15_Transfer Functions.pdf

13
Transfer Functions and Frequency Response Robert Stengel, Aircraft Flight Dynamics MAE 331, 2010 Frequency domain view of initial condition response Response of dynamic systems to sinusoidal inputs Transfer functions Bode plots Copyright 2010 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE331.html http://www. princeton . edu/~stengel/FlightDynamics .html Laplace Transform of Initial Condition Response Laplace Transform of a Dynamic System ! ! x(t ) = F !x(t ) + G !u(t ) + L!w(t ) System equation Laplace transform of system equation s!x( s ) "!x(0) = F !x( s ) + G! u( s ) + L!w( s ) dim(!x) = (n " 1) dim(!u) = (m " 1) dim(!w) = (s " 1) Laplace Transform of a Dynamic System Rearrange Laplace transform of dynamic equation s!x( s ) " F! x( s ) = !x(0) + G! u( s ) + L!w( s ) sI ! F [ ] "x( s ) = "x(0) + G" u( s ) + L"w( s ) !x( s ) = sI " F [ ] "1 !x(0) + G !u( s ) + L!w( s ) [ ] Initial Condition Control/Disturbance Input

Transcript of 15_Transfer Functions.pdf

  • Transfer Functions andFrequency Response

    Robert Stengel, Aircraft Flight Dynamics

    MAE 331, 2010

    Frequency domain view of initial

    condition response

    Response of dynamic systems

    to sinusoidal inputs

    Transfer functions

    Bode plots

    Copyright 2010 by Robert Stengel. All rights reserved. For educational use only.http://www.princeton.edu/~stengel/MAE331.html

    http://www.princeton.edu/~stengel/FlightDynamics.html

    Laplace Transform ofInitial Condition Response

    Laplace Transform of

    a Dynamic System

    !!x(t) = F!x(t) +G!u(t) + L!w(t)

    System equation

    Laplace transform of system equation

    s!x(s) " !x(0) = F!x(s) +G!u(s) + L!w(s)

    dim(!x) = (n "1)

    dim(!u) = (m "1)

    dim(!w) = (s "1)

    Laplace Transform of

    a Dynamic System

    Rearrange Laplace transform of dynamic equation

    s!x(s) " F!x(s) = !x(0) +G!u(s) + L!w(s)

    sI ! F[ ]"x(s) = "x(0) +G"u(s) + L"w(s)

    !x(s) = sI " F[ ]"1!x(0) +G!u(s) + L!w(s)[ ]

    Initial

    Condition

    Control/Disturbance

    Input

  • 4th-Order Initial

    Condition Response

    Longitudinal dynamic model (time domain)

    !x(s) = sI " F[ ]"1!x(0)

    ! !V (t)

    ! !" (t)

    ! !q(t)

    ! !#(t)

    $

    %

    &&&&&

    '

    (

    )))))

    =

    *DV *g *Dq *D#

    LVVN

    0Lq

    VN

    L#VN

    MV 0 Mq M#

    * LVVN

    0 1 * L#VN

    $

    %

    &&&&&&&&

    '

    (

    ))))))))

    !V (t)

    !" (t)

    !q(t)

    !#(t)

    $

    %

    &&&&&

    '

    (

    )))))

    ,

    !V (0)

    !" (0)

    !q(0)

    !#(0)

    $

    %

    &&&&&

    '

    (

    )))))

    given

    Longitudinal model (frequency domain)

    !V (s)

    !" (s)

    !q(s)

    !#(s)

    $

    %

    &&&&&

    '

    (

    )))))

    = sI * FLon[ ]

    *1

    !V (0)

    !" (0)

    !q(0)

    !#(0)

    $

    %

    &&&&&

    '

    (

    )))))

    Elements of the CharacteristicMatrix Inverse

    sI ! FLon

    " #Lon(s)

    = s4+ a

    3s3+ a

    2s2+ a

    1s + a

    0

    Adj sI ! FLon( ) =

    nVV(s) n"

    V(s) nq

    V(s) n#

    V(s)

    nV"(s) n"

    "(s) nq

    "(s) n#

    "(s)

    nVq(s) n"

    q(s) nq

    q(s) n#

    q(s)

    nV#(s) nV

    #(s) nV

    #(s) nV

    #(s)

    $

    %

    &&&&&&

    '

    (

    ))))))

    sI ! FLon[ ]!1

    =Adj sI ! FLon( )sI ! FLon

    =Adj sI ! FLon( )

    "Lon (s)(4 x 4)

    Denominator is scalar

    Numerator is an (n x n) matrix

    Characteristic Matrix InverseDistributes Effects of Initial Condition

    sI ! FLon[ ]

    !1=

    nV

    V(s) n"

    V(s) n

    q

    V(s) n#

    V(s)

    nV

    "(s) n"

    "(s) n

    q

    "(s) n#

    "(s)

    nV

    q(s) n"

    q(s) n

    q

    q(s) n#

    q(s)

    nV

    #(s) n

    V

    #(s) n

    V

    #(s) n

    V

    #(s)

    $

    %

    &&&&&&

    '

    (

    ))))))

    s4+ a

    3s3+ a

    2s2+ a

    1s + a

    0

    (4 x 4)

    Denominator determines the modes of motion

    Numerator distributes the initial condition to eachelement of the state

    !x(s) =Adj sI " FLon( )sI " FLon

    !x(0)

    Relationship to State

    Transition Matrix Initial condition response

    !x(s) = sI " F[ ]"1!x(0)

    !x(t) = " t,0( )!x(0)Time Domain

    Frequency

    Domain

    !x(s) is the Laplace transform of !x(t)

    !x(s) = sI " F[ ]"1!x(0) = L !x(t)[ ] = L # t,0( )!x(0)$% &'

    sI ! F[ ]!1= L " t,0( )#$ %&

    Therefore,

  • Initial Condition Response of aSingle State Element

    Define A s( ) ! sI ! F[ ]

    !1

    Typical (ijth) element of A(s)

    aij (s) =kijnij (s)

    !(s)=kij s

    q+ bq"1s

    q"1+ ...+ b

    1s + b

    0( )sn+ an"1s

    n"1+ ...+ a

    1s + a

    0( )

    =kij s " z1( )ij s " z2( )ij ... s " zq( )ij

    s " #1( ) s " #2( )... s " #n( )

    Initial Condition Response of aSingle State Element

    pi (s) = ki1 sq1 + ...+ b

    0( )1 !x1(0) + ki2 sq2 + ...+ b

    0( )2 !x1(0) +!+ kin sqn + ...+ b

    0( )n !xn (0)

    = kpi sqmax + ...+ b

    0( )

    Terms sum to produce a single numerator polynomial

    !xi(s) = a

    i1s( )!x1(0) + ai2 s( )!x1(0) +!+ ain s( )!xn (0) "

    pis( )

    ! s( )

    Initial condition response of !xi(s)

    Partial Fraction Expansion ofthe Initial Condition Response

    Scalar response can be expressed with n parts,each containing a single mode

    !xi (s) =pi s( )

    ! s( )=

    d1

    s " #1( )+

    d2

    s " #2( )

    +!dn

    s " #n( )

    $

    %&'

    ()i

    , i = 1,n

    where, for each i, the (possibly complex) coefficients are

    d j = s ! " j( )pi s( )

    # s( )s=" j

    , j = 1,n

    Partial Fraction Expansion ofthe Initial Condition Response

    Time response is the inverse Laplace transform

    !xi(t) = L

    "1 !xi(s)[ ] = L"1

    d1

    s " #1( )+

    d2

    s " #2( )

    +!dn

    s " #n( )

    $

    %&

    '

    ()i

    = d1e#1t + d

    2e#2 t +!+ d

    ne#nt( )

    i, i = 1,n

    ... and the time response contains every mode of the system

  • Scalar and MatrixTransfer Functions

    Response to a Control Input

    State response to control

    s!x(s) = F!x(s) +G!u(s) + !x(0), !x(0) ! 0

    !x(s) = sI " F[ ]"1G!u(s)

    Output response to control

    !y(s) = Hx!x(s) +Hu!u(s)

    = Hx sI " F[ ]"1G!u(s) +Hu!u(s)

    Transfer Function Matrix

    Frequency-domain effect of all inputs on alloutputs

    Assume control effects do not appear directlyin the output: Hu = 0

    Transfer function matrix

    H (s) = HxsI ! F[ ]

    !1G =

    HxAdj sI ! F( )G

    sI ! F

    r ! n( ) n ! n( ) n ! m( )

    = r ! m( )

    First-OrderTransfer Function

    y s( )

    u s( )= H (s) = h s ! f[ ]

    !1g =

    hg

    s ! f( )(n = m = r = 1)

    Scalar transfer function(= first-order lag)

    !x t( ) = fx t( ) + gu t( )

    y t( ) = hx t( )

    Scalar dynamic system

  • Second-Order

    Transfer Function

    H(s) = HxsI ! F[ ]

    !1G =

    h11 h12

    h21 h22

    "

    #$$

    %

    &''

    adjs ! f11 ! f12! f21 s ! f22

    "

    #$$

    %

    &''

    dets ! f11 ! f12! f21 s ! f22

    (

    )**

    +

    ,--

    g11 g12

    g21 f22

    "

    #$$

    %

    &''

    (n = m = r = 2)

    Second-order transfer function matrix

    r ! n( ) n ! n( ) n ! m( )

    = r ! m( ) = 2 ! 2( )

    !x t( ) =!x1t( )

    !x2t( )

    !

    "

    ##

    $

    %

    &&=

    f11

    f12

    f21

    f22

    !

    "

    ##

    $

    %

    &&

    x1t( )

    x2t( )

    !

    "

    ##

    $

    %

    &&+

    g11

    g12

    g21

    f22

    !

    "

    ##

    $

    %

    &&

    u1t( )

    u2t( )

    !

    "

    ##

    $

    %

    &&

    y t( ) =y1t( )

    y2t( )

    !

    "

    ##

    $

    %

    &&=

    h11

    h12

    h21

    h22

    !

    "

    ##

    $

    %

    &&

    x1t( )

    x2t( )

    !

    "

    ##

    $

    %

    &&

    Second-order dynamic system

    Longitudinal Transfer

    Function Matrix

    With Hx = I, and assuming Elevator produces only a pitching moment

    Throttle affects only the rate of change of velocity

    Flaps produce only lift

    HLon(s) = H

    xLonsI ! F

    Lon[ ]!1G

    Lon

    =

    1 0 0 0

    0 1 0 0

    0 0 1 0

    0 0 0 1

    "

    #

    $$$$

    %

    &

    ''''

    nV

    V(s) n(

    V(s) n

    q

    V(s) n)

    V(s)

    nV

    ((s) n(

    ((s) n

    q

    ((s) n)

    ((s)

    nV

    q(s) n(

    q(s) n

    q

    q(s) n)

    q(s)

    nV

    )(s) n(

    )(s) n

    q

    )(s) n)

    )(s)

    "

    #

    $$$$$$

    %

    &

    ''''''

    0 T*T 0

    0 0 L*F /VN

    M*E 0 0

    0 0 !L*F /VN

    "

    #

    $$$$$

    %

    &

    '''''

    +Lon

    s( )

    Pilatus TurboPorter PC-6

    Longitudinal TransferFunction Matrix

    HLon (s) =

    n!EV(s) n!T

    V(s) n!F

    V(s)

    n!E"(s) n!T

    "(s) n!F

    "(s)

    n!Eq(s) n!T

    q(s) n!F

    q(s)

    n!E#(s) n!T

    #(s) n!F

    #(s)

    $

    %

    &&&&&&

    '

    (

    ))))))

    s2+ 2*P+nPs ++nP

    2( ) s2 + 2*SP+nSP s ++nSP2( )

    There are 4 outputs and 3 inputs

    !V (s)

    !" (s)

    !q(s)

    !#(s)

    $

    %

    &&&&&

    '

    (

    )))))

    = HLon(s)

    !*E(s)

    !*T (s)

    !*F(s)

    $

    %

    &&&

    '

    (

    )))

    Input-output relationship

    Douglas AD-1 Skyraider

    Scalar Transfer Function from!uj to !yi

    Hij (s) =kijnij (s)

    !(s)=kij s

    q+ bq"1s

    q"1+ ...+ b

    1s + b

    0( )sn+ an"1s

    n"1+ ...+ a

    1s + a

    0( )

    # zeros = q

    # poles = n

    Denominator polynomial contains n roots

    Each numerator term is a polynomial with q zeros,where q varies from term to term and ! n 1

    =kij s ! z1( )ij s ! z2( )ij ... s ! zq( )ij

    s ! "1( ) s ! "2( )... s ! "n( )

  • Scalar Frequency ResponseFunction

    Hij (j! ) =kij j! " z1( )ij j! " z2( )ij ... j! " zq( )ij

    j! " #1( ) j! " #2( )... j! " #n( )

    Substitute: s = j!

    Frequency response is a complex function ofinput frequency, !

    Real and imaginary parts

    Amplitude ratio and phase angle

    = a(! ) + jb(! )" AR(! ) e j# (! )

    Transfer Function Matrix forShort-Period Approximation

    Transfer Function Matrix (with Hx = I, Hu = 0)

    HSP (s) = Hx sI ! F[ ]!1G =

    s ! Mq( ) !M"

    ! 1!LqVN

    #$%

    &'(

    s +L"VN( )

    )

    *

    ++++

    ,

    -

    .

    .

    .

    .

    !1

    M/E

    !L/EVN

    )

    *

    +++

    ,

    -

    .

    .

    .

    = HxsI ! F[ ]

    !1{ }G =

    s +L"VN( ) M"

    1!LqVN

    #$%

    &'(

    s ! Mq( )

    )

    *

    +++++

    ,

    -

    .

    .

    .

    .

    .

    s ! Mq( ) s +L"VN( ) ! M" 1!

    LqVN

    #$%

    &'(

    M/E

    !L/EVN

    )

    *

    +++

    ,

    -

    .

    .

    .

    !!xSP =! !q! !"

    #

    $%%

    &

    '(()

    Mq M"

    1*LqVN

    +,-

    ./0

    * L"VN

    #

    $

    %%%

    &

    '

    (((

    !q!"

    #

    $%%

    &

    '((+

    M1E

    *L1EVN

    #

    $

    %%%

    &

    '

    (((!1E

    Dynamic equation

    Transfer Function Matrix forShort-Period Approximation

    HSP (s) =

    M!E s +L"VN( ) #

    L!EM"VN

    $%&

    '()

    M!E 1#LqVN

    *+,

    -./# L!E

    VN( ) s # Mq( )$%&

    '()

    $

    %

    &&&&&

    '

    (

    )))))

    s2+ #Mq +

    L"VN( )s # M" 1#

    LqVN

    *+,

    -./+ Mq

    L"VN

    $%&

    '()

    =

    M!E s +L"VN

    # L!EM"VNM!E( )

    $%&

    '()

    # L!EVN( ) s +

    VNM!E

    L!E1#

    LqVN

    *+,

    -./# Mq

    $

    %&

    '

    ()

    012

    32

    452

    62

    $

    %

    &&&&&

    '

    (

    )))))

    7SP s( )

    HSP (s) !

    kqn!Eq(s)

    k"n!E"(s)

    #

    $

    %%

    &

    '

    ((

    s2+ 2)SP*nSP s +*nSP

    2=

    +q(s)+!E(s)

    +"(s)+!E(s)

    #

    $

    %%%%%

    &

    '

    (((((

    In this case, transfer function matrix dimension is (2 x 1)

    Short-Period Motions

    Dornier Do-128 Demonstrationhttp://www.youtube.com/watch?v=3hdLXE0rc9Q

    Simulator Demonstration of Short Period Response to Elevator Deflection

    http://www.youtube.com/watch?v=1O7ZqBS0_B8

    Dornier Do-128D

    Rapid damping

    Pitch angle and rate response

    Flight path angle reoriented by differencebetween pitch angle and angle of attack

  • Scalar Transfer

    Functions for Short-

    Period Approximation

    !q(s)!"E(s)

    =

    M"E s +L#VN

    $ L"EM#VNM"E( )

    %&'

    ()*

    s2+ $Mq +

    L#VN( )s $ M# 1$

    LqVN

    +,-

    ./0+ Mq

    L#VN

    %

    &'(

    )*

    =kq s $ zq( )

    s2+ 21SP2nSP s +2nSP

    2

    !q(s)

    !"(s)

    #

    $%%

    &

    '((=

    !q(s)!)E(s)

    !"(s)!)E(s)

    #

    $

    %%%%

    &

    '

    ((((

    !)E(s)

    !"(s)!#E(s)

    =

    $ L#EVN( ) s +

    VNM#E

    L#E1$

    LqVN

    %&'

    ()*$ Mq

    +

    ,-

    .

    /0

    123

    43

    563

    73

    s2+ $Mq +

    L"VN( )s $ M" 1$

    LqVN

    %&'

    ()*+ Mq

    L"VN

    +,-

    ./0

    =k" s $ z"( )

    s2+ 28SP9nSP s +9nSP

    2

    Pitch Rate Transfer Function

    Angle of Attack Transfer Function

    Short Period

    Frequency Response

    Pitch-rate frequency response

    Angle-of-attack frequency

    response

    !q( j" )

    !#E( j" )=

    kq j" $ zq( )$" 2 + 2%SP"nSP j" +"nSP

    2

    = ARq (" ) ej&q (" )

    !"( j# )

    !$E( j# )=

    k" j# % z"( )%# 2 + 2&SP#nSP j# +#nSP

    2

    = AR" (# ) ej'" (# )

    Bode Plot

    Angle and RateResponse of a

    DC Motor overWide Input-FrequencyRange

    ! Long-term responseof a dynamic systemto sinusoidal inputsover a range offrequencies

    ! Determineexperimentally or

    ! from the Bode plotof the dynamicsystem

    Very low damping

    Moderate damping

    High damping

  • Bode Plot Portrays Response

    to Sinusoidal Control Input

    Express amplitude ratio in decibels

    AR(dB) = 20log10 AR original units( )[ ]

    20 dB = factor of 10

    !q( j")

    !#E( j")=

    kq j" $ zq( )$" 2 + 2% SP"nSP j" +"nSP

    2= ARq (") e

    j&q (" )

    Plot AR(dB) against log10(!input)

    Plot phase angle, " (deg) againstlog10(!input)

    Products in original units

    are sums in decibels

    # zeros = 1

    # poles = 2

    Constant Gain Bode Plot

    H( j!) =1

    H( j!) =10

    H( j!) =100

    Amplitude ratio, AR(dB)= constant

    Phase angle, " (deg) = 0

    y t( ) = hu t( )

    Integrator Bode Plot

    H( j!) =1

    j!

    H( j!) =10

    j!

    Slope of AR(dB)= 20 dB/decade

    " (deg) = 90

    y t( ) = h u t( )dt0

    t

    !

    Differentiator Bode Plot

    H( j!) = j!

    H( j!) =10 j!

    Slope of AR(dB)= +20 dB/decade

    " (deg) = +90

    y t( ) = hdu t( )

    dt

  • Bode Plots of First-Order Lags

    H( j!) =10

    j! +10( )

    H( j!) =100

    j! +10( )

    H( j!) =100

    j! +100( )

    Bode Plots of First-Order Lags

    General shape of amplituderatio governed byasymptotes

    Slope of asymptoteschanges by multiples of 20dB/dec at poles or zeros

    Phase angle of a real,negative pole

    When ! = 0, " = 0

    When ! = #, " =45

    When " -> ", " -> 90

    AR asymptotes of a real pole When ! = 0, slope = 0

    dB/dec

    When ! # #, slope = 20dB/dec

    Bode Plots of Second-Order Lags

    Effect of

    Damping Ratio

    Hgreen ( j!) =10

    2

    j!( )2

    + 2 0.1( ) 10( ) j!( ) +102

    Hblue ( j!) =10

    2

    j!( )2

    + 2 0.4( ) 10( ) j!( ) +102

    Hred ( j!) =10

    2

    j!( )2

    + 2 0.707( ) 10( ) j!( ) +102

    Bode Plots of Second-Order Lags

    Hred ( j! ) =10

    2

    j!( )2+ 2 0.1( ) 10( ) j!( ) +102

    Hgreen ( j! ) =10

    3

    j!( )2+ 2 0.1( ) 10( ) j!( ) +102

    Hblue( j! ) =100

    2

    j!( )2+ 2 0.1( ) 100( ) j!( ) +1002

    Effects of Gain and Natural Frequency

  • Amplitude Ratio Asymptotes

    of Second-Order Bode Plots

    AR asymptotes of apair of complex poles

    When ! = 0, slope= 0 dB/dec

    When ! # !n,slope = 40dB/dec

    Height of resonantpeak depends ondamping ratio

    Phase Angles of Second-Order

    Bode Plots

    Phase angle of a pairof complex negativepoles

    When ! = 0, " = 0

    When ! = !n, " =90

    When " -> ", " ->180

    Abruptness of phaseshift depends ondamping ratio

    FrequencyResponse AR

    Departures in theVicinity of Poles

    Difference betweenactual amplitude ratio(dB) and asymptote =departure (dB)

    Results for multipleroots are additive

    from McRuer, Ashkenas,and Graham, AircraftDynamics and AutomaticControl, PrincetonUniversity Press, 1973

    Zero departures haveopposite sign

    First- and Second-Order Departures

    from Amplitude Ratio Asymptotes

    First- and Second-

    Order Phase Angles

    Phase Angle

    Variations in theVicinity of Poles

    Results for multipleroots are additive

    from McRuer, Ashkenas,and Graham, AircraftDynamics and AutomaticControl, PrincetonUniversity Press, 1973

    LHP zero variations haveopposite sign

    RHP zeros have samesign

  • Next Time:Configuration and Power Effects

    on Flight StabilitySupplementary

    Material

    Bode Plots of 1st- and 2nd-Order Lags

    Hred ( j!) =10

    j! +10( )

    Hblue ( j!) =100

    2

    j!( )2

    + 2 0.1( ) 100( ) j!( ) +1002

    Bode Plots of 3rd-Order Lags

    Hblue ( j!) =10

    j! +10( )

    "

    # $

    %

    & '

    1002

    j!( )2

    + 2 0.1( ) 100( ) j!( ) +1002

    "

    # $ $

    %

    & ' '

    Hgreen ( j!) =10

    2

    j!( )2

    + 2 0.1( ) 10( ) j!( ) +102

    "

    # $ $

    %

    & ' '

    100

    j! +100( )

    "

    # $

    %

    & '

  • Bode Plot of a 4th-Order Systemwith No Zeros

    H ( j! ) =12

    j!( )2+ 2 0.05( ) 1( ) j!( ) +12

    "

    #$$

    %

    &''

    1002

    j!( )2+ 2 0.1( ) 100( ) j!( ) +1002

    "

    #$$

    %

    &''

    Resonant peaks andlarge phase shifts ateach natural frequency

    Additive AR slope shiftsat each naturalfrequency

    # zeros = 0

    # poles = 4

    Left-Half-Plane Transfer Function Zero

    H ( j! ) = j! +10( )

    Zeros are numerator singularities H (j! ) =k j! " z

    1( ) j! " z2( )...j! " #

    1( ) j! " #2( )... j! " #n( )

    Single zero in left halfplane

    Introduces a +20dB/dec slope

    Produces phase leadin vicinity of zero

    Right-Half-Plane Transfer Function Zero

    H ( j! ) = " j! "10( )

    Single zero in right halfplane

    Introduces a +20 dB/decslope

    Produces phase lag invicinity of zero

    Second-Order Transfer Function Zero

    H( j!) = j! " z( ) j! " z*( ) = j!( )2

    + 2 0.1( ) 100( ) j!( ) +1002[ ]

    Complex pair ofzeros produces anamplitude rationotch at itsnatural frequency

  • 4th-Order Transfer Function with

    2nd-Order Zero

    H( j!) =j!( )

    2+ 2 0.1( ) 10( ) j!( ) +102[ ]

    j!( )2

    + 2 0.05( ) 1( ) j!( ) +12[ ] j!( )2

    + 2 0.1( ) 100( ) j!( ) +1002[ ]

    Elevator-to-Normal-VelocityFrequencyResponse

    !w(s)

    !"E(s)=n"Ew(s)

    !Lon (s)#

    M"E s2+ 2$%ns +%n

    2( )Approx Ph

    s & z3( )

    s2+ 2$%ns +%n

    2( )Ph

    s2+ 2$%ns +%n

    2( )SP

    0 dB/dec

    +40 dB/dec

    0 dB/dec

    40 dB/dec

    20 dB/dec

    (n q) = 1

    Complex zeroalmost (butnot quite)cancelsphugoidresponse

    Short PeriodPhugoid