14 - hyperelastic materials me338 - syllabusbiomechanics.stanford.edu/me338_13/me338_s14.pdf · 14...

12
1 14 - hyperelastic materials 14 - hyperelastic materials holzapfel nonlinear solid mechanics [2000], chapter 6, pages 205-305 2 14 - hyperelastic materials me338 - syllabus 3 14 - hyperelastic materials isotropic hyperelastic materials cauchy stress invariants in terms of principal stretches principal cauchy stresses http://www.youtube.com/watch?v=yURomiwg9PE http://www.youtube.com/watch?v=zoFMUMWVHD0 4 14 - hyperelastic materials inflation of a spherical rubber balloon

Transcript of 14 - hyperelastic materials me338 - syllabusbiomechanics.stanford.edu/me338_13/me338_s14.pdf · 14...

Page 1: 14 - hyperelastic materials me338 - syllabusbiomechanics.stanford.edu/me338_13/me338_s14.pdf · 14 - hyperelastic materials 9 inflation of a spherical rubber balloon ogden neo hooke

1 14 - hyperelastic materials

14 - hyperelastic materials

holzapfel �nonlinear solid mechanics� [2000], chapter 6, pages 205-305

2 14 - hyperelastic materials

me338 - syllabus

3 14 - hyperelastic materials

isotropic hyperelastic materials

cauchy stress

invariants in terms of principal stretches

principal cauchy stresses

http://www.youtube.com/watch?v=yURomiwg9PE http://www.youtube.com/watch?v=zoFMUMWVHD0

4 14 - hyperelastic materials

inflation of a spherical rubber balloon

Page 2: 14 - hyperelastic materials me338 - syllabusbiomechanics.stanford.edu/me338_13/me338_s14.pdf · 14 - hyperelastic materials 9 inflation of a spherical rubber balloon ogden neo hooke

% cauchy stress vs stretch plot

% loop over all stretches lambda from 1.0 to 10.0 for i=1:901 lam(i) = 1.0+(i-1)/100; sig_og(i) = m1_og * (lam(i)^a1_og-lam(i)^(-2*a1_og)) ... + m2_og * (lam(i)^a2_og-lam(i)^(-2*a2_og)) ... + m3_og * (lam(i)^a3_og-lam(i)^(-2*a3_og)); sig_mr(i) = m1_mr * (lam(i)^a1_mr-lam(i)^(-2*a1_mr)) ... + m2_mr * (lam(i)^a2_mr-lam(i)^(-2*a2_mr)); sig_nh(i) = m1_nh * (lam(i)^a1_nh-lam(i)^(-2*a1_nh)); sig_vg(i) = m1_vg * (lam(i)^a1_vg-lam(i)^(-2*a1_vg)); end

plot(lam,sig_og/10^6,'-k','LineWidth',2.0) plot(lam,sig_mr/10^6,'-k','LineWidth',2.0) plot(lam,sig_nh/10^6,'-k','LineWidth',2.0) plot(lam,sig_vg/10^6,'-k','LineWidth',2.0)

5 14 - hyperelastic materials

inflation of a spherical rubber balloon

6 14 - hyperelastic materials

inflation of a spherical rubber balloon

ogden neo hooke

varga

mooney rivlin

7 14 - hyperelastic materials

inflation of a spherical rubber balloon ogden neo hooke

varga

mooney rivlin % pressure vs stretch plot

% loop over all stretches lambda from 1.0 to 10.0 for i=1:901 lam(i) = 1.0+(i-1)/100; p_og(i) = 2*H/R *(m1_og * (lam(i)^(a1_og-3)-lam(i)^(-2*a1_og-3)) ... + m2_og * (lam(i)^(a2_og-3)-lam(i)^(-2*a2_og-3)) ... + m3_og * (lam(i)^(a3_og-3)-lam(i)^(-2*a3_og-3))); p_mr(i) = 2*H/R *(m1_mr * (lam(i)^(a1_mr-3)-lam(i)^(-2*a1_mr-3)) ... + m2_mr * (lam(i)^(a2_mr-3)-lam(i)^(-2*a2_mr-3))); p_nh(i) = 2*H/R *(m1_nh * (lam(i)^(a1_nh-3)-lam(i)^(-2*a1_nh-3))); p_vg(i) = 2*H/R *(m1_vg * (lam(i)^(a1_vg-3)-lam(i)^(-2*a1_vg-3))); end

plot(lam,p_og/10^2,'-k','LineWidth',2.0) plot(lam,p_mr/10^2,'-k','LineWidth',2.0) plot(lam,p_nh/10^2,'-k','LineWidth',2.0) plot(lam,p_vg/10^2,'-k','LineWidth',2.0)

8 14 - hyperelastic materials

inflation of a spherical rubber balloon

Page 3: 14 - hyperelastic materials me338 - syllabusbiomechanics.stanford.edu/me338_13/me338_s14.pdf · 14 - hyperelastic materials 9 inflation of a spherical rubber balloon ogden neo hooke

9 14 - hyperelastic materials

inflation of a spherical rubber balloon

ogden neo hooke

varga

mooney rivlin

10 14 - hyperelastic materials

inflation of a spherical rubber balloon

ogden

neo hooke

varga

mooney rivlin

11 14 - hyperelastic materials

mitral valve leaflet

12 14 - hyperelastic materials

kinematic controversy

why are strains in vivo 3x smaller than ex vivo?

• ex vivo strains ~35% (left heart simulator) • in vivo strains ~12% (sonomicrometry/videofluoroscopy)

12%

8%

4%

0%

30%

20%

10%

0%

ex vivo strain vs time in vivo strain vs time

jimenez et al. [2007] rausch et al. [2011]

Page 4: 14 - hyperelastic materials me338 - syllabusbiomechanics.stanford.edu/me338_13/me338_s14.pdf · 14 - hyperelastic materials 9 inflation of a spherical rubber balloon ogden neo hooke

13 14 - hyperelastic materials

equilibrium controversy

why are stresses in vivo 3x larger than ex vivo?

• ex vivo failure stress ~900 kPa (biaxial testing) • in vivo stress ~3,000 kPa (videofluoroscopy/fe analysis)

3200 800

ex vivo stress vs strain in vivo stress vs strain

grande allen et al. [2005] krishnamurthy et al. [2009]

400

600

200

0

[kPa]

2400

1600

0

1800

[kPa]

circ rad

circ rad radial

14 14 - hyperelastic materials

constitutive controversy

why is stiffness in vivo 1000x larger than ex vivo?

• ex vivo stiffness Ecirc ≈40kPa/4MPa and Erad ≈10kPa/1MPa • in vivo stiffeness Ecirc ≈40MPa and Erad ≈10MPa

3200 800

ex vivo stress vs strain in vivo stress vs strain

sacks et al. [2000], grande allen et al. [2005] krishnamurthy et al. [2009]

400

600

200

0

[kPa]

2400

1600

0

1800

[kPa]

circ rad

circ rad

15 14 - hyperelastic materials

mitral valve leaflet

16 14 - hyperelastic materials

hemodynamics - pressure

figure. left ventricular pressure averaged over 57 animals. the simulation is performed at eight discrete time points during isovolumetric relaxation. the arrow indicates the direction of the simulation going backward in time from end isovolumetric relaxation to end systole.

normalized cardiac cycle

average left ventricular pressure [mmHg]

ED EIVC ES

120

100

80

60

40

20

0 EIVR

Page 5: 14 - hyperelastic materials me338 - syllabusbiomechanics.stanford.edu/me338_13/me338_s14.pdf · 14 - hyperelastic materials 9 inflation of a spherical rubber balloon ogden neo hooke

17 14 - hyperelastic materials

transversely isotropic incompressible

incompressible material

volumetric part isochoric part

transversely isotropic material structural tensor fiber orientation

18 14 - hyperelastic materials

with

transversely isotropic incompressible

19 14 - hyperelastic materials

volumetric part isochoric part

transversely isotropic incompressible

20 14 - hyperelastic materials

example 01 - neo hooke model

with

and

Page 6: 14 - hyperelastic materials me338 - syllabusbiomechanics.stanford.edu/me338_13/me338_s14.pdf · 14 - hyperelastic materials 9 inflation of a spherical rubber balloon ogden neo hooke

21 14 - hyperelastic materials

example 02 - may newman model

with

22 14 - hyperelastic materials

example 03 - holzapfel model

with

23 methods may newman, yin [1998], holzapfel, gasser, ogden [2000]

transversely isotropic incompressible

! neo hooke - isotropic c0

! may newman - anisotropic, coupled c0, c1, c2

! holzapfel - anisotropic, decoupled c0, c1, c2

function [] = UniAxialTest() lambda1 = [1:0.001:2.0]; lambda2 = lambda1;

%%% material parameters %%%%%%%%%%% % neo hooke model c0_neo = 63700000; % may-newman model c0_may = 8958355943.52; c1_may = 0.89577484; c2_may = 1.79619884; % holzapfel model c0_hlz = 18364377.50; c1_hlz = 2499419166.42; c2_hlz = 97.44; % experiment c0_exp = 52.0; c1_exp = 4.63; c2_exp = 22.6;

24 14 - hyperelastic materials

uniaxial stretching of anisotropic sheet

Page 7: 14 - hyperelastic materials me338 - syllabusbiomechanics.stanford.edu/me338_13/me338_s14.pdf · 14 - hyperelastic materials 9 inflation of a spherical rubber balloon ogden neo hooke

%% derivatives of free energy wrt invariants %%%%%%%%

function [Ppsi1] = psi1_neo(c0,I1,I4) psi1 = c0; end function [psi1] = psi1_may(c0,c1,c2,I1,I4) psi1 = c0.*exp(c1.*(I1-3).^2+c2.*(I4-1).^2)*2*c1.*(I1-3); end

function [psi4] = psi4_may(c0,c1,c2,I1,I4) psi4 = c0.*exp(c1.*(I1-3).^2+c2.*(I4-1).^2).*2.*c2.*(I4-1); end function [psi1] = psi1_hlz(c0,c1,c2,I1,I4) psi1 = c0; end

function [psi4] = psi4_hlz(c0,c1,c2,I1,I4) psi4 = c1.*(I4-1).* exp(c2.*(I4-1).^2); end

25 14 - hyperelastic materials

uniaxial stretching of anisotropic sheet %% stress-stretch in fiber direction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I1 = lambda1.^2 + 2./lambda1; I4 = lambda1.^2;

% neo-hooke model neo_sigma_11 = 2 .* psi1_neo(c0_neo,I1,I4) * (lambda1.^2-1./lambda1); % may-newman model may_sigma_11 = 2 .*psi1_may(c0_may,c1_may,c2_may,I1,I4) .* (lambda1.^2-1./lambda1) + 2 .* psi4_may(c0_may,c1_may,c2_may,I1,I4) .* lambda1.^2; % holzapfel model hlz_sigma_11 = 2 .* psi1_hlz(c0_hlz,c1_hlz,c2_hlz,I1,I4) .* (lambda1.^2-1./lambda1) ... + 2 .* psi4_hlz(c0_hlz,c1_hlz,c2_hlz,I1,I4) .* lambda1.^2; % experiment exp_sigma_11 = 2 .* psi1_may(c0_exp,c1_exp,c2_exp,I1,I4) .* (lambda1.^2-1./lambda1) + 2 .* psi4_may(c0_exp,c1_exp,c2_exp,I1,I4) .* lambda1.^2;

plot(lambda1, neo_sigma_11/10^9,'r-','LineWidth',2.0) plot(lambda1, may_sigma_11/10^9,'b-','LineWidth',2.0) plot(lambda1, hlz_sigma_11/10^9,'g-','LineWidth',2.0) plot(lambda1, exp_sigma_11/10^9,'k-','LineWidth',2.0)

26 14 - hyperelastic materials

uniaxial stretching of anisotropic sheet

27 14 - hyperelastic materials

uniaxial stretching of anisotropic sheet

%% stress-stretch relation in cross-fiber direction %%%%%%%%%%%%%%%%%%%%%% I1 = lambda2.^2 + 2./lambda2; I4 = 1./lambda2;

% neo-hooke model neo_sigma_22 = 2 .* psi1_neo(c0_neo,I1,I4) .* (lambda2.^2-1./lambda2); % may-newman model may_sigma_22=2 .*psi1_may(c0_may,c1_may,c2_may,I1,I4) .* (lambda2.^2-1./lambda2); % holzapfel model hlz_sigma_22 = 2 .* psi1_hlz(c0_hlz,c1_hlz,c2_hlz,I1,I4) .* (lambda2.^2-1./lambda2); % experiment exp_sigma_22 = 2 .* psi1_may(c0_exp,c1_exp,c2_exp,I1,I4) .* (lambda2.^2-1./lambda2);

plot(lambda1, hlz_sigma_22/10^9,'g-','LineWidth',2.0) plot(lambda1, may_sigma_22/10^9,'b-','LineWidth',2.0) plot(lambda1, neo_sigma_22/10^9,'r-','LineWidth',2.0) plot(lambda1, exp_sigma_22/10^9,'k-','LineWidth',2.0)

28 14 - hyperelastic materials

uniaxial stretching of anisotropic sheet

Page 8: 14 - hyperelastic materials me338 - syllabusbiomechanics.stanford.edu/me338_13/me338_s14.pdf · 14 - hyperelastic materials 9 inflation of a spherical rubber balloon ogden neo hooke

29 14 - hyperelastic materials

uniaxial stretching of anisotropic sheet

30 14 - hyperelastic materials

final parameter set

current parameter set

finite element analysis

objective function animal experiment genetic algorithm

rausch, famaey, shultz, bothe, miller, kuhl [2013]

no yes

update

initialize

LVP

convergence?

parameter identification

31 14 - hyperelastic materials

sensitivity - discretization

belly deflection vs no of elems

30 elements 120 elements 480 elements 1920 elements 7680 elements

convergence upon mesh refinement 1920

32 14 - hyperelastic materials

sensitivity - chord position & number

single cord close to free edge

close to annulus and

commissures

close to annulus and midline

chordae close to

free edge

= 85.0 MPa

= 65.4 MPa = 63.7 MPa

= 77.5 MPa

insensitive to chordae position

Page 9: 14 - hyperelastic materials me338 - syllabusbiomechanics.stanford.edu/me338_13/me338_s14.pdf · 14 - hyperelastic materials 9 inflation of a spherical rubber balloon ogden neo hooke

33 14 - hyperelastic materials

sensitivity - chordae stiffness

moderately sensitive to chordae stiffness

leaflet stiffness [MPa] vs chord stiffness [MPa]

20.0

34 14 - hyperelastic materials

sensitivity - leaflet thickness

sensitive to leaflet thickness

leaflet stiffness [MPa] vs leaflet thickness[mm]

1.0

35 14 - hyperelastic materials

sensitivity - leaflet thickness

constant thickness deformation error [mm]

optimized thickness [mm]

optimized bending stiffness[Nmm2]

leaflet thickness is physiologically optimized

36 14 - hyperelastic materials

coupled anisotropic model

c0 = 119,020.7kPa c1 = 152.4 c2 = 185.5 -1.0mm +1.0mm

nodal error

why is stiffness in vivo 1000x larger than ex vivo? may newman, yin [1998], rausch, famaey, shultz, bothe, miller, kuhl [2013]

Page 10: 14 - hyperelastic materials me338 - syllabusbiomechanics.stanford.edu/me338_13/me338_s14.pdf · 14 - hyperelastic materials 9 inflation of a spherical rubber balloon ogden neo hooke

37 14 - hyperelastic materials holzapfel, gasser, ogden [2000], rausch, famaey, shultz, bothe, miller, kuhl [2013]

decoupled anisotropic model

c0 = 18,364.4kPa c1 = 2,499,419.2kPa c2 = 97.4 -1.0mm +1.0mm

why is stiffness in vivo 100x larger than ex vivo?

nodal error

38 14 - hyperelastic materials amini, eckert, koomalsingh, mcgarvey, minakawa, gorman, gorman, sacks [2012]

what’s the influence of prestrain? in vivo

min LVP in vivo

max LVP

ex vivo

rad circ

39 14 - hyperelastic materials amini, eckert, koomalsingh, mcgarvey, minakawa, gorman, gorman, sacks [2012]

what’s the influence of prestrain?

ex vivo

rad circ

λp = 1.32

λ = 1.21

λe = 1.60

in vivo min LVP

in vivo max LVP

40 14 - hyperelastic materials

what’s the influence of prestrain?

rausch, famaey, shultz, bothe, miller, kuhl [2013]

Page 11: 14 - hyperelastic materials me338 - syllabusbiomechanics.stanford.edu/me338_13/me338_s14.pdf · 14 - hyperelastic materials 9 inflation of a spherical rubber balloon ogden neo hooke

41 14 - hyperelastic materials

what’s the influence of prestrain?

begley & macking [2004], zamir & taber [2004], rausch & kuhl [2013]

42 14 - hyperelastic materials

stiffening effect of prestrain

begley & macking [2004], zamir & taber [2004], rausch & kuhl [2013]

43 14 - hyperelastic materials

what’s the influence of prestrain?

70%

100%

44 14 - hyperelastic materials may newman, yin [1998], rausch, kuhl [2013]

parameter identification w/prestrain

Page 12: 14 - hyperelastic materials me338 - syllabusbiomechanics.stanford.edu/me338_13/me338_s14.pdf · 14 - hyperelastic materials 9 inflation of a spherical rubber balloon ogden neo hooke

45 14 - hyperelastic materials

stress vs elastic stretch

rausch & kuhl [2013]

46 14 - hyperelastic materials

stress vs total stretch

rausch & kuhl [2013]

47 14 - hyperelastic materials may newman, yin [1998], rausch, kuhl [2013]

in vivo stiffness = ex vivo stiffness

parameter identification w/prestrain

48 14 - hyperelastic materials

what’s the effect of prestrain?

• stiffness is significantly larger in vivo than ex vivo • concept of prestrain may explain this controversy • prestrain is conceptually simpler than residual stress • ex vivo testing alone tells us little about in vivo behavior • likely true for thin biological membranes in general