16.360 Lecture 1 Units and dimensions Six fundamental International System of Units...

18
16.360 Lecture 1 Units and dimensions Six fundamental International System of Units Dimensions Unit symbol Length meter m Mass kilogram kg Time second s Electric Current Ampere A Temperature Kelvin K Amount of substance mole mol other dimension can be derived from the fundamental dimension 2 / s kgm dt dv m ma F 3 / As kgm Idt F q F E
  • date post

    20-Dec-2015
  • Category

    Documents

  • view

    222
  • download

    2

Transcript of 16.360 Lecture 1 Units and dimensions Six fundamental International System of Units...

16.360 Lecture 1

Units and dimensions

• Six fundamental International System of Units

Dimensions Unit symbol

Length meter m

Mass kilogram kg

Time second s

Electric Current Ampere A

Temperature Kelvin K

Amount of substance

mole mol

• any other dimension can be derived from the fundamental dimensions, e.g.:

2/ skgmdt

dvmmaF

3/ AskgmIdt

F

q

FE

16.360 Lecture 1

Electromagnetic spectrum

16.360 Lecture 1

Electromagnetic bands and applications

16.360 Lecture 2

Electric field

• Electric forces on point charges, Columb’s law

,4 2

120

2112

^

12 R

qqRF

,4 2

210

2121

^

21 R

qqRF

,4 12

0121 Eq

R

qqF

,4 2

0

^

R

qRE

16.360 Lecture 2

Magnetic field by constant current

r

I B = 2r

I

= r 0,

r: relative magnetic permeability

r =1 for most materials

=2r

I

H = B

16.360 Lecture 3

Traveling wave

y(x,t) = Acos(2t/T-2x/),

(x,t) = 2t/T-2x/, y(x,t) = Acos(x,t),

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5

t = 0T

t = 0.2 T

t = 0.4T

t = 0.6T

16.360 Lecture 3

Traveling wave

y(x,t) = Acos(2t/T+2x/),

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.4 0.8 1.2 1.6 2 2.4

t = 0T

t = 0.2 T

t = 0.4T

t = 0.6T

Velocity = 0.6/0.6T = /T

Vp = dx/dt

= - /T

Phase velocity:

16.360 Lecture 3

• Phasor

VR(t)

Vs(t) VC(t)

i (t)

Vs(t) = V0Sin(t+0),

VR(t) = i(t)R,

VC(t) = i(t)dt/C,

Vs(t) = VR(t) +VC(t),

V0Sin(t+0) = i(t)dt/C + i(t)R, Integral equation,

Using phasor to solve integral and differential equations

16.360 Lecture 3

• Phasor

Z(t) = Re( Z ejt

)

Z is time independent function of Z(t), i.e. phasor

Vs(t) = V0Sin(t+0)

)j(0 - /2)= Re(V0 e

jte

jte= Re(V ),

V = V0 e j(0 - /2) ,

16.360 Lecture 3

• Phasor

i(t) = Re( I ejt

)

), = Re(I jte

i(t)dt = Re( I e jt )dt

j1

V0Sin(t+0) = i(t)dt/C + i(t)R,

time domain equation:

phasor domain equation:

)(tf f

)(tfdt

dfj

dttf )( fj

Time Phasor

VR(t)

Vs(t) VC(t)

i (t)

V + I R , = IjC

1

16.360 Lecture 3

• Phasor domain

Back to time domain:

V + I R , = IjC

1

I = V

R + 1/(jC)

= R + 1/(jC)

V0 e j(0 - /2)

,

i(t) = Re( I ejt

) = Re ( jt

) R + 1/(jC)

V0 e j(0 - /2)

e

VR(t)

Vs(t) VC(t)

i (t)

V0Sin(t+0) = i(t)dt/C + i(t)R,

16.360 Lecture 3

• An Example :

VL(t)

Vs(t) = V0Sin(t+0),

VR(t) = i(t)R,

VL(t) = Ldi(t)/dt,

Vs(t) = VR(t) +VL(t),

V0Sin(t+0) = Ldi(t)/dt + i(t)R, differential equation,

Using phasor to solve the differential equation.

VR(t)

Vs(t)

i (t)

16.360 Lecture 3

• Phasor

i(t) = Re( I ejt

)

), = Re(Ijt

e

di(t)/dt = Re(d I e jt )/dt

j

V0Sin(t+0) = Ldi(t)/dt + i(t)R,

time domain equation:

phasor domain equation:

jte Re(V ) Re( I e

jt), )L + = Re(I

jtej

16.360 Lecture 3

• Phasor domain

Back to time domain:

V + I R, = I jL

I = V

R + (jL)

= R + jL)

V0 e j(0 - /2)

,

i(t) = Re( I ejt

) = Re ( jt

) R + (jL)

V0 e j(0 - /2)

e

16.360 Lecture 3

• Steps of transferring integral or differential equations to linear equations using phasor.

1. Express time-dependent variables as phsaor.2. Rewrite integral or differential equations in phasor domain.3. Solve phasor domain equations4. Change phasors variable to their time domain value

16.360 Lecture 3

• Waves in phasor domain

Recall waves, traveling wave in time domain

)22

cos(),( 0

tT

xAtxy

In phasor domain

02

)(

xjAexy + x direction

- x direction02

)(

xjAexy

16.360 Lecture 3

• A question

Answer: a traveling wave in phasor domain

What’s this?

xjAexy

2

)(

Complex amplitude

16.360 Lecture 3

• Electromagnetic spectrum.

Recall relation: f = v.

• Some important wavelength ranges:

1. Fiber optical communication: = 1.3 – 1.5m.2. Free space communication: ~ 700nm – 980nm.3. TV broadcasting and cellular phone: 300MHz – 3GHz. 4. Radar and remote sensing: 30GHz – 300GHz