16.360 Lecture 7

16
16.360 Lecture 7 Last lecture Standing wave Input impedance i(z) = V(z) = V0 ( ) + + e jz - e -jz (e -jz + V0 Z0 e jz ) V(z)| = |V0| | | + e -jz || e jz + e jr = |V0| [1+ | |² + 2||cos(2z + r)] + 1/2 = |V0| /|Z0|| | + e -jz || e jz - e jr = |V0|/|Z0| [1+ | |² - 2||cos(2z + r)] + 1/2

description

-. ||. +. V 0. j  r. j  z. j  z. j  r. Z 0. e. e. e. e. j  z. -j  z. -j  z. -j  z. -j  z. e. ( e. e. e. e. +. 1/2. = | V 0 | [ 1+ | | ² + 2| |cos(2  z +  r )]. 16.360 Lecture 7. Last lecture. Standing wave Input impedance. j  z. +. e. - PowerPoint PPT Presentation

Transcript of 16.360 Lecture 7

Page 1: 16.360 Lecture 7

16.360 Lecture 7

• Last lecture

• Standing wave • Input impedance

i(z) =

V(z) = V0 ( )++e jz

-

e-jz

(e-jz+

V0

Z0 ejz )

|V(z)| = |V0| | |+ e-jz || e jz+ e jr

= |V0| [1+ | |² + 2||cos(2z + r)] + 1/2

|i(z)| = |V0| /|Z0|| |+ e-jz || e jz- e jr

= |V0|/|Z0| [1+ | |² - 2||cos(2z + r)] +

1/2

Page 2: 16.360 Lecture 7

16.360 Lecture 7

Special cases

1. ZL= Z0, = 0

= |V0| +|V(z)|

2. ZL= 0, short circuit, = -1

|V(z)|

|V0| +

- -3/4 -/2 -/4

= |V0| [2 + 2cos(2z + )] + 1/2

|V(z)||V(z)|

2|V0| +

- -3/4 -/2 -/4

3. ZL= , open circuit, = 1

= |V0| [2 + 2cos(2z )] + 1/2

|V(z)||V(z)|

2|V0| +

- -3/4 -/2 -/4

Page 3: 16.360 Lecture 7

16.360 Lecture 7

• Voltage maximum and minimum

|V0| [1+ | |],+|V(z)|max = when 2z + r = 2n.

|V0| [1 - | |],+|V(z)|min = when 2z + r = (2n+1).

• Voltage standing-wave ratio VSWR or SWR

1 - | ||V(z)|min

S |V(z)|max =

1 + | |

S = 1, when = 0,

S = , when || = 1,

Page 4: 16.360 Lecture 7

16.360 Lecture 7

• Input impudence

Vg(t) VL

A

z = 0

B

l

ZL

z = - l

Z0Vi

ZgIi

Zin(z) = V(z)

I(z)

=

++e jz

e-jzV0( )

+- e jz

e-jzV0( )

Z0 =+(1 e j2z

)

-(1 e j2z )

Z0

+(1 e-j2l )

-(1 e-j2l )

Z0Zin(-l) =

Page 5: 16.360 Lecture 7

16.360 Lecture 7

• Today: special cases

• short circuit line• open circuit line• quarter-wave transformer• matched transmission line

Page 6: 16.360 Lecture 7

16.360 Lecture 7

short circuit line

ZL= 0, = -1, S =

Vg(t) VL

A

z = 0

B

l

ZL = 0

z = - l

Z0

ZgIi

Zinsc

i(z) =

V(z) = V0 )- ejz

+

(e-jz

(e-jz+

V0

Z0 ejz )

= -2jV0sin(z)+

= 2V0cos(z)/Z0+

Zin =V(-l)

i(-l)= jZ0tan(l)

Page 7: 16.360 Lecture 7

16.360 Lecture 7

short circuit line

Zin =V(-l)

i(-l)= jZ0tan(l)

• If tan(l) >= 0, the line appears inductive, jLeq = jZ0tan(l),

• If tan(l) <= 0, the line appears capacitive, 1/jCeq = jZ0tan(l),

l = 1/[- tan (1/CeqZ0)], -1

• The minimum length results in transmission line as a capacitor:

Page 8: 16.360 Lecture 7

16.360 Lecture 7

An example:

tan (l) = - 1/CeqZ0 = -0.354,

Choose the length of a shorted 50- lossless line such that its input impedance at2.25 GHz is equivalent to the reactance of a capacitor with capacitance Ceq = 4pF. The wave phase velocity on the line is 0.75c.

Solution:

Vp = ƒ, = 2/ = 2ƒ/Vp = 62.8 (rad/m)

l = tan (-0.354) + n, = -0.34 + n,

-1

Page 9: 16.360 Lecture 7

16.360 Lecture 7

open circuit line

ZL= 0, = 1, S =

Vg(t) VL

A

z = 0

B

l

ZL =

z = - l

Z0

ZgIi

Zinoc

i(z) =

V(z) = V0 )+ ejz

-

(e-jz

(e-jz+

V0

Z0 ejz )

= 2V0cos(z)+

= 2jV0sin(z)/Z0+

Zin =V(-l)

i(-l)= -jZ0cot(l)

oc

Page 10: 16.360 Lecture 7

16.360 Lecture 7

Application for short-circuit and open-circuit

• Network analyzer

• Measure ZinocZin

scand

• Calculate Z0

• Measure S paremeters

Zin = -jZ0cot(l)ocZin = jZ0tan(l)sc

=Z0 ZinscZin

oc

• Calculate l

= -jZ0Zin

sc

Zinoc

Page 11: 16.360 Lecture 7

16.360 Lecture 7

Line of length l = n/2

= ZL

tan(l) = tan((2/)(n/2)) = 0,

+(1 e-j2l )

-(1 e-j2l )

Z0Zin(-l) =

Any multiple of half-wavelength line doesn’t modify the load impedance.

Page 12: 16.360 Lecture 7

16.360 Lecture 7

Quarter-wave transformer l = /4 + n/2

= Z0²/ZL

l = (2/)(/4 + n/2) = /2 ,

+(1 e-j2l )

-(1 e-j2l )

Z0Zin(-l) =+(1 e

-j )

-(1 e-j

)Z0=

(1 + ) Z0(1 - )

=

Page 13: 16.360 Lecture 7

16.360 Lecture 7

An example:

A 50- lossless tarnsmission is to be matched to a resistive load impedance with ZL = 100 via a quarter-wave section, thereby eliminating reflections along the feed line. Find the characteristic impedance of the quarter-wave tarnsformer.

ZL = 100

/4

Z01 = 50

Zin = Z0²/ZL= 50

Z0 = (ZinZL) = (50*100)½ ½

Page 14: 16.360 Lecture 7

16.360 Lecture 7

Matched transmission line:

1. ZL = Z0

2. = 03. All incident power is delivered to the load.

Page 15: 16.360 Lecture 7

16.360 Lecture 7

Next lecture:

• Power flow on a lossless transmission line

Page 16: 16.360 Lecture 7