12/31/02-Intervenor Pre-Filed Exhibit 033, 2002, Deep arid system … · 2020. 1. 5. · 1980]. The...

15
WATER R.ESOUJRCES RESEARMI VOL 31. NO. 12. 10L dolA0.102912001WRN00024. 2002 Deep arid system hydrodynamics 1. Equilbrium states and response times In thick desert vadose oes MAichelle A. Walvoord, Mitchell A. Plunxne,' and Fred M. Phillips Ezah UW Eavir-maua Science DePnMenz VeW Maka Lnutic of MixM and Tkcholey. Soevmw. New Meka, USA Andrew V. WolfMberg Euth &d Envimmuenul Scknca DiXVi Leo AhMo Nstiadl Labo"rwv. Los Asms. Nrw Mbceo. USA RCM'lcd 6 AUUM NMQ1: ftvIdl 25 Apeil Z=Z aped Zs l 2002L puAlW :0 DcM e 2002. 'I 3 3 PIJ Quanting moi fluxes through deep dese soils rcai difflcult becae of the small tagnitude of the fluxes and the lack of5 comprthensiv model to describe flow and transport through such dry auteial. A parcular challenge for such a model is reprodocing both obrvtd matric potential and chloride profiles. We propose a conceptal model for flow in desert vadose zones that includes isothemut and nwoisothbemal vapor transport and the role ordesen vegetation in supporting a net upward moistre flux below the rmot zone. Numerical simulations incorporain this conceptual modd match pical ciaric potential and chloride profes. The modeling aproach thereby reconciles the paradox between the recognived importan of plants, upward driving fowes, and vapor flow processes in desert vadose zones and the inadequacy of dhe downwardonly liquid fow assumption of the conventional chloride mass balance pproacb. Our worc shows tht water tivwport In thick deses *vdose zones at steady state.. isusuala, douzinated by uprd vapor ow and tt lon responsc dsmes, of the order of V- 17years, are required to equilibrate to existing and surface cooditions. Simulation results indicate that most thick desert vdose zones have been locked in slow drying transients that besan in rtsponse to a climate shift and establishment of desert vegetation any thousands of Ycars ago. EX MUlJ 166 Hydroogy: Soil mqkaz. 175 HydlogW. U rtn d zone KETUUIW! moddling. vapor low. chod. mau* porcntri Gtazon: Waivooa. Jfl. AM. A. Plumen F. i. iPlips. an A. V. Wolrsbeq. Dcp aid system bydrodynamic. 1. Equilibrium stes ad response tiuoes in thic desert vadose zes. WaerRr. Rfe. t12.L 1301. doi: 10.1029?001 WRO084.2002. 1. Introduzcfog [p Rising porssures ot population in aid and semlarid regions neceusite better quantification of lItcrdrainage (luxes urgh etor ad better prediction of bow these fluxts may vary over timtsciks of hvm= interest Is theme significont doward moisture movement Uziugh interdiaW desert floor ctvironments diat wilt recharge she aquifers below [Gre and Xiriam, 194: Sone. 1984: Stone and McGmrU* 1985: Stephens and l*rowon. 1986; Stcphtus. 199417 Or do thick vadosc zones serve us effec- tive bacnrs to moisturu flow aod cootam t Slatioa brom the surfac or from a teposiory.to te water Able tififnogr 1981: Rd & and Jfomposn. 1992]? The Initial stcp in addresing these questions Involves understanding the pio Ws that Controt moir flu reaimes In deseA Vadow Zncs and the timescal" on which these processes opeme. Curtent soil water fluxes within arid unconsoli- ' at S. Galgicat S5avy. Ls).cmiod. Cpknab. USA. 24@wg Idats Nk W Dwfaeoul Laowy. Naho FVatl 1hO. USA. CcpirIed M00 by t Aaicm CeVptscu Ui. rw4-l~flzcmReoooS09.oe~1 - daed vadose zones in ttcrainage auras (regions away fIm chnmb and arroyos) sJ generally thought to be very low (S&wnlon etat. 19991. petiaps negtible bclow thc soil mot zone: Is) 1I this study. we arnine the existing conceptual models invoked to explain autric potntisl and chloride profiles measured itn deep desert vadow zones ad offer an alternativ that better aches observed data. Our model Incomporntes vapor utanspOrt sad tes obset ations of tem- porally invaran matric potentials at 3-5 M depths (ovcr -S year monitoring periods) [Ausdrask. 1997: &-anlon et al;. 19991 as a bads for specIlying a fixed subroot zone mantc potential condition . By employing ths condition. our model avoids doping the comrnmon assumption of down. ward-only a cdvon to describe the flow remgic. 1.1. Stady State hodels: Hydostsdc EqulUbrum and Unit Gradkat ta) Sail water mnovs In response to a hydraulic potential Sadlent conpdsed predominandy of the followin compo- ncr. te gvitation potl 4(). te m c (or psue) potenta ). aI d dh osioc potential (wj [HIdk. 1980]. The dc tio above a rCC1en1s level. smatlly desglated as-he er i bf-deoseeValktral potentiaL-The - LES-051 14

Transcript of 12/31/02-Intervenor Pre-Filed Exhibit 033, 2002, Deep arid system … · 2020. 1. 5. · 1980]. The...

Page 1: 12/31/02-Intervenor Pre-Filed Exhibit 033, 2002, Deep arid system … · 2020. 1. 5. · 1980]. The dc tio above a rCC1en1s level. smatlly desglated ... t 993 Gien £ tni§ocp sil

WATER R.ESOUJRCES RESEARMI VOL 31. NO. 12. 10L dolA0.102912001WRN00024. 2002

Deep arid system hydrodynamics1. Equilbrium states and response times In thick desert vadose

oes

MAichelle A. Walvoord, Mitchell A. Plunxne,' and Fred M. PhillipsEzah UW Eavir-maua Science DePnMenz VeW Maka Lnutic of MixM and Tkcholey. Soevmw.New Meka, USA

Andrew V. WolfMbergEuth &d Envimmuenul Scknca DiXVi Leo AhMo Nstiadl Labo"rwv. Los Asms. Nrw Mbceo. USA

RCM'lcd 6 AUUM NMQ1: ftvIdl 25 Apeil Z=Z aped Zs l 2002L puAlW :0 DcM e 2002.

'I 3 3

PIJ Quanting moi fluxes through deep dese soils rcai difflcult becae of thesmall tagnitude of the fluxes and the lack of5 comprthensiv model to describe flow andtransport through such dry auteial. A parcular challenge for such a model isreprodocing both obrvtd matric potential and chloride profiles. We propose aconceptal model for flow in desert vadose zones that includes isothemut andnwoisothbemal vapor transport and the role ordesen vegetation in supporting a net upwardmoistre flux below the rmot zone. Numerical simulations incorporain this conceptualmodd match pical ciaric potential and chloride profes. The modeling aproachthereby reconciles the paradox between the recognived importan of plants, upwarddriving fowes, and vapor flow processes in desert vadose zones and the inadequacy of dhedownwardonly liquid fow assumption of the conventional chloride mass balancepproacb. Our worc shows tht water tivwport In thick deses *vdose zones at steady state..

isusuala, douzinated by uprd vapor ow and tt lon responsc dsmes, of the order ofV- 17years, are required to equilibrate to existing and surface cooditions. Simulation

results indicate that most thick desert vdose zones have been locked in slow dryingtransients that besan in rtsponse to a climate shift and establishment of desert vegetationany thousands of Ycars ago. EX MUlJ 166 Hydroogy: Soil mqkaz. 175 HydlogW.

U rtn d zone KETUUIW! moddling. vapor low. chod. mau* porcntriGtazon: Waivooa. Jfl. AM. A. Plumen F. i. iPlips. an A. V. Wolrsbeq. Dcp aid system bydrodynamic. 1. Equilibriumstes ad response tiuoes in thic desert vadose zes. WaerRr. Rfe. t12.L 1301. doi: 10.1029?001 WRO084.2002.

1. Introduzcfog[p Rising porssures ot population in aid and semlarid

regions neceusite better quantification of lItcrdrainage(luxes urgh etor ad better prediction of bowthese fluxts may vary over timtsciks of hvm= interest Istheme significont doward moisture movement UziughinterdiaW desert floor ctvironments diat wilt rechargeshe aquifers below [Gre and Xiriam, 194: Sone. 1984:Stone and McGmrU* 1985: Stephens and l*rowon. 1986;Stcphtus. 199417 Or do thick vadosc zones serve us effec-tive bacnrs to moisturu flow aod cootam t Slatioabrom the surfac or from a teposiory.to te water Abletififnogr 1981: Rd & and Jfomposn. 1992]? The Initialstcp in addresing these questions Involves understandingthe pio Ws that Controt moir flu reaimes In deseAVadow Zncs and the timescal" on which these processesopeme. Curtent soil water fluxes within arid unconsoli-

' at S. Galgicat S5avy. Ls).cmiod. Cpknab. USA.24@wg Idats Nk W Dwfaeoul Laowy.

Naho FVatl 1hO. USA.

CcpirIed M00 by t Aaicm CeVptscu Ui.rw4-l~flzcmReoooS09.oe~1 -

daed vadose zones in ttcrainage auras (regions awayfIm chnmb and arroyos) sJ generally thought to be verylow (S&wnlon etat. 19991. petiaps negtible bclow thc soilmot zone:

Is) 1I this study. we arnine the existing conceptualmodels invoked to explain autric potntisl and chlorideprofiles measured itn deep desert vadow zones ad offer analternativ that better aches observed data. Our modelIncomporntes vapor utanspOrt sad tes obset ations of tem-porally invaran matric potentials at 3-5 M depths (ovcr-S year monitoring periods) [Ausdrask. 1997: &-anlon etal;. 19991 as a bads for specIlying a fixed subroot zonemantc potential condition . By employing ths condition. ourmodel avoids doping the comrnmon assumption of down.ward-only a cdvon to describe the flow remgic.1.1. Stady State hodels: Hydostsdc EqulUbrum andUnit Gradkat

ta) Sail water mnovs In response to a hydraulic potentialSadlent conpdsed predominandy of the followin compo-

ncr. te gvitation potl 4(). te m c (or psue)potenta ). aI d dh osioc potential (wj [HIdk. 1980].The dc tio above a rCC1en1s level. smatlly desglatedas-he er i bf-deoseeValktral potentiaL-The -

LES-051 14

Page 2: 12/31/02-Intervenor Pre-Filed Exhibit 033, 2002, Deep arid system … · 2020. 1. 5. · 1980]. The dc tio above a rCC1en1s level. smatlly desglated ... t 993 Gien £ tni§ocp sil

------

: iLVUUKU ti Ad UktYAKIU bYbIM HYUKUUYNAMILb tAI I

(a) 1 (b)

+I \F

0,8 W 1.S ..

a W.

etVII - -.9]_ .

bl t * M puic Pc als 0

Ft4u re 1. (1) Coneptntonal hysdrsr (tc.quili be wn t bodel tmodified farm Fiuw 3.2 rO"m the NatootalReeamrch Cor cir [1 99S) Wad ValPep c repor. (b) Unit gradient rodel (modified am Figurc I in Nomoera! (19943).

matrIc potentl desrabes the inlerlCtion between the lquid wc would expect observed prottles to plht close to Iheand the solid map t Cplazy did adsorputi e ofoies at1act lydrostic cquilt line'o wmter eoe shou d

asd bied due to he matpr x, teres. reduclt dte pote s d al sos IJ itednle re vert small nam below at muc bulk ater IHilIa 19803 i By COtF [d] The ndit dn mfx pot thl ic potenveotoa atj potenils inUnsturaoted soil (Le.blw te tias beo th ativ roo mo Xcati litl tote oa

fezne a her p ) a200t2 gaw ad beoe dralic hydicnt ezhibi a e 4 f ' as llted oninrsTio c mcoaniceptua sodris [Strha, 1 6].s e thc hypotheicl profile n a Fiure I . Accodingly, heosmt potentialdesre besW ereda tionosoilsaterupor hydaulic ad ient blow p ie root one or shbelow Ipresr due to the preece of soluces. Ossnotie potentials flcution zone, equal unt I ine thertcl downwardare jenerally much smller tha masic poenas in arid direction a nd tfie domwnwu, soil w, tr flux equals thevadose zones [ Wa'ord 2002]. naturted hydmuliccondusvy [C .1967; 1/Immo(1.4 Two co52mmo conceptua modelsthat adeu vadeSe e t at, 993 Gien £ tni§ocp sil p e th stedy .sut

zone potetals an te ffconventinl hyrtadc equfllbiwt unit adet model jpredicts Flt tbe dtwzaward flux belowmodel ard thc it grdient modeL According to te bydo- the root zone equals the i lux, s tie nterface.stac equlibrium mnod (also trmed sic fuid dton or recharge rnsc rSt& au 6 I .and gzavi'y capllarity equilibrium) presented in text book C,] Mcasrd saule frol h thik* vadose zones(Lt.e. B , 1972; Xoorc d at, 1983; Ay J d.L, 1991: In dse arid s wee ta s dvcm frm theLoou wtd Faka, 2000a, 2000b3 and papers an desert tinearprofileprditedby equiliiwm modlvadw voe hydrology [ie, NaWedc Rearch CouncU and from a uniform pt ient(WC), 1995; Sc=Won c1, 1999; S5 4on 2000]. o-Dlow modeL Observed d from interconditions result when the matuic potential (t) equally drainage mm a typi edtreelynegativebalances the Zrsvitmtional potential (z) (Figue la) Assum v near the sudace and aim ssos with depth

g teldy stat conditions. atric pot l t pbtbelow (Fi=urc 2). Conpao_ of observed profiles to theirWsepctwarin cin~i g Jidimp d conspovding bydrotic ullibri line in Figurhkllt ict down- daonswae iS pat=cr of t l she Slopes of the.

a flow. Ifth hydr c equlibrii modd Is duate, total poteatals cicuae an pwa c gradient In the

'0

10. . I 1 -20 w x , ,, .

.11,11111- an 'gz ig

O 30 .1 1_- - .

40

gure L 0 d, d e T

kAW po*Wsi (m) Kdr powntW (m) Matrc ponA d )

*F4 rt L Vado-e mw Va poies m~r &m lt e roa pin N W Tt=.-

LES-05115

Page 3: 12/31/02-Intervenor Pre-Filed Exhibit 033, 2002, Deep arid system … · 2020. 1. 5. · 1980]. The dc tio above a rCC1en1s level. smatlly desglated ... t 993 Gien £ tni§ocp sil

WALVOORD ET AL: DME? ARMD SYSTEM HYDRODYNAMICS PART I J4 - 3

upper profile and a downward hydraulic Vradiect below.Capillar/ frc draw soil wtn upward and dominate flow,po es Wth pfI of out 10-30 m it epronlesdepicted in Figpr 2. Below, the hydraulic gradient reve .and so water drains by gravity. Similarly, Swlo et a(19971 report that y metsurements In intnrdralup tres ofmar bsns ia the wet eerly indite upwardrivintorfotr inotves in thetop 20 to 40 m.Te

diit Cux patte se seveal concerns. the mostobviOus eardin ie uiibrium state of the profie. The

Uak ofa toiso source to suppl at flxes at the plane ofdivergence located deep in tahe prle aises questionsregarding the merit of a steady state assumption. Ansitlerative assimpdon is that the diverent moisbte fluxpattern reflects a WZ rr p n rsng fromtraiulC flow procejes [Sx~mlc, 2000J. A tranrient ltor.pretation evoket WveraI questions. WIUa are typicalhydraulic raponse times associated with thick desertvadose ? ArA. o wha depths do seasonal suxactransients acuany propaate? The tdy presented here

10

920

30

-9- YU= ca

lsAAVlft avIMI - -. -~ . --..LI -a sTIM9ByHM

40 lbtqWme It":-- #, SoMUiMtM WA

so

0 1000 2000 ; 3000C r 1Chloride concentration (nt L )

FigureS. Va= zo= chloride profiles inder desert floorenvionments in the western UnitEd States blonde va'emsis reported a pore water concentratons.

expicitiy addrense te Ormer quest Logc S mon-iwt aOdjes addres tie laer questlot end _epo_ Us onra Y used Io quAtdty soil wt tluxes and ages

stempor, variability in Y WI eab below depths of based on Mss balwce Ka , 1988; Cdok d at. 192;-.3-5 m underdesW vegertatio [eig.. Eidd et aL, 1973; Aftison datL. 1994; Mi , 1994: PrYidk, 1994; Wood,firdch,. 1992Z Anrski, 1997; anlon t al. 19]. 19 er av he soil via evWotranspialDning * 5yyar monhoring period, Axdrskl [1997) cloridde , 1i dhrebY i;ncas In the p Me water Caocerobsered Om V under vegetted sims in be Mojavv Desert valm Greater Chlorde value thuts Corsood lowertgained betwe -600 to -400 mt a .55o.5 m 50 water fluxes. As=VndOs emPloyed.;It the simpledepth. Vegstatd desert vadose zoon below a few meters chlOre trow baC0 (CM) approba inl= (1) chlor-appeared to be bufrcro fiom damsad seasl swfkc nW Is derived Gwm atuospeic soue dy. (2) chloideu- nts at est on the decadal timescal. . oves drough tb soil profile by e dow

C -Apptication of the ot gradint couccptual modd to wad idvecdo, Lad (3) the chloride deposition nte Isthe observed profiles implies that the tone of upattd liquid cOastOL These simpplify assumptions ksd to cacceruhi.flux in Figure 2 is only a temporary phenormeou (Le, pane ties In CMB age ad flux est s ( eu at a4 1996;of the selo~l or oege r Variri th Ics ta VM %adose MAN and Mutpkv, 1991: ScinMon t ct. 1997; Scmnlon.zone). Tis Would Mquire, hoVr, dts he ctive oo 20001.zone, where tbaiges iin soil ioisture storae are rai[ly (ilt An ideslied chloride profile und steady pistonaffected. xtd to -ore than 10 i below the sufac. now Coaditio;0 with extuadon of wuatby roots WOUldAlt b some deurt vegetaioa species have be docu. be decItnzed by c _oas inceasing with depthmented tb aetd thdr oo Io depths of 15 to 25 m through dte root zone to a uniffor vaui below the root[Canada! et a*L. I96PM I Is ulecl~y dtat m dwamvotirig zmr- Measured chiorid profile w z In.zon depth of this sniuntde is ubiquit over tbe biogeo- the southwestern United Sta d fiix O~e idealizedX*phical tange of sites where these types of V profiks am profile and typcal display a shallow bulge co*niing

e Canadil! et OL (1996 reports an an ax- VaY igh concewrttS nd much lowe; Mgtively tinj-imum root depth to deserts of 5.2 * 0.8 m. The unit gradieat form mceantions at depth (Figure 3). D aturc fim theconceproal model aso ofremrs 6m the lack Of a moIst Idealized prorde records a voklaion oflie eAd flowsource to suppby the downward flux unless episodic Infil- assumptin Wood. 1999]. Observed ehojd invenworiesIration reaches depths of >10 Tn. a supposition Conuwy to contained within the shallow ble ofken erepond to -.15observations [c.t., £nj4d et aL. 1973: Fhchr. 1992: kyr of accumulation based on long.tem sverag estimatesAnd.nal 1997]. of chloride deposition fPhiUes. 1994J. Suiantlal evde

Dliteie noted concerns regarding thespplcatidon of Ss tothe ydrostatceuilibrun and urit gmdiert modils to deep warmer. drik conditions at 12-15 ka inidx southwesterndesert vadose zoe i prfiles, direct otterprUatnite ofdie SUtato[BCnSo tl., 1990:narrr I . so. I.°91: P.hilod n FigrV 2 sug ast et warwermove t in the a el . 1992: .llen a-id Aedernovr. 190)]. Accordingly.depth intkral fom 3 so -10 or 20 r. Yet. whe applying stverl studies antibute the Chara r oa the chloride bulgethe cov entional Chloride mass bane set or quatons. a Macsurcd in southwestern Uaited States ndosc zonesdowuward-ouly amdcte flux of liquid is asued. (Figure 31 o tuis wel elocumneed paleoimiatic mmition

(k*nton. 1991: PhIiillp. 19943. pxvsabJy. the stif tolowcrprcllttin ates and warmer temprs tume bmought

1.2. Ta t COneePt Modes: IdUC Recre about a irdUction in the wAount of soil " i=" percolatingand Zete Rargk e through the root towe. This 'nueog etal

-- Pae) ChIoide, deposted ot the grourd Stuface In wind- modei posits that th climate hif t t o a Rblohin flout and p4in . ownw-d -soil water surface flux-ugth-In much peter -

LES-05 16

Page 4: 12/31/02-Intervenor Pre-Filed Exhibit 033, 2002, Deep arid system … · 2020. 1. 5. · 1980]. The dc tio above a rCC1en1s level. smatlly desglated ... t 993 Gien £ tni§ocp sil

* .4 %.%LVJ.LUWJ~IAL.:UftkAKWbTbjLMfl)UKUI)INAMILn rAKI-J

Chloride COOCC132adoa at sallow depths relaive to thos*wund decj in the pnofle. A mom extreme vait of du

explantio that could be teamed the Nworechue modelpposes that no son Wa bas percolaed below the romzone since the aui cliste shift at 12-15 ka. reuhing l'the sccwmui orsof rcifant amounts ordtiode withithe root Zone.

1[21 In didoa o estiman soiu water ages, fte CMEequations am also used to quantify current Wil water fluxa(below the reglon of chodde acuulation) (PhUiWps, 3994Sconton. 20001 and paleofluxes [Phillips, 1994: Tyfer i ol.1996]. CMB estimas o past and preet fluxes apply t;the redueed he conceptual model. Mom dilue chlor.ide conwntrations deeper in the profile rellect grater soiwater fuxes associated wiith a weter pust climate. whcre

*tbe rc er diakide cnonutrions within the bulge rflecmu kss percolation past die toot tone inder the cw=,mid climate. Adoption of die zero-mchate conceptual

mode lts the CMB applicaioa to estiaes of puleo-fluxes ad chloide ages below the base of the chloridebulge.

13. Dhparity 8twcen r ad Chlorlde Vadse ZoeProrle laterpctans;

[il] Tbe d d am C 0 COUCeptuallnodels invoked to expln z chloride profiles donot adequately explain fte co ponding v profles thathnicate upward fluxes In the upper 10 plus meters. Reso-ludon of this App dasm rysaerves as ouw pdimayobJectie in develop im re cocptua model.The assumptio of dow:%wadooly advectiou enployed soquafy sod wa Iuxes using the CM equadoos and thtomit gmlicnt wode approach Niamo d at., 1994] nects-awrily produc positive csinattes of recdre. Such' est-

tes y s ort the Idea tiat diffis rechare acrosshe areus of arid and semiarid regions significtntly

cootnbutes to the oerall bsin-scale water balance. Ste-pher (119941 provides a ammiay table of diffiz pcb=6.

fro 17pm' ssudies atragemfioatfzt 3100m1 yr at aemid Mnd aid ste A ouh the eunployed for quantifying Me fluxes included p ical and

temical approaches. all alyses assumed downward Amowi te d prof n con t tao re Coneept

model a es o flow pamt the soot zone or drg abe* deee p e A &w conceptual ad umercal model,

developed and tsted In tie next section, provides a basis foras to chaleng ft umpin of downward advection orzero flow to describe die mosure flow reccm in dep

descrt vadosc tones.

2. Deep Arid System Hydrodynamic Model2.1. Coneptsul M)ode.

(i] The estimated ages of chloride bulge inventories Inthe soundm:ster, Uoiled States indicae a ink with die* laing of the Ro o-l climate sift at I2-IS ka. Hownw, the paleoclimate explanation alone hals toexplain die V data from dee profiles diet ontan &be

* Caatristic chloride bulge. T tertfote we rpost thatthe n to a w = and drier ellte Zterep ae-*enat of mesic vesetadon by xeric (desert) veetitioniduced tie development ad maintenance ofvery septive

e V in he soil at the base of dh 2nertone. Accordingly. theit effects of episodic Infiltrltim events arm damped In the

e aerwrfa soil aId do not Wfluam te deeper vadoswt flow regime. Deteil vegetation has been shown to beI capabe of exanctl soi moisture under soil V conditions

udrya -800 m uul raL. 1974) and to be rsistant toxylavCio ucndeowil r condidutiosdryas -400m lo

3 -1000 mi [Poc*.mait act., 199S). Multiyear lysirnetersstudies frm three and tes investigated by Gee el at:(19941 uggested ht vegeation s:de primary factor con-. trolling 6 water balance. Gm cr aLt 1 994] found that deserto vcgetation cliWinated deep infiltration ovr the monitoring- period at the southweten United Siates sites. Thc lysimeter[I rsuhtfromGetetal. 19941 wecohsistent wit the absence

of seasoital tr tnnsients proating below depths of about3-5 m under dsert vegetaon, based oc sdies in which q

Iwas contuously maxsured by Insitu soil psychronescte.I e-r.Fisdcher. 1992;Anduklf. 1997; $cIon et al.. 1999].

-4a #sk (1997) reported that znoituft from precipitationtbat awnf ates In the upper 75 cm removed by evapo.transpiration on a seasonal basis. aV thst seasonal vvariation remain cnined to depts above 4 im at thevegecttd De , NV site. Altbouvo these sudios obviously.canot demostae t W at deptws of-4 v have remainedconsIant over the past 10-15 kyr. they do support a keyasuptbon t i t wIn deep deset rool nes do not exibitsi t seasonal dcan*s as might be expected based onprecedents from vadoe zone studie In buid regions (i.eJoharo. 198] In 'ation to d* fixed subroos zonc Vconditido our coneptual model. *hIcb we term the DeepArid System Hydtodynan (DASH) model. incorporates aceatm profil described by We, mm wsl eofAr.vial gadient and inclades the effect'of both thmperat and

an vapor deasity and vapor fluw. Lquid and vapor canmove both upward ad downward, md at dfferent rates andopposing direcon hum each odhm in asnuming a fixedsabroot zone i' condition, the DASH conceptual model doesnot attempt to capture the seasona x o flux dyamiesin the Upper few meru Those deirmics wuld inCi, foreample, the ne downward vapr:flin ie0 upper - metof soil that should result fron staonal senpature vauns.bions (Mili 1996].

2.2 Matl atcal and Numerical MNdwtis. -We use the finit elatnent )eand mahs tsfer

MM ) [Zrn46W ef ol..'19971 crfue code fOr simu-lating unsttrated flow arid transpot in accordance with theDASH. meduced-rechaqrg and zro-reharge concepwalmodels. FEFIM shitilales tonisothermaL mnultiphase; tnulii-component flow In porous mCdi. WIH Incorporatesvapor tanprt dnvez by changes Im vapor density msultingfont a trmperatte gradieat (thermal vow flux component)and fiom a V gradient (isotherma vapor unex component).The van Geguvhrt relative peahcbility flntction (winG .uchw,, I WM dscrbcs the rdktionalips between pe-mcability And sdinn a betwe prre and saturs-lion. (Frnhert model description Is Included in theappendix). Asmumpwtsons nheu n FEHM include;: (1Darc's Law appropriately describes the movement ofliquid and vapor. (2) local thermal equibrium bcweenthe fluid and dte rock Is maintained. did (3J solute transportdoes not affect the tr er of flid or beat Additional

.LES-051 17

Page 5: 12/31/02-Intervenor Pre-Filed Exhibit 033, 2002, Deep arid system … · 2020. 1. 5. · 1980]. The dc tio above a rCC1en1s level. smatlly desglated ... t 993 Gien £ tni§ocp sil

0 t* @ w ws i

WALVOOltD ET Al.: DEEP ARID SYS1M rYDRODYNAMICS PART I 44 - S

T-aw 1. Iut P ualmcetet Used lo DOOb Propeaiks =4dCoOdosw of dth Mid Doiq fr th Dase Cae

Soil uza WCH40md MMn

?az~ke dcmly 250Spei& k= lowsasdck220t4 r=-mlSaturd pnlibqt 10-nt s!VaX GCliU P9e3 ad n 4W.S :Rcsid" sd ,x14un sgwuons wM

Gvefo VSko ' }5C WIn~WAW dk dqcF 200 M'Dsp*e. of Utd taome Y 4 MEfci" wolalk dMsbo woiemt to-, ml ,-1

assumptons imposed in fils study, but not iuhernt toFEHMW inchl (1) I0-D wr*4 lOW adCquatelY Tepfeset*th ydrodynminc. (2) ak COW is negligib (3) chloddebehaves coaservativdy (poambo t SW Ponrtctive) xpd isnonvoladle. and (4) frc Mmopores, or Odhr prefer-Ceti flow pa*hs do, affeCt the sy M Cld Isassume Om to ea the sol tuuh pul water lpakesince most plants exclude dcloride when sbsotbins water* th gb the toots GoridNf, 1967].

2j. Input Parametrs. Boundary Coaditigns, andInitlsl Condidins

* (I] A 200-m vertical coulo rprs t phxicalsystem a geveralized alluviumn vadose tone, Used for testingcocMta mnodds of 10 uOu ip, phase Ilwand tzspoi: li ad crgoons. The ruA parxter values*desiad as the "bse ase" a given in Table 1. The topotih i rtical column reprnts the gmroad anfalce. d thebottom of dte colUM re ts the wae table. Tenper-altur tgradieits rerwl fm pecifg "rwerau" at fetop and bottom boundries of 1IC and 25TC, based on aCaen a==I suface tecmrature In the desat southwesernUnited States (top boundar) and an avtrage geothermd

* of 35-C kru' I B5k4kmwgd and Weir, 1973](Roar (1941 use 30'C Wm . Sase case ol p ts.describe a bomogenou sandy i textur ble I Actsidaf satution of 10% Is comwtnt with data fromnalluvl waterial at the Nrvada Test Site (Izahwrd et al.,20021. A' low siatations near the, base case residuals atation (I.e, 4.5% molstre content), the eflective chlor-ide diffiasivhy Is -40" mt ,-1 [Ca= and liet, 9M;5chearcat l.. 19951.

fi?]. 1ntially. the stem Is se at * unirm downwardliquid Dun of lo nns yr'. pnatshe ro e. Mpcestcnts-tin of a reltlv* aer c a [1 fs et, 19961. Theidal solute profo consists of WM chloride Po

water conceatnraon of 10 mg L-'. Ap1cr solutb fuxcf 100 mg .2 yr' ' at te surfamc boundary silateconnuous ch1ocide depoddoa (Table 2) This prescribedflux reprscuts both dry arid wet chloride deposition and isa tI"al, ptesenr-day value in the US. southwest Drf.d'ie, 1989]. We assux that although the elative coa-tibutions of dry and wet chlkide depsitioa var ovr timeIn respon to climate chaes. dhe tsol chlorde flux,mainly conutrled by ditwce to its oceac souce [PaOand WIerby, 1957], remains constant Impleenting theDASH conwptual model. a switch to a dry climate issiulated by specIM an a&%ra precipitation rate of2,0 pnm yr' at the pac (not pust the rot zow) andimposinS a fixed v at 4 m dtL In accordance withobservatio from root We wuderlying ^ dese t weeation

197; Scln at aL 9 I9]. The fixed iubroot.zone v ctheD ds h ASH model fom nIereduced-rccharg anid zero-rcharg nmdes in thesc situ4-

Wo.

2.. eting the Dash Moddl Against PrevousConceptual Models

[jil The DASH model is tested gant the rdiuced-rccdme ad zec,-recharge models by comparing eultsfom sAmulatns ru for the fixed aubtoot zone w codtoto results from a reduced-ubtm boldm co n ofO.I sinVT' and a _zero-flt boduzy condition (Table 2). The

nlaim Ons pceed for I kyr stbsequent to the taitiorftmn the bikial do~wnwid flux steady stat to the modad coadtons Ietifted with eacheoncephu node noIS Lyr nmtme crittrion Is based on tpia measuredciloride inventories in southwestern United States chloridebulges ([PAOt. 19941 Moded Wad Achlride profils for6c DASH anrid rduced-rt and iero-rcharge ccp-ta models (Fsgure A and S) are covpased to typicalobserved profies (Figures 2 and 3). The redce-echargemodel ntiduees a Uwils k negtiv V profe (Fi 4.)and a broader chloridc profile ( tu 4b) than thi Otftvtdprofiks (Fige 2 and 3). The tero-echuge model kodu.cMs peae clride proflmS resembling otbered pWfibWE enerates mucht kss neative maric pottarlu thancwonly observed n o n s, both the Y and c bideprofiles genaatcd for the DAM model closely resemble theObsred profiles. threby favorWig the DASH MawepUll

aeotualodc?T.dsbS v aiSd Oim sadmv Cmdikiams for Tsthna e Th Cc

0*ediw.sdsy CCe diiao Mat . Cmrdiricosi Mode. AD .dRdZac&" Zeug Reedaazt DASH;

tact kab-sti" t0 an If 0.1 mm yr, 0.001 n rM tWAftetf A WA PA 200 nunrS~ urzn NIA MA MA 1 X MQlSr~ t e Pm Om Om 0. |ssabrcaw 're *rc .WC IJC .IcW* 2tft 25C WC 25'C -

CgOnm' 10to..1oy 1 0gt tOO aSo4WC*dd eoe o I L lgL t00 a L. Of .¢

1 -ga adosv " . -rwW , i -

LES-0511S

Page 6: 12/31/02-Intervenor Pre-Filed Exhibit 033, 2002, Deep arid system … · 2020. 1. 5. · 1980]. The dc tio above a rCC1en1s level. smatlly desglated ... t 993 Gien £ tni§ocp sil

*CWALVAIW tI A4 .. &t±I'AViL)IbItM MUKUU~l NAMItb rAKJ I-- -

(a) 0

50

-'-t=Sly150 -4~I lkyr

t1=5kyr

200.50 .40 .30 -20 -10 0

MaineC Potentital IMl

(b0

200.50 .40 4304-0 -10 0

Matul Potenta (ni)

(C)~50

100 taIky~ *-t=5kyr

150 --- t 1okyr- t- 1w kyr

200.0-SW4W0-300-200100 0

Matric Powwentil

0

10

30 =tR r40 --- t* 1 kyr

-.- t =15 kyr.50 ....

.50 40 30 -20 10 0Mattic Potntil (m)

0 -

10

i20 t-0 4

W.0-- tt I yr t40 - t g 1 kyr;

40 tz l

50-0 -40 -30 20 .10 0

Matft Potenbal (m)0

10

;20,- I- t 1r0

40 -_t 1tOkyr- tl15kyr

*500- 400.300.200.100 0Matufc Ponm'tal (M)

Figure 4. Numfically simulated Wr profiles for the (a) redoced-recharge. (b) e-uage, VAd (c)DASHI co(epual models. ThC left gnphs display the eniire 200 mo tehk vadose zonc, and ti&ht graphsshow only die upper 50 Mn.

model over the reduc*d- carge and zerecharge concep.ald moddeL

2.5. C reat Translcnt Stte119( The D4SH model moisture flux profes below 4 m

Air the bla case IS kyr fitom d*e switch so a 6ier*duuate rreet tli currem conditions and indicate diver-gect lii W Wt moisture fluxes and upward varfluxes (Figuf 6). The Upward georhennally di-en Vprflux is sourced by eaporaion fSm the water able. Theupward isothermal vapor flux contnbutes sivificandy todzybg In the uippa 25 m. Between 4 and 2 mes. vaporfiuxes exceed the liquid flu. by au least an order orma*ibude due to the veay dry conditions and thus lowumsmtaed peeability. Liquid flows upward i the upper13 mmmd downwad below. Downwad lqid fluxes below13 incse with depth as a result of the diveret

4UVnV process. Calculted liquid and vapor fluxen in thegion below tbe fiaed subroot zone W and sbove the wsur

table am extremely small. on the order of 10 2 mm yrI(Tablc 3). In bont* So 6C Vay snal! fluxes predictedusing di DASH modkl coocqp. ftheCMB approach haed

on the reduced-rcharge coneptual modol, yields lagnerdoiward fluxes below the root zone ad across the watcrtable interface (Table 3) Furthiemore, the DASH modelflux distributio that rlects the carrt condition (Figure 6)iustrates that the act moisture flux below the-root zone isDOt equival2 in manitud r diretion to e JAux -acsthe water able interface. The. moisture flux disuibutionclearly violates the key steady tate ssuptb on for theconentional hydrostaic equilibrium and the unit gradientmodels. The moisture flux dittribution also contests thestagnant condition assumption for the zero-rechargemodeL The tsient stale of vadose zone profiles given15 kyr to apprach equilibrium vit the fted root zone w4condition suggests an extiemely slow response of tbcsystmn

2.6. Hydrodynamic Equilibrium Slateli-o] Sikulaions can.ed to stehdy state using the DASH

model and thEc base case sca of paraneters yield imporantinsight into the equilibrium stare of deep vadose zones andresponse to tn aid.climate shiftL The lack orfshularitybetween Ibi DASH model-gerated. steady state V prmile

LES-051 19

Page 7: 12/31/02-Intervenor Pre-Filed Exhibit 033, 2002, Deep arid system … · 2020. 1. 5. · 1980]. The dc tio above a rCC1en1s level. smatlly desglated ... t 993 Gien £ tni§ocp sil

WALVOORD ET AL: DEEP ARID flSMMM HYDRWODYNAMICS PART 1I- 44 - 7

(a)

60

-E100 =-0 I 3: 1

9 I=-t I kyr150 -a-- t 10 kyr

--- t=I5kyr200

0 1000 2000 3000 4000Choride(mg 0)

0

10

430 -- o- teIkyrj v-t 5 kyr

50 .0 1000200030004000

Choride (mg L1 )

(b)SC

-E1o

p500

} t0

- t IWr--- twikyr

-*- t = 10 kyr--- t= 15kyr

0 10002000 3000 4000Chloride (mg VI-i)

{.pr I

0

10

0 - t l kyr

4 -.- t=10kyrtn=15 kyr

500 10002000 30004000

Clide (mg L0)0

10

-.- =t5 kyr40 ---- =10kyr

so0 1000 200 30004000

Chloride (mg L-1)

0

so(c)

I-- *- 15t =

:100 _i I . t= tlkyr

UI -*-- t = 5kyr

150 --*-t = 10 yr

2001 -ui-y0 1000 ZVO 3000 4000

Chbride (mg L1 )

Flure S. Numcrcally simulated chloride profiles for the (a) reduced-nthrge. (b) zetv-rectg. and

(c) DASH conceptual todct. The left graphs display the etirc 200 n thick vadose zone and right side

graphs show only the upper SO n.

and the y profile required for the seady stae conventinal ad the liquid flux ditction shifts to upward. The upward

hydrostadc equilibriunu model Iteas a mnor wisconcep. liquid flux In the shallow vadoa one is extInely Small

tkin in conventional unsaturated flow theory as applied to due to the dry condtons and vny lw unsaursted peu-

desert vadosc zones (Figurc 7a). The DASH model p aodu- *bility. The equilibrium sa s Ch' c rined by dvn¶tamc

ces a curved IV profile at stedy sate (convex upwa interaction bctween vao ad liquid fluxts Vswnft to a

similar to measutd v profiks (Figure 2). 'De curvature n upwad unifom moisture flux of -0.012 Mm yr' fb

indicates a diverent liquid flow pattern in which liquid the bas case.fluxes are upward in the upper vadose zone and dovuward [2iJ The transicat history of the bsec ase simulation

below. The moistum flux profiles show how a divrcn canied to steady state suggests a vey slow rsponse of

liquid flow patrer can describe a steady state. nt upward deep, vadose zones to an ard clhrttemxclc vegetation shif

flux regime (Figure 7b). The upward thermal vapor flux Modeled samdy sta metric potental poilles that tppear

sourced by evaporation from th water table. decses with similar in charcter. In both shape and magnitudm. to

heiiht above the water table due to the decreasing empur - measured profiles could suggest that observed descrt

atur and vapor density gradients. To matain equilibrium. vade 2 nes are i equiLibrium with curent wrfa a

Vapor covdenses and supplies a downward ud flux In the cooditoni However. ea ination of the response ties

deep vadose tonw. Above some dept (-90 m4 for the base associated Mth the modeld seady state profiles sggsts

-usseL c}.capilsry forves.-ecsuldng -t -the ipecifled -sbro 4he c ny.e uhc d q nl to cem-old

tone Wv. exceed Paylational foeces s o Wie liquid. ( l-C' or 63% sponse ftm tdal so final state) change in

LES-05120

Page 8: 12/31/02-Intervenor Pre-Filed Exhibit 033, 2002, Deep arid system … · 2020. 1. 5. · 1980]. The dc tio above a rCC1en1s level. smatlly desglated ... t 993 Gien £ tni§ocp sil

14 - B W&LVOORD ET Al.: DEEP Ail SYSTM ITMD4VYW~MICS PART I

0.--o-- rowrropor W /

50 -s- wmAW VO

=10 / 2

~150

200-0.04 -0.02 0.00 0.02

Moisture Flui (mm yri)

Fgure 6. Moisture flux profile (below 4 m) st 15 kyrsubsequent to the shift from sicady downward fluxconditions to a fixed subroot zone v condition (DASHmodel). Neptive values Indicate downward fluxes.

the matric potential profile to definc the equilibriumresponse. The calculated response timce of 80 kyr exceedstypical timescales of long-term cimate change, Which aeon the order of 10 to IS kyr. Consequently, we wouldexpect deep desert vados zwes with Tailirparanmeters aste base case to tl bc in a vay slow trnsition towadsteady state, but areatheless to be far from the uue"Steady StAft.

[22]. The moisture flux results (Figum 7b) show thatvapr transpon controls the byzmdyaaz= at ady state.COcq tiso of stady stae r profiles fr a fixed subrottone y of -200 ro twera with Wadidxdu soealVpor flux, thOmmil Vor flux and total Vapor fux chipha-ies this point (Figre ). The hydrostatic equilibdrum

linear profile describes the stedy stae if the thenral vaorflux is aeglectcd. regtadless ofwhether or oth Isothermalnflx Is consider. In ocofttst, cvxed profiles describete nonisothermal steady state, because the nomnformt l ot fux a coipensati moistre fuxL.be v profil )la =r ac curvature (defined rm asdepe of dcvit frow die lawprofile) In the absence ofan isothermal vapor flux (Figure 8), and dius descrbes awer eady state Wihout the isothermal vapor flux, AU ofthe moisntre lilerted by tbe decrcasing (with temperateand height above the water table) thermal vwor fluxcondenses and supplies a wonurifom downward liquidflux. Howe , weca Iothemal vapor cffects am icorpo-

nted4 some of the moisture liberated by the decreasingvao flux is drawn Upward oad out of the system througbdie rubrot zone sink. rslt in a drier steady state.

3. Sensitivity AtWyis1[u] We perform a ssitlvfy analysis by systernatically

varyinr pmetwers ad cOMPU1 results to the base easesolution. The sensitvity analysis serves three purposes.First, varying parwreters within a typical range of teasumdvalues helps evaluate whzther the DASn model broadlyapplies to desert vadose zones or is narrowly limited tospecial cases. Second, jesults from a sensitivity nlysisindicare which parametes exert primary influence o flowand ornspot In deep desert vado zones. Sucb im evalua.tion may channl future research cfforts to better cdarct-ire the mori sensitive parameters. And thind, the range ofresponses obtainod thirough thi sesltvity artalysis providesa bils for asessing the uncertanty associated with apply.ing the DASH conceptual model to field sites at whichsvea key pmaeters may be poorly constrained. varisables considered in the sensiivity ayses include gco-

de grde sil type (Tle 4), waer table depth,specified subroot zone v and vapr diffisioo rate. Simu-latim s aed to steady satt generate a ange of responsetimes assochted with eac variable.3.1. Gnothemal Gradient

PI] Since the base case moisture flux soution using theDASH model demonstrates the impoance ofthermal portansport at steady se, ve expect the nitude of thegeothermal rICnt to exert a m*o control on thc equi-btiu state of deep desert vadoe zooes. Simulaio rfiom zero TIC km-a1) ad low (ISC brI') through hgh(65'C kmz ) termal gailents [eg., Bliunc l =dWd, 1973) orroborate tis aspDctatio (Figuri 9). locas

lU geothernal grdiets Induce grater themual vaporfluxes, thereby reducing the depth f liquid flux divgnceand enhancing the curvature of They iprofile. The lareruetupward moisture fles asociad with Wher geolbermalradients rul in (aster rpons times (Table 5). be mogeothermal gradient case produces a oearly line ' profile(Figure 9).

33. Hydraulic Properties[o] To asess tbe steady state flow rImes and rsponsc

fic for variow soll p, we coqp. simulation rsutsfor sand (base cae). slit, and sTiir clay. Sated hydraulicpermeability and van Onrktbtcn fitting p ete amrevaried (Table 4) whereas thderma conductivity, ard rockspecific heat remain constant. The linertwopatneters donot Vr slnlucantly over the range m cued in typicalalluvial sdiments.

NMda Resulas

VAJH' DASN Model DAmhMome 0ASIMod

U14UWdFlux SM Iqid7 wprkh VporFla FMM

suheoct 2.W (S m dOep ) -l.a 4.0os OX?0 CAN0 0.0164War sbl beafA=e -10.0 -Q.044 CO-Go 0.013 -. 3

'NCW.UVC VAlue kjdku de in a Ganae.

LES-05121

Page 9: 12/31/02-Intervenor Pre-Filed Exhibit 033, 2002, Deep arid system … · 2020. 1. 5. · 1980]. The dc tio above a rCC1en1s level. smatlly desglated ... t 993 Gien £ tni§ocp sil

WALVOORD ETAL: DEEP A STEM HYDRODYNAMICS PART I 4 -9

(a) ° 'b' _Zs 2_ _ i

15. 0 11 4 0 1. l q u \125 - 125

-- m.Pp.4I w ow _.O- tviwo..- 5 _ _ ~ i gs ib1 m _ _ _XITS Ie TS ism

200 200.500 -400 00 -20- .100 0 .0.005 0.000 0.005 0.010 0.015

Mat lc Potenfai (ml} Mwe F1xw (fmt yrl)

Fgure 7. Comparip osteady sta poles prdlted by the DASH model and the tinca y profiledescribed by the conventional hydrustatic equilibcium model. The unit gradient model (Dot shown hee.see ecxatnrpl hi Figur Ilb) predicts a uaior= v' prols;s below the toot zone. (b) Steady state oistureflux pwfiles prediced by the DASH model Negative values indicate downward fux.

t-ut Sitnulatoo rsults in the form of stady state tprofiles show Mlc variation anoU the three soil types(Figure 101 HoWVer, the pose times My drAMatially(Tabk 5). T'e simulased sund responds faster than the siltand silJy clay systens fior several reason. baInly, the Uighers 3urated pemnialty of the sand, relaive to the slt aandsilgy clay. contributes to a shoner tim required for the thickvadose zone to drain and eQuilibrate lo the specifd dry

condition below the root zovC. Simulation results generatedbry vaylo the saturated permeability over severa rders ofaa emitadc for tc sand confirm tOe iporunce of lldpemcbll*t on deep vadose Zonm diag respo times(Table 5). The drier antecedent (t S 0) moisture conditionsfor die sand relative to the fmwrgied soil ts alsofams a Etr rponsc In fte 5d since es miseaceds to be removed to reach te new steady state. Howevn.this factor sppears to be secondary to perreabiliy incont ollog the resoe time. Simulations in which we vary'

0

the porosity Eowe 02 so 0.6 (but 'kithout chanigng sawrttionor ostoity) showed that response times decrease onlyslightly with demasing porosiy (TMble 51 TO sa a drysteady state, a oU with low porosity requirs less molsturcremol than does a soil with high poroskty. The reduction inmoisture Temoval oveTides the derec t vapor fluxcoectd with the reduced gs-phas volur of the lower

-ost Mateuis.

33. Water Tbl D qptk

[i27 Since the water table serves as the lower bounday inthe DASH model, the depth to vaw table stcgly aecbthe typ or moisture flux regim that develops in desert

adose zos. Figure II displays results fim a series ofDASH rodel simulations for wacr table depths rangingfron 25 mn to 400 m The model-generted v prflles (orvadose zone thicklesses of 25. 50.. and 100 In sbowdecreased eurctu with increased vadose zoe thickness,wilceting the deceased overll y gradient Figurv lla).Vadose zone with tcknees exceeding 100 mexhibit littlesensitivity to Increases in water table depth. as show bytheir overapping v profiles (figurc I lb), sinlar net upwardstudy stae fluxes (F re 12) and Idnca e s dmcs(Tabk 51 The =ardy state divergent luid flux patterndscbed in setion 2.6 does oct develop for simulationsin which the water table is ,l0O Ds deep (Figure 12). Thisovation Is consistent with the 92-m depth of the plane ofdivergente F(r the 20O-m vadose Zone base case simulation.StlL vapor trnspott doainates the steady stae moistureflux regime for water table depths exceeding 25 In. Theupward vapor flux enerAy exceeds the upward liWd fluxby at least an order of tanitude fot thick (>25 It) desrt

Tabl 4. Parnmc" Used In thc Seaitivity Analysis for MireeSoil Types

S a e s d w r C rwd o M nwmGSS i l T ~ e P a i lh m t i c r a . S e r a o sSad I x 10'| .1 4f5 m|.l I 9

_s ik yi a 7 w Ji m 0 m '.t9%My day 7 x lo' ." 01 -t %t1K

.Es 1000.0)

200 1 t,-250-200-160-100 -60 0

Matnc Potenbial (m)

R-ure B. Comparison of steady sae V profiles predictedwhe bo isotherl and thrm vapr bxuport are

* included (DASH. Okugles). only hetrml vapor flux isinclud(circes) oly oherl vor llux is Included

sqrcs). an Without vapor suix ( ia pM oiiCems).

LES-05122

Page 10: 12/31/02-Intervenor Pre-Filed Exhibit 033, 2002, Deep arid system … · 2020. 1. 5. · 1980]. The dc tio above a rCC1en1s level. smatlly desglated ... t 993 Gien £ tni§ocp sil

"_ 10l WALVOORD ETAL.: DEEPARID SM HYDRODYNAMCS PART I

Variable; Geothennal Gradient01 - _

so

'= 100 *-= '15 1N.U~ I... . ... 25CD I-o *-.0-- 35 .Bse Cms

'150 i-. 55'..- C's

200

experiments conducted oo unsturated matial [Phil4p audc Wes, 197J aSd tI tMe pom seca lwnnwr i 999rreport vapor diffioan rates diit cxcced the nue predecud bFiek's Law. Phit(o and de fres [1957] hypotheslzed fthis vapor difon enhnc ta is primarily due to the

pM-sence of liquid islands in pally tured porouLmedia. where vapor Is transferred essentially t imrtsneously frnm one side of thc liquid Island to the vext W.explore the influence of enhanced vapor difrision otresponse tines by vuying a vapor difusion enhuxtroenfactor. 0. from 05 to 10. although 0 > 4 is probabl:unlikcly under field conditions [Silveman. 19993. Ih eseIn 3 yicld reduced mesponse times (Table 5), emphasizinj-500 -400 -300 -200 -100 0

Matrie Potential (m)

Figure 9. Steady state V profiles for variable geothermalgradient using the DASH model.

vadose zones. In contrast, the upward liquid flux exceeds thcupward vaor Gui below D = for he simiulWoo in whichtih water table Is at depth of2 I m (Figure 12). Cailtydrt enough wAer upward flom the wer table in thnervadose zones to significantly increase the umatwwtd per-meability. and consequently incas the net upward l ois-ture flux. Model-calculated equilibrium respoese timesreflect the influenee of the water table on the flow regimefor thinner vadose zones (Table 5). Rcsponse times am verysbon for thin vadose zones but incree rapidly with increas-ing thickness and rach an asymptotic value of about -B0kyr f vadose zoes ticerth= about ISO m

3.. Fixed Subroot ZoDe Matric Potentil(is] YVeetation type and soil moisture availability

S *ly Corol the matric potential that fine pIant rootsmust susin wj vir tbe root Zone to surviv Am c recs ofsiamiuiou in which tbe fixed subrool zone V is variedillustrates the senitivfty of the steady sat flow ngicm andresponse times to the fixed w value. Response timesdecrase ws incesing (ess ne vc) subrt znc iV(Table 5) Although the driving force in the upperpan of theprofle dercrases wih incrensing uibrot zoney values. thesteady stwe v profiles i doser to the iWtal r profile(Figr 13) Las moisture needs to be removed flmm theprofile; mainfaincel by less negative sutim-o zone w loatain steady swa. tereby equftg ls time for equilibra-tion. Hower. a point is reached (at about -500 m for thisset of simulations) as which fncrasingly Deutve subrootzone values have very Httle effec on the equilibriumTesponse ime (Table 5). At the dry end of the vnne largechaeges in v correspond to vcry small differences innoisttre ConteuL Therefore the amount of moisturerequited for removal for equilbion to a subroot zone vof -500 Is vay close to the aounwt for subroot 2one v< -Sc: m.

3.5. Eaia nced Vapor DiffusionVIvj Waterapor fluxes me ul m spaoiaw *autions in

vapor dewiiy. which is a fhnction of both tempersumand atric potenil. por diusion, dscrilbed by Fick'sLaw, becomes increasingly mportat to the overl n .spot of moistum as the porous medium drics. Laborstory

Tabie S. Sumnaiy of Equilibrium Response Times CalculatoFrom DASH Modd Semaikkity Analysis

WUrrbi 7tWsos 7k..L lo

SaltY a 250

10'1 3259

175215

?oMftw 4 (d"m'ozoinla)

0.3 72C.A 77

.0.5 82CA 57

Gevohamaul rzadical Mr~ (C kra-')0 230is 134

43 S7S5 4 145 2

Warn tvbl dcr .4 (u)25 0.24so I I100 47

200, toa400 to

Fixed mmc acc mAteic poteWula vi. (ml-50 S-100 45

-400' so

-300 St.NPW d4ffinionr awlarmam fader 3

0.S 1220.75 971.01' to2.0 Is3.0 44.0 375.0 c

Dcaotes WdWu used in bas cas.'Fenc reltove so wpo dlfuic okz dmribed by rid' La*- va'alI eunutcrd so uvunced- vajwe dlrrffao.

LES-05123

Page 11: 12/31/02-Intervenor Pre-Filed Exhibit 033, 2002, Deep arid system … · 2020. 1. 5. · 1980]. The dc tio above a rCC1en1s level. smatlly desglated ... t 993 Gien £ tni§ocp sil

WALVOORD ET AL.: I)E AAID SYTM YftODYNAMICS PART I 44 - 11

0

50

iE:g 100 .V

150

* 200

Variable: Soll Type

-a.sand- BASE CASE-sit_ ify sl ay

-500 -400 -300 -200 -100 0Matric Potential (m)

Figure 10. Steady stae y pofiks for varabIc soil typeusing thc DASH model. Soil textre properties ae providedin Table 3. Oher bast case parareten arc given In Table 1.

the strong coocol of vapor snnsport on moiosture tedistrib-utioa Im deep vadose ons ueroing drng. particulwyan ter stg

3.6. Summrsy of Sensitivity Asslysis(so] Pz ts fro th nitivity analysis svgge tha the

DASH conceptual det applies to a bwad ranpe ofthick.uncnsodated vadue zoaes and dest vegtam in

inrrdhig rgios.Slh~laz iqidand vapor V=u patternsderdop in de atd oe zones with deep watertbs for * are nnge of aabks. With the VMcpcn ofreladively thin (<50 in) vdose zones, the hydraulic dryirespose time exceeds the timescale of major cliratechage. Although dte hydraulic role of deser vegetationIs "suably ge key Component In (hle DASH conceptualModel, the seeuitivhy ayszs results indicate tw themazddade of the subroot crne atrk potential (-50 m to-800 m tetd) coatributes *oY a idao ifluee Go demolstrc flux regime and response to d-in. So hydraulicpow, paritulary Ihe saturated pemcabilit, exert thestrongest ;luence on Ary lime drying when a largepentage ofthe trying is accommodated by gravity drain-age. Paramters related to vapor moverent. such Is geo-thennal gradient and vapor enhaement. ext a major

control on le im drying when most of the moistureWdistbutlon is In the apor phase.

4. Transition Reversal and Response to EpisodlcIriltration(i) The sensitivity results deribod above demonstrte

tha under a mnge of typical conditions and soil paname.thick *Uvia desert vadose zoes mpond slowly to aehan in surface bounary conditns represectative of at ion from a mesic to an aid clinwe and establishmenutof teic vegetaion. We expect the IDspotse In the rveedirection to be considerably 6asta. In ordet to evalh e theresponse in dese vadose zones to a prolonged period ofIbflMtioa we simulte svera transidtn reversals (dry-to-wet siftb). The rtspoe to a abort-Uned cpisodic Inilluationevent is also addressed by SxMulting a dry--te y

Requcece. Speei caXl, we art inteted in the behavior ofthe pulse oflafiltratifa water as it prpages with depth, andthe time required for V pwfiles to eqzlxibc o the doanpe inthe upper oUdaYcondidon. TMe idfrati nt sImu-lation addresses the wetting ad dryin behavior in the upperVadose zone ad tbe time reuied to reblish the pre-

l profile.(u] Mme iitld condition the dzyo-wet transtions

iMlustrat in Figures 4a and 4lb cooi of ite dry stedystate bus case woluiow (fiooi Figu ). This idal on-dition sums so bound the hg end of caculed etmes Anotbe initial woaditio (oot illustrated in 14)we use Is that established atr 15 kyr oftftng (see Figures4c sd 6). The boundary condto fx te weting peo itnthe simlatioas co=L= ofas specified downwad iquid fIuxranging fm I to 10 mm yr-'. Table 6 rords the IWiland bounday condition combination and the correspond-(a simulation respoe tircs. As oex the previous tanslentsimulations, we definc the respomse time by an c-foldcdnge in the V ptofik fiom Initial to final States. In alldry-to-wet simulatioas. the qystn epands rapy (Table6) compared to the wrt-to4y mitow for the bas cas(80 kyb. Tale 5). The si o weter codidons yiedsasponse times rangig flout S0 Yas for die 10 mtn yr'IWiltrahion rate applied to the nital condidon r gpaesain15 kyrs of dryia& to 375 years, lor the I mm Ytinfiltration ate applied to the day steady state u iitlcondition. The V' profiles developed afler various wweujngiwtimes suggest that even relatively shot periods of Infidtm

(a)V _0 (b) 020 so

200 -w .t= 2006 W0 w.tZm O 250 ASECASE.

-.- w.t WSOM 0 Wa.t =150m80--WA sloom --.-. w.t a W0rn

350100 400

-500-4 300-200-l00 0 -500-4004S00200-100 0Maluc PotenUal () Mari Potenty (im)

Figur I1. Stady state i prfiles forviLble ter table depths 0f() 2S-100 man(b) S0-400m.

LES-05124

Page 12: 12/31/02-Intervenor Pre-Filed Exhibit 033, 2002, Deep arid system … · 2020. 1. 5. · 1980]. The dc tio above a rCC1en1s level. smatlly desglated ... t 993 Gien £ tni§ocp sil

,#4 -w I! WALVOO$W ET ALU DEEP A~iD SYSTE1~ H{YMDYWDAMICS ?ART I

*0 4 ,. -t2 --eqo

20,,km Zs r.'1d

.m @5 .V@ ms. Its. uuaomMd ~ 1f00 410IIPO 1 Mg.~ Ph 'm ~'

n

FiguM 12. Steady state liquid. Vapor ( Jothernal and dXtmal. and vet mo~sn flux profiles forvariable water table depths using the DASH model Negtive values indicate downward fluxes. Note thechange of sae on bottom axis for the lop Icfl rapb Nd the bottom right Zrapb.

tion past the root zone induce a signifint respoe in vprotiks (Figures 14a and 14b). Infiltration could behypohestzod to result from rare, episodic, chlrae orwcater events, but the very bon timescales veceswy torestablisi the highly Dq~cn v profiles agues agalnstsuch events ding thc Holocene In places wbe thesenegate profiles am observed. This point is e dphaizedby a simulation in which water infilves p the rootWm at rae of`5 mm yr 1 oesi period of 10 yeas. usinthe base case paramtes Mie iial conditlo for thesimulation.consss of th devoped aSlWe IS yr ofdrfiZI (Figure I Sa). Tlbc siulation proceeds for ten ymsWm a constant lnfilbitio nte of 5 m Y at the

*sfae Ae ten years. tde wcn O= has propaatedto a depth of abort 10 meters (Fgu iSa). At s point.the dry hydraulic conditions at 4 m ar resumed (fixed V --400 w) nd tbc profile reequilas (Figure ISb).Reestablishmemit of the pminflhitou profile requires

OOO yer of persit doying.

5. J npliationsh") The DASH model challenges some of the conven-

tioul cosoepuzal models of vadose zone flow mad trasortas applhd to aid to smitrid iO Questioned assump-6cas include (I) the cet flow rr;!m in deep vadooes can be descnbed by a sall downward advective Mm

(nduced~rciare mgdel) or a hydrostatic coaditorn (wero.rtcal mo kl) a&d (2) vaafuxes ere nezlV cnomprdtol uvnd xs in dcep YdSCmnes.-n lb Wl c

Model propses tat e mjor most cet d timi chaa12-IS 1had a l r impact en the vadost zone bydrloVof the aid and semiarid Bouthwesun U.S thn has prri.ouly beae considerd. At least in intedrainace deet-lloorenvmuets, he change to drier c limate and assoitd shiflto mmxric: vegetation aecially reversed moire fluxesjust below the root zm . fro downward lo upward is has

rajor implications for cotitaminant mirtion and environ-mental tracer studies In arid vadose zones.

[mlJ Qumatifing diffuse rechar by estimating liquidfluxes below the toot zone and assuuW t they amequivalent to groundwater redisge. iLe.. fluxes arss thewater table hfteaco, may ot be applcable in seciarid andaid regions. The work decbd in this p&W suggests hataot only am mosture fluxes Just below the root zoneunoqual to rechage, thcy may be opposing eve in duc-.tion. Furthermore, downward tnoisture fluxes coss thewae table (as drainage of flistocate-age water) estiadusing the DASH modd are several ords of mgnitwdesmaller than estimates obtaied by using the CMBapproach. T implies a nqftiW costr[bWIM trouMd-water reduage tro des ioozs in imei"inage aesand supports the idea that, in the absmece of prfcerentialfowplh a thick desert vadose zone saves as an efti:tve

Variable: FMxed SubRootZone V° 1 __

_~ 60

I100

160]

-a y.45orn \

-*'*- yu.lO=n

W a .400 in Bas Cos.r W=4oom

*0nn I k-800 -600 -400 -200 0

Matric Potenal (m)

Fleure 13. Seady state profiles for vaable fixed subgotzone v vales (at a depth or4 m) wusg the DASH model.

LES-05125

Page 13: 12/31/02-Intervenor Pre-Filed Exhibit 033, 2002, Deep arid system … · 2020. 1. 5. · 1980]. The dc tio above a rCC1en1s level. smatlly desglated ... t 993 Gien £ tni§ocp sil

WALVOORD ETFAL. DEEP APD SYSmM HYDRODYNAPMCS PART I 44 - 13

a

5mQ

I 1"tois -o _. Ai i

*60O400.300-20Q.100 0MWC potanuia W

(b)ry to Wet (I* mm yll)a..) SO -- routd10 =n

I 0 - -0 r

,u.row.:rwi't5Dp~a ISO t a yr, -

.500400-400-200.100 aMafric Potentia Qi)

Jlguzm 4. Transent w psoftici usinthe DASH modelandrecordingthe switchfinlth basecase dry,ctady stale baspecifidowvwar4fhuxof(s) I imye-and (b)10 tam.a

barrkc to A10udWze HoWew since d&Wt vtatiOc iscaimn m*inW A S upward fluxes below the oot nc.the PAsence or abs , of aaive vegeaIonD and te abiityXo nabvaind a Vetd ennddl. =UU be cOhidered iTWi rcpolxy- ske u pessent ad auplacct proce-

dure t

mosWarc flux below the toot Doac s o equivalect i4masph&e or direction to the flux Coss ft wat able

Appendix A: FEEM Model Descrtptioui] The dlp ad soludoo aothm for FEW am

deid in d by r8 wud ZHosRi 000 and7-1e-r1 f, at r1071 In rt~te %iAu n

6. Coieluslams e -sf. element rsofn abi* 3J Jegrat &d ebswdm With model sladh- vard %wcht& Each a-stmawided Is maoded with ion;s anphs zes die hnpo ecc ofcodisJ both quid 500(2 x 2S0)nodq, 249 uotpslarrdmentgrL k hcrem

and VSW Cow probes3s When deftn the mnc W tude mwoion as sippliod nemr boundaries and cous mholsand dacttiou of moishre ftuxw below tbe tnot to" 7c is proved escwber T7 b&zdars oa ese gaids anabity t MkWY =y s ue h dee21asdons Is ~ckal lo aytkd as fallom The preum n boufttt boimdumq d cge bencath nvedesetegionandto nodes am fied at atmospU& pressme t zqasen waLe,ssss a-ranspot _ss. Modeled uxe cat table conditons. A coostt mss fhn x of amr at dte uppebe vennmly usef h intg field-measured taxic boundary nodes sev as * continuous uWid soue antpotenal and chloride Vrofiles tbat we propose, hm izeseutst cipwonorefecdvepiecipltadoa,evolved since the PkietoenHolocen clinte t idon. specic. Herr, effective prFcipt retfm to the ridusi

[t) Taie Deep Arid Syd=em Hydptdydm (DASH) soll waler flux. (L.e.. p=Vt minus epoe spirs-model tecoaciles w padox bewtm upward byduUlic don). A specified sobzW toacetadon at te source node(s)potaztial sradents wessured in ad and emarid Woe (upper bounday) poduces a coastat tae mux. Fixelzonts and the downward liquid flaw smioon applied tktapertm at te top and bono bomdarieds esubim awhen the chlotidc ass bane app h Is used to iter- ba Aux dalt is uniform tough the vetcal v6bm for thepret respodbg clde pfilks TMe DASH abode1 exampks provided in this study. sine the low fhuld owpres=Rbes a cnthtaat low V joSt below the wot none. The ntes do ad significaoly perb lhe tesubing lar ctzper.resenCe of this p ftt sink in the sim which Is mre profile. A low man potenial Is applied to the nodes

suppned by field da Implies dtht des t dol 3-4 m below te r e and as a Ink bfor War totferve~ly latercepts all dowaward kfbaft = kdng l repteen t the subwon zotte hydrautic coodiions. 7ho sinkand drs cach of the preexsg mAolsue w me upper codes take u all waft pacottft down fiam th suzface,vadose zone. Wth ti, the upwud itmal Vapor GMd*ie by tII ed th u .Om- tde the Dmf- E I e n

iymksof the d#ep Y V7tU2 tM NS From fte DASH Mode Transition ReverWa Suimulatcos Using tuedriven return -of the lUquld wateMu hat eults frizi the DaecePAMeecooling add condeaion of up*wd movt npor produ-m the ebaractrist nearly usxlfwen aracpofttlal profile , Uwm GsmA'

of the deeper vadose mmne Ii' aciwi ftvxysu Cendrio 1asPow Tun. Do"w incondi ay be mrelyr ahieed In eep V&" mu MtW) ConailkSo DaWUW115 ? Y rfaw :

mpe ssesimes = exceed IScly 75 limc ot cm O c Mmt lbkely deurt D st A- i a Y5r'' 170

r locked in long-term drying a y Su* s lo 10 l4b

w g 9 W iUtyast.s soe at Imyr 175DASH -modelresuhl thect that 11 toi cVd I sum J mm Yosfluxas beow srt z J &p W .s w

froudwte rechac Is extrbwely nInaU, act 'Ism T 1.

ea

I

IFr

LES-05126

Page 14: 12/31/02-Intervenor Pre-Filed Exhibit 033, 2002, Deep arid system … · 2020. 1. 5. · 1980]. The dc tio above a rCC1en1s level. smatlly desglated ... t 993 Gien £ tni§ocp sil

WALYOORD ET AL: DEEP ARID SYSTEM HYDRODYNMICS PART Iq44- 14

(a) WMV resporm to totrnatlon0 a 1

10

g 20 _ nC at 30 I fs *"30 18kwrrdoh1Qtn

40 esrmm ye

s0 .... I

(b) Dt response po4tUaaon

I30 - o, Or. t-o1101r1

40 J -t.o0 lr-- t -CO if00SO

.600.400-00-200.IDO 0mabft Potenual (ml

.sOo400400.200.t00 0Madc Potantla (m)

Figurt 15. Transient V profiles using the DASH model avd jecording the (a) wetting respoose from the15 kyr dry turmsent sate to s 10-yr infilbation of 5 mm yr-' and (b) the drying respos subsequent tothe infiltatiou eventL

I.

ind drav wate from below as well but do not save as asolute sink. The solute spccies Is pirvented fiow czi thesystem through the subroot zoe sink bodes in FEOR hisspcIftion is critical for diuimlatg chloride behavior.

[ml The conservation of wate mass. fluid-mediumeneryV. and cnondensible gas mass equation rt solvedin a quasi-coupled formulation with the solute mm trans-podt squtions. Namely, the asport equations use the flowrates and temperatures obtained in the heat. and mastransr solution at ch time step. Therefore fully coupledflow and tVUSP (without r a* from. ihe transpottsolton) Is approxild bj usng small tme steps in thesimulatocs Some of the e modeling ompoemticr,1ezewd In this snady hcaeenhanced water vapordiffialoa, vapo pressure loweri&g and moasture-dependczusolaft diffuiion. In FEI. te maocular dfflvity of

ta lor in uarD, is Swn by

D. ,~on10135rr4273asy

*b ere isit aty , 0. is l o cv por cntcnt,d D° i th ue of D, at ado nditios, p is

vnpor dendt, T is t ,pam t, and P is pressure. The valueot". is to 2.4.x 10'- m" a-1 w is set to 2.334, and the

t fklor, is an iyiutp eca e b4%44MTVX4 12:r~tmIncrtuasi temtc cor above e sta rd lue of (0.66 Is used

to simulate vapor diffusion enhancement as described byPk1Wpr cad deVrdas 11957. A vapor press8t.lowevngrwine, in FEM allows fur Isotiermal Vpo transfer. L..vpor densty dependee on pressure Th modified vapor

pxes is crren by.

t:(r. P~) - i,(*aCp pR(T v ;315)

wheie P is the new vapor psure of watem, P, is thecapillary prese. M,, Mlccla mat of waer, P, is thedesity of waler. a R is the go constant. In the solutetgusspoc equatios, FEHM uses a standard matbernaticalformulation for the solute dispersion coeMcient.D.:De OA+ ojv, where DAJ is molecular solutedit~usoa coeftlcec, owdispcaivhty. vis the Da1yvely

computed from the solution of the fluid flow equa6on. In thisstudy, a moisturcidepeadent D~, based on the functiondeveloped in Coa and Wrfl 11992), Is employed.

[(t] AU simulatios conducted in ts study use MEHM'sstandard pure implikit fbnnulalon (Nekward:6me Euler)for discszti on of the time derivatives. Upstream weight-ing Is used In the spatial disretioDtion us!n FEHM's finite.volume formulation. Full detail on die linear equation solver(c.g., the generalized minimum residual methd) is providedby neng and Z.wloski (2000] and ZywlotAi et aL [19971.

fso] Adweuulodgmc.t Tbis rescank w s lA de by lb. 14uloraSce Ftdtat (= EX-149509 VW) d NSF Ondwtr

1xn Fdus,* O(AW)). Mh Mr bIs d " vwuxt ,pcIx pen by SAHRA O(L sumlab~oW .rseanM M I.&Ah and kpR ianAJ st) mde ft SWIPc ts Of Om N14ak Scleae Fmdaii LSPIC040EAs7500. t wa wish b ap Z s.nmo Staubr aod arm Rome S. I.. Alctos = ti= L4tbarawbo pvMedd bwvloabl nummae "&d FEW0 madelig.

Rerereuces.BUm D. D.. u IL Y. Andersh Evidcs km woem Nor& Amaica

for usP das in cfmnsiz mng ta Lan GOUid HaWl4 cdm.150. It2-1923. 1 93.

AlmL C. 0.B.. A iev etw waw or. physical cbei=4 wa howic

ofN 1 CwoGwmek XocUq.M ada by 1. Llm. p. 49-U.D. Re" 1#1CL Idas.

Ahio. 0. D. G. W. e, md S. W. Tea, Vadoxc-o bdAnqm forpfwa -owwsstr nehai In wWd and umiakai mgxas. SWd 5d.

Se Ao. 5A 6-1. 2994.Aa4d& D. 3. So;l-ar movemm swder ==wI.,le cod wn*e-s

caaomx A xmultipw Ud vady . ft Moava Dam Nt'.Vaw Mr Aai Ji. J1901 -l91 1997.

B=a. .. Vpwwta .fFlM1 kW Pe Maia. DMW.=mL N. Y. 197:.Smoa. L. V. D. IL. P.L L Dam K. IL L~oi C. 0. OvisL S. 9*

RNoa. C. L Suldh d S Sdinc Chumbpr .(expmlmu ae d c-n e arfW si Basin t.ilt ram Oziap Ow PW 35.00 y-.

h S ~ f M ~ o d m m t Pa a m a en. It , 2 4 1 -2 8 4. 1a 99 03Bk1masx K 1. ,d 3.L L W eOc***a of OW =mra Pen er

PAW Mes. NeVOd Tat sief. NP Con". NV. U. S peaL SWY AFrPo. 71274. 33 pp. 2973.

CMaddL JLI K. D. JaCkS. .J. I Ebkfis. MS4n"a Mthg d4pbgmdaeqVypa at g bl sca Ofealosk. too.513-595. In'"

Ceeca J. L smd J. Wetk DOram VW Dow ib veL.vL iga. a %7'DkfOC. tAwL H)4OZOOL. 1, S-24. 1991.

CeoL P. G_ W. 3d. FdMm, sd C. B. rGyc. Egjma puhoevC)h7d OellA km uW=*cu son. goIWarlc wRc. *272 3.1n92.

LES-05127

Page 15: 12/31/02-Intervenor Pre-Filed Exhibit 033, 2002, Deep arid system … · 2020. 1. 5. · 1980]. The dc tio above a rCC1en1s level. smatlly desglated ... t 993 Gien £ tni§ocp sil

WALVOORO ET AL.: DEEP ARID SYSTEM HYDRODYAMICS FART I 44 - iS

Dcguki#. K4 D. Reonmmc_,r maw of od uts 10WIns h NevadS WA. by wk$ eM eFm kimor akckdmJ ,dvL. 104. 35-37. Im.

Enkid C. C.. 1. C. ffsIh. crd A. W. Writ Ealu.!ioo of lsw Wovt a da p wr tago k wlag *.Movwk p udmflaI. M.l Sd

so. .AL Pe. JA. 9-970, 1973.FWtd 3. M- 5cdkncd put~m ai WSW naftffiew &V411 shallo

wtitd CMlvi NM a M hV tW ft dposal of low-lI mdodwow ow ayt, Nyr Caws. Uc5.dL U4 Gca sm i14A Rp.. 92.403Z.41 PP.. 1992.

Cws. W. L. Wacruguhi ai SA dibudon "*M in SZIkICI hih~ip e " A n AO di V T z~e l w, in SJ on &Wda end xnp o dw SidFo pe~is o Mr ta rmlO i 'S)pui ez k wp an it oPicka- S SaiR ?kyuAP end lerfgao4 Sok Le AbaLre-Awdce.

ramer. pp. 335-340. lt. Atmik 3 Apacy. VieT , . 1967.

aod 4 Wd mutW==u, R. FIft-51Y7. 33 pp, he. NmdchwtLot .. Ribas i W sh. 1934.

Gt-. G. W.. ZJ. WISS.JS. L.. Adh.: It R. YMw9. KL. Fqc; wdM4. L- Rockbol Vaijado s In waau bdhAc and Kdeare paaada oftM W 4cutUnt *it, Sod SvA Ja1. 1.4a-72, 1994.

Gba.. T. lt. and E. 1. MU~hy. A blijina Ouz =oddefo 6wwoIlftwoa Ferawd ad invu Wbhas fo 4tac bWM lau&sAdks. :W b ar_ Jt o.. It.2065-2079. I9t.

Hili. 0. Frwawank qr5ja Pk*r. Amkdmzk S= Diep. Cpiit.

Jobaioa. C.. Pstrm WaW flw mad ImalBcd mhaz hI vriAblwgtodt.J. lf 14'L.. .129-142. IM1.

Jungc C. . NWd IL T. Waty. TYe coacanado of dcd "ipetssfun chiWc wad luhe hI min war averm U tked Sats,J. MseOroL. . IS 7-4ZS. 1 "T.

J)a, W. A, W. 3. Ganw. W. H. aua. WPnpimh Joh WSley. Ne*N r 199.

Kaomx . Ga Mead* mad D. Dkknm omr eJ1 ?3)via. 3ed@ S, Blwier SL Ne*w Yuuk, 1933.

Losy. L and L ralua (EtD.) rZukaraw Sciee mid rwuerlaVSaA PIM vo L Daik-. C umb . OR . 2004

Locq. S. mad It Falt (Ed.) Hodw Zee Sdma and Tra~AkwSe. I. VOL EL Bwau Colw. Of.ka. 200M

M .IR P.C.. ECfu of Ae" vor ifladon v scaW dyrul uWM ihn OM vtwafd a"fi. 3wow rnor RS. 509-514. 996.

?.cnioI. L & QU--Y sn Wbk. 4dw lc. md e*ac bktiyOf thd Guest bsaid. wIto awaw Oa Lan ha*Nm. Baa I wd7-VIs M 0-&rqua k GetIot*JG b Lw S* TheGCtvkc qifaemJ Axap*w.. vt9 b R .y D. wbm. pp.213-320. Got. Sec. f Am.e Boud Cow I991.

MwW. 1L M. T. I. Gi, Wd 1. L Pkihlsi.m m Lk G algkm of14 MIe hsee 33i- Evaaim rf ac ehiodos W bd but

a Rcawsno. i . .. II.203 -2m. 199.

C" XWOM Cot5 Wad MadWrC..% h w n o.J.V . A . c u s v . a d L . A p o T c u l lh-a d r

L158.49-56 594o0dwjag V. 3o. a Suasu. wad W. C. Oeebd4 Tw dkct do ata'

wamsaPeMeW GO WI C0h uchmag.erof k dmmt dirs. &Io~w IS,lIt6-109S. 1974.

Pilp. J. R. aid D. A. de Vaits Molsairemvum i pon wsaigh

waft te fiw sd Eos rhun A0U. A 32-222 I"9.IM. F. M. E raix= abusfr uva v. hi dCsM Ne ef

de Amnesim wibses Scg&L Soc. A_ J. S& I5-24. IM.MUTWL P. A1 . CmVbeL C. rAV. P. kb & L. Rta1A.d t .

K e y s A teev a a ' c o F @ 1 e w t t r b a a c 1 a uS e c m s l Eske baan v cliat deuh. Rip 419. NM. Winc R RM lhs_Lo CNcI 599L2

#Deam. W. T_ J. S. Srvy. and J. W. OLey. Sumed bW Walpficitr pmnw W syem.VNawv. J74 715-t 1 9995.

rule a L Eaus of ptclaeo rte uad am ofwow i mum.cm"d "Mtt t "C Mojsw Dow atO Calilbrala-Nra3 (SGCLM SWV Wfur Xa. A7 &A. PdJI6, It9 pp, 1994.

111 ih. L A- Uskg thhd &ad dAx .6 as soiLsan gnt o ;cai.m s ee t o e#lbcted loccaio n U.5 _ctc oof Li.4V Ha wrd du Wachigo. US oa.Spm mWau SW* p#a.Cpe

In 4W C. C. od S. U Thawa (lb4 D-CM in OA ? YU Vwlt, q6cu Aiuv er U. U. t. Al-

sItSL D.. A caaepol m Ml Of &ep WnstriWd =oM w . 0 lblen dwlc wsrwAuI Atm..V. 117- 169. 1934.

Scanma 1.. DEvirai of Okew m fau dWixdc a ian esa toils.J.U . 1.?t 137- 5199SI.

SCeIo B. L.. Uacaualc hI cudlift woteVux= ad midce limesusn ant-00wcAta wC= s in a id VW antesied wie. xwwc * w.:Les.. J6. 395-49. 2000.

* Scskixa. 8.. L aS .. w GoL dsaCv dL Fidd WedY Of qitil 'vv abllh iRunwwaWd ow bcoath nd v43c9W 10 P6syo. WWPA-,,. Le. .Mg39-2M3L 1997.

kSeado . 1.3. S. W. Tylr. d I'. .Wa egs. lly*1&g4091C I in Pesi.aid uoniuted sysecau mcd lwpnatiu for ceftrnifiW WnvmRev GCopfqs.3S. 61-490. 1977.

t SaIoA D. L. IL *L.ar c and Ld L kldS.G. RehWkm* knw=geconuqbk aecahi Wa WOWCsAin fl9W in MA V eUW& 54WOW re.Iow. An, AU 913-999. 1999.

SchoE.c- C. E, IL L mwads IL A. vno d*e Soot.and D. S. lsc.?,edfwo W t vdiadtk v( & ,ban c o.e "Sh..

w b In salav1. I. Coam. l#",. 20. 145-166. M1.Sdau TJ. A pnwecac caeinw% b -ohm eha VW difSh-

"Ia hi pmrus M L K$. deshi. R. K hauL al Miming sd TtclsL.Sees to". %.

Skiqbeim. 0.3.. A papcr tivao diffm M a ndau we lm iLrU Of low pt*eit'doJ Sed A5 .J_ . 40-41 5194.

St V. t. ludw Ela * K ba F. Lwait. DBome R2 Fl-

Stpm. 0. S, wd L r- aowwbw k. Soilw w, ceac and rechargcoogh ustd of a arw sr in New kcaI, fwr re: tocra.. A

ul -so9. 1n6.Swwe W. J.. Rech in Ox SO LAo Cog Fidd bu&d o cblaieh in th

sswwotd oe. Ow. Mu An. X. COm Ak Rep. 217. 64. 19K

Suwe ,W. J. m B. L L YcGk Grusdwus rbae go dsoUhi phbs. ew-anal New Mexki. in AewAdkz*v GraftflefSockrvO.1d seboo 3t Fild C'fuev W. " 31- 3D. K. K. G-L S4C.

Sut l 19R 3.T aca. V. IL sal 0 .Z yvo lsk i. A r d c ddLe o leer meh o d for

sinuain ra4-drauj muM-phaw Bow to a porusr medin Adp.Wop Ruew..J:. 72 1-745. 2000.

Tykt S. V..).5L Cl.B. l. S. R CartD.PO.llOA J. J. Miee 1 J. Sully. snd L 5 C;rmL SdlOwaa Oat bth

sot%%m GuOm BuI. Unltd Sw: Tcupoml aid spa viion overdx Itn 120.000A yea F r Re v. R., J.2. 1411-1499, t994.

vn Go t. IL T.. A tlased-lxo eqxem Sw puicig Om tq&wuc

Kl ~ d 4 A .. m l y a o o c e m od d l C w v ap o r a i t 1 a.n bi deep 4d s d t goa c. PD. thed" Ninn

id TtdimL. Seeo . .W2Waivor. K A F. U. nfi1. S. W. Tykle. md P. C. H"Dk Deep

.NWd " tn by&d ya1um~a ..L L Appliamdmn lo paleOlxymi ic maort-wtoo wit g Wdaaedavm rofks *owEm lfmt Moawt Dsm#rw MM Ru..JU. dO0.1o2fwlIWOOOS. i pRs 2002.

Wloops L J, RIdWonedve ware SwMm hI d* auunar" sane.$a~. J1J. 1457.146, 1911.

Wood, W. WIV U and mas of td Chlldew baflc meod ie;atic roodSwaleu GCui W.7.2Z-3. 1999.

Zy;GALG. A,. B. A- R:A'OM Z. V Das, nd L L Tam S.aSyOf a Modt ad maads roe ft WIm vpuubg-A te4 aod maa-h Sw f cbde. R . Los MK m Rat. Lab.S

Low Aar. K lL 1997.

E. R4. Fis Eai mod Evfoawenal S3cicc DVpcnw& NewM1i IetluA of Mwit and TtaMolop. Socom. NU nwl. VSA.K A. rAc. M* tMuiAlD tsnimq agd tWEpgawrtcal

. Mahe F tk. ID C41. USA.M. A. Wdvd. U.S. eobgW S"9. Da Was Cvw V>

.044 US 4 1 3. Lalw94 CO 3U02406 USA.. t(wzivaonliVonA. V. WoMba. gu t xd E-vhwmatsl Scln , D;vjo. Lte

MAWmot aSdOW oteuot. Alamu. NM 7543. USA.

LES-05128