10/31/2012PHY 113 A Fall 2012 -- Lecture 251 PHY 113 A General Physics I 9-9:50 AM MWF Olin 101 Plan...

26
10/31/2012 PHY 113 A Fall 2012 -- Lecture 25 1 PHY 113 A General Physics I 9-9:50 AM MWF Olin 101 Plan for Lecture 25: Review: Chapters 10-13, 15 1.Advice on how to prepare for exam 2.Review of rotational motion, angular momentum, static equilibrium, simple harmonic motion, universal gravitational force law

Transcript of 10/31/2012PHY 113 A Fall 2012 -- Lecture 251 PHY 113 A General Physics I 9-9:50 AM MWF Olin 101 Plan...

PHY 113 A Fall 2012 -- Lecture 25 110/31/2012

PHY 113 A General Physics I9-9:50 AM MWF Olin 101

Plan for Lecture 25:

Review: Chapters 10-13, 15

1. Advice on how to prepare for exam

2. Review of rotational motion, angular momentum, static equilibrium, simple harmonic motion, universal gravitational force law

PHY 113 A Fall 2012 -- Lecture 25 210/31/2012

PHY 113 A Fall 2012 -- Lecture 25 310/31/2012

Format of Friday’s exam

What to bring:1. Clear, calm head2. Equation sheet (turn in with exam)3. Scientific calculator4. Pencil or pen(Note: labtops, cellphones, and other electronic equipment must be off or in sleep mode.)

Timing:May begin as early as 8 AM; must end ≤ 9:50 AM

Probable exam format 4-5 problems similar to homework and class examples;

focus on Chapters 10-13 & 15 of your text. Full credit awarded on basis of analysis steps as well as

final answer

PHY 113 A Fall 2012 -- Lecture 25 410/31/2012

Examples of what to include on equation sheetGiven information

on examSuitable for equation sheet

Universal or common constants (such as g, G, ME, MS, RE…)

Basic equations from material from earlier Chapters: Newton’s laws, energy, momentum, center of mass

Particular constants (such as k,m,I… )

Simple derivative and integral relationships, including trigonometric functions

Unit conversion factors such as Hz and rad/s

Definition of moment of inertia, torque, angular momentum, rotational kinetic energy

Newton’s law for rotational motion; combination of rotational and center of mass motion

Equations describing simple harmonic motion and driven harmonic motion

Newton’s universal gravitation force law and corresponding gravitational potential energy

Gravitational stable circular orbits

PHY 113 A Fall 2012 -- Lecture 25 510/31/2012

Possible extra review session on Thursday:

iclicker question:Which of the following possible times would work with your schedules (vote for one)?

A. 2 PMB. 3 PMC. 4 PMD. Prefer to meet individually or in small groups

in my office (Olin 300).

PHY 113 A Fall 2012 -- Lecture 25 610/31/2012

Rotations: Angular variables

angular “displacement” q(t)

angular “velocity”

angular “acceleration” dtd

(t)ω

α dtd

(t)θ

ω

“natural” angular unit = radian

Relation to linear variables:

sq = r (qf-qi)

vq = r w

aq = r a

s

PHY 113 A Fall 2012 -- Lecture 25 710/31/2012

Object rotating with constant angular velocity (a = 0)

w

v=0v=Rw

Kinetic energy associated with rotation:

“moment of inertia”

iii

iii

iii

rmI

IrmvmK

2

22

1222

122

1

:where

;ωω

Rmi

vi=riw

PHY 113 A Fall 2012 -- Lecture 25 810/31/2012

Moment of inertia: i

iirmI 2

22MaI 22 22 mbMaI

PHY 113 A Fall 2012 -- Lecture 25 910/31/2012

22

2

1

2

1

:object rolling

ofenergy kinetic Total

CM

CMrollingtotal

MvI

KKK

CMvRdt

dR

dt

dsdt

d

: thatNote

2

2

22

2

2

1

2

1

2

1

CM

CM

CMrollingtotal

vMR

I

MvRR

I

KKK

PHY 113 A Fall 2012 -- Lecture 25 1010/31/2012

How to make objects rotate.

Define torque:

t = r x F

t = rF sin q

r

F

q

αarτFr

aF

Im

m

sinr

q

F sin q

Note: We will define and use the “vector cross product” next time. For now, we focus on the fact that the direction of the torque determines the direction of rotation.

PHY 113 A Fall 2012 -- Lecture 25 1110/31/2012

Vector cross product; right hand rule

sinBAC

BAC

ˆ ˆ ˆ ˆ ˆ ˆ 0

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

i i j j k k

i j j i k

j k k j i

k i i k j

PHY 113 A Fall 2012 -- Lecture 25 1210/31/2012

Newton’s law for torque:

αω

τ Idtd

Itotal

F

fs

FfMRI

IMRFf

I

RfaRIaIRf

MafF

s

s

sCMCMs

CMs

312

21

2

2

cylinder, solid aFor

/1

1

/

Note that rolling motion is caused by the torque of friction:

PHY 113 A Fall 2012 -- Lecture 25 1310/31/2012

prv

rv

rarτFr

aF

dt

d

dt

md

dt

dmm

mTorque and Newton’s second law:

(constant) :Then

0 0 if : thatNote

:Define

L

prL

prτFr

dt

d

dt

d

PHY 113 A Fall 2012 -- Lecture 25 1410/31/2012

Example of conservation of angular momentum:

wheelbf

wheelwheelbf

wheelibiwheelfbf

LL

LLL

LLLL

2

0

PHY 113 A Fall 2012 -- Lecture 25 1510/31/2012

Another example of conservation of angular momentum

mm

d1 d1

mm

d2 d2

I1=2md12 I2=2md2

2

I1w1=I2w2 w2=w1 I1/I2

w2=w1 (d1/d2)2

w1 w2

PHY 113 A Fall 2012 -- Lecture 25 1610/31/2012

Conditions for stable equilibrium

0 : torqueof Balance

0 :force of Balance

ii

ii

τ

F

PHY 113 A Fall 2012 -- Lecture 25 1710/31/2012

0)1( :Torques

0 :Forces

gxmmgM

gmgmgMn

cD

PcD

**X

Example:

PHY 113 A Fall 2012 -- Lecture 25 1810/31/2012

)frequency" natural" -- s(determine ω

)φω(cos)φω(cos ω)φωcos(

:equation thesatisfies guessthat Condition

2

22

2

m

k

tAm

ktA

dt

tAd

constantsunknown are and and where)cos()(

:form thehas )(for solution that Guess

:system spring-massfor law sNewton'

2

2

2

2

AtAtx

tx

xm

k

dt

xd

kxFdt

xdmma

Simple harmonic motion:

PHY 113 A Fall 2012 -- Lecture 25 1910/31/2012

Simple harmonic motion:

Note that:

xmk

dt

xd

dt

xdmkxF

2

2

2

2

mk

tAtx ω);φω(cos)(

φ)ωcos(ω)(

)φωsin(ω)(

2

tAdtdv

ta

tAdtdx

tv

Conveniently evaluated in radians

Constants

Summary --

PHY 113 A Fall 2012 -- Lecture 25 2010/31/2012

Energy associated with simple harmonic motion

2222

2

22222

22

2

1)cos()sin(

2

1

But

)cos(2

1)sin(

2

12

1

2

1

:Energy

kAttkAE

m

k

tkAtAmE

kxmvE

PHY 113 A Fall 2012 -- Lecture 25 2110/31/2012

Simple harmonic motion for a pendulum:

Q

L ) (since sinsin

αsinτ

22

2

2

2

mLILg

ImgL

dt

d

dt

d-IImgL

Approximation for small :Q

Lg

ω );φωcos()

:Solution

sin

2

2

tA(t

Lg

dt

d

PHY 113 A Fall 2012 -- Lecture 25 2210/31/2012

The notion of resonance:

Suppose F=-kx+F0 sin(Wt)

According to Newton:

)sin(

:)ous"inhomogene("equation alDifferenti

)sin(

02

2

2

2

0

tmF

xmk

dtxd

dtxd

mtFkx

)sin(ω

/)sin(

/

/)(

:Solution

220

20 t

mFt

mk

mFtx

PHY 113 A Fall 2012 -- Lecture 25 2310/31/2012

Universal law of gravitation Newton (with help from Galileo, Kepler, etc.) 1687

212

122112

ˆ

r

mGm rF

2

211

kg

mN 10674.6

G

PHY 113 A Fall 2012 -- Lecture 25 2410/31/2012

Review: Gravitational force of the Earth

RE m

2226

2411

2

2

m/s8.9m/s)1037.6(

1098.51067.6

E

E

E

E

R

GMg

R

mGMF

Note: Earth’s gravity acts as a point mass located at the Earth’s center.

PHY 113 A Fall 2012 -- Lecture 25 2510/31/2012

Example: Satellite in circular Earth orbit

onous)(geosynchr

11053.8

1083.35 If4

6

daysT

mh

E

E

E

EE

GM

hRT

r

mGMr

Tm

r

Trm

r

vm

hRrMm

3

2

222

2

2/2

For

PHY 113 A Fall 2012 -- Lecture 25 2610/31/2012

Gravitational potential energy

r

mGm dr

r

mGmrU

r

mGmdrU

r

gravity

r

r

gravity

ref

212

21

221

''

)(

ˆ )(

rFrF

hR

mGMhRrU

E

EEgravity

)(

Example: