    Penerbitan Pelangi Sdn. Bhd.

    17. (a) f(x) =x

    x2 3x =x

    x2 4x = 0

    x(x 4) = 0 x = 0, 4

    (b) f(x) = 2g(x)

    x2 3x = 2x2 + 2

    x2 + 3x + 2 = 0

    (x + 1)(x + 2) = 0

    x = 1, 2

    18. (a) f(x) =x + 1

    2 f(r) = 4

    r+ 1

    2

    = 4

    r+ 1 = 8

    r= 7(b) g(4) =p

    4 =g1(p)

    4 =p4

    + 5

    p4

    = 1

    p = 4

    (c) Let g(x) =y,

    then x =g1(y)

    =y

    4

    + 5

    y

    4

    =x 5

    y = 4x 20

    g(x) = 4x 20

    gf(x) =gx + 12 = 4x + 12 20= 2(x + 1) 20

    = 2x + 2 20

    = 2x 18

    19. (a) f(x) 8

    x 5 + 1 8 x 5 7

    7 x 5 77 + 5 x 7 + 5

    2 x 12

    (b) (i) f2(x) =ff(x)

    =f(x 2)

    = (x 2) 2

    =x 4

    (ii) f3(x) =f2f(x)

    =f2(x 2)

    = (x 2) 4

    =x 6

    Hence,f30(x) =x 2 30

    =x 60

    1. f(x) = |1 x|, 0 x 2

    x 0 1 2

    f(x) 1 0 1

    f(x)

    x0 1

    1

    2

    f(x) = 7 3x, 2 x 3

    x7

    3

    3

    f(x) 0 2

    f(x)

    x0 7

    33

    2

    When f(x) = 0,

    7 3x = 0

    x =7

    3

    The graph of the function is

    f(x)

    x0

    7

    3

    321

    2

    1

    1

    Therefore, the range is 2 f(x) 1.

    2. f(x) = 2x + 1

    f2(x) =ff(x)

    =f(2x + 1)

    = 2(2x + 1) + 1

    = 4x + 3

    f3(x) =ff2(x)

    =f(4x + 3)

    = 2(4x + 3) + 1

    = 8x + 7

  • 8/22/2019 1.Function

    9/11

    9

    Additional Mathematics SPM Chapter 1

    Penerbitan Pelangi Sdn. Bhd.

    f4(x) =f2f2(x)

    =f2(4x + 3)

    = 4(4x + 3) + 3

    = 16x + 15Therefore, fn(x) = 2nx + 2n 1

    3. Sincef2(x) = 4x + 9 is a linear function.

    Letf(x) = ax + b, where a and b are constants.

    f2(x) = ff(x)

    =f(ax + b)

    = a(ax + b) + b

    = a2x + ab + b

    Compare tof2(x) = 4x + 9

    a2 = 4 and ab + b = 9

    a = 2

    When a = 2, 2b + b = 93b = 9

    b = 3

    When a = 2, 2b + b = 9

    b = 9

    b = 9

    Therefore, the possible expressions are f(x) = 2x + 3

    orf(x) = 2x 9.

    4. f(x) = px q

    Givenf(4) = 5

    4p q = 5 .....................................

    Given f1(9) = 6

    9 =f(6)

    9 = 6p q

    6p q = 9 ................................

    , 2p = 4 p = 2

    Substitutep = 2 into ,6(2) q = 9

    q = 12 9

    = 3

    5. Let f1(x) = y,

    then x =f(y)

    = ay by + 4

    xy + 4x = ay b

    ay xy = 4x + b

    y(a x) = 4x + b

    y =4x + b

    a x

    Therefore, f1(x) =4x + b

    a x

    Compare tof1(x) = 4x 3

    x 2

    = (4x + 3)

    (2 x)

    =4x + 3

    2 x

    Hence, a = 2, b = 3

    f(x) = 3x

    2x 3

    x + 4

    = 3x

    2x 3 = 3x2 + 12x

    3x2 + 10x + 3 = 0

    (3x + 1)(x + 3) = 0

    3x + 1 = 0 or x + 3 = 0

    x = 1

    3

    or x = 3

    6. g(1) = 55

    1 b(1)

    = 5

    5 = 5(1 b)

    1 b = 1

    b = 2

    f(1) = 5

    a(1) + b = 5

    a + 2 = 5

    a = 3

    Therefore, g(y) =5

    1 2y

    andf(y) = 3y + 2

    Function which mapszontox is

    gf1(z) =gz 23 f1(z) = z 23 =

    5

    1 2z 23

    =5

    3 2z+ 4

    3

    =15

    7 2z

    ,z7

    2

    7. (a) f(x) = 1 2x

    f1(x) =x 12

    =1 x

    2

    g(x) = 4 +x

    g1(x) =x 4

  • 8/22/2019 1.Function

    10/11

    10

    Additional Mathematics SPM Chapter 1

    Penerbitan Pelangi Sdn. Bhd.

    g1f1(x) = g1 1 x2 =

    1 x

    2

    4

    =1 x 8

    2

    =x 7

    2

    (b) g f(x) =g(1 2x)

    = 4 + (1 2x)

    = 5 2x

    Let (gf)1(x) =y,

    then gf(y) =x

    5 2y =x

    2y =x 5

    y =

    5 x

    2

    Therefore, (gf)1(x) =5 x

    2

    8. hg(x2) = 41

    h(3x2 2) = 41

    4(3x2 2) + 1 = 41

    4(3x2 2) = 40

    3x2 2 = 10

    3x2 = 12

    x2 = 4

    x = 2

    9. gf(x) =g(x 3)

    = a(x 3)2 b= a(x2 6x + 9) b

    = ax2 6ax + 9a b

    Givengf(x) = 2x2 12x + 13

    Therefore, a = 2

    9a b = 13

    9(2) b = 13

    18 b = 13

    b = 5

    10. gf(x) =x2 4x + 8

    g(x 2) =x2 4x + 8

    = (x 2)2 4 + 8

    g(y) =y2 + 4

    Therefore, g(x) = x2 + 4

    11. fg(x) =f(2 + bx)

    = a(2 + bx) 1

    = 2a + abx 1

    g f(x) =g(ax 1)

    = 2 + b(ax 1)

    = 2 + abx b

    When fg=gf

    2a + abx 1 = 2 + abx b

    2a 1 + abx= 2 b + abx

    2a 1 = 2 b2a + b = 3

    12. f2(x) = ff(x)

    =f xx 3

    =

    xx 3

    x

    x 3

    3

    =

    xx 3

    x 3(x 3)

    x 3

    =

    xx 3

    x 3x + 9

    x 3

    =x

    9 2x

    Letf1(x) = y,

    then x =f(y)

    =y

    y 3

    xy 3x =y

    xy y = 3x

    y(x 1) = 3x

    y = 3xx1

    Therefore, f1(x) =3x

    x1

    Whenf2(x) = f1(x)

    x

    92x

    =3x

    x1

    x(x 1) = 3x(9 2x)

    x2 x = 27x 6x2

    7x2 28x = 0

    7x(x 4) = 0

    x = 0 or x 4 = 0

    x = 4

    13. f(x) =x

    2x 1

    x + 3

    =x

    2x 1 =x2 + 3x

    x2 +x + 1 = 0

    b2 4ac = (1)2 4(1)(1)

    = 1 4

    = 3 0

    Hence,f(x) = x has no real root.

  • 8/22/2019 1.Function

    11/11

    11

    Additional Mathematics SPM Chapter 1

    Penerbitan Pelangi Sdn. Bhd.

    14. gf(x) =g(2x 1)

    =4

    a(2x 1) b

    = 42ax a b

    =

    42

    2ax a b

    2

    =2

    ax a + b2

    Compare to givengf(x) =2

    3x 1

    ,

    a = 3 and a + b2

    = 1

    3 + b2

    = 1

    3 + b = 2

    b = 1

    15. y = h(x)

    y =x2 + 3

    y =fg(x)

    =f(x + 1)

    = 3(x + 1)

    = 3x + 3

    01

    3

    y= fg(x)

    y= h(x)

    y

    x

    The number of solutions forh(x) = fg(x) is two.

    16. (a) y =f(x)

    =x

    2

    +7

    2

    x 3 0 4

    f(x) 27

    2

    11

    2

    y =g(x)= |1 2x|

    x 3 01

    2

    4

    g(x) 7 1 0 7

    03 41

    2

    7

    7

    2

    11

    2

    12

    y= g(x)

    y= f(x)

    y

    x

    (b)x

    2

    +7

    2

    = 1 2x

    x + 7 = 2 4x

    5x = 5

    x = 1

    x

    2

    +7

    2

    = (1 2x)

    = 1 + 2x

    x + 7 = 2 + 4x

    3x = 9

    x = 3

    Forx

    2

    +7

    2

    |1 2x|, 1 x 3.

    17. (a) y =f(x)

    = |x2 4|

    x 4 2 0 2 4

    f(x) 12 0 4 0 12

    04 2 42

    4

    1

    12y= f(x)

    f(x)

    y= g(x)

    x

    (b) |x2 4| 1 0

    |x2 4| 1

    x2 4 = 1

    x2 = 5

    x = 5

    x2 4 = 1

    x2 = 3

    x = 3

    For |x2 4| 1 < 0,

    5 x 3, 3 x5