(1) Teori Grup Dan Vibrasi-revisi

download (1) Teori Grup Dan Vibrasi-revisi

of 204

Transcript of (1) Teori Grup Dan Vibrasi-revisi

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    1/204

    SYMMETRY ANDGROUP THEORY

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    2/204

    Facial symmetry

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    3/204

    Invariance to transformation as anindicator of facial symmetry:

    Mirror image

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    4/204

    Symmetry And

    Group TheoryThe symmetry properties of molecules they can

    be used to :predict vibrational spectra,hybridization, optical activity, NMR, UV-

    Visible (electronic spectra), XRD, etc.

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    5/204

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    6/204

    Symmetry Elements and

    Opertaions

    A molecule has a given symmetry element if the

    operation leaves the molecule appearing as ifnothing has changed (even though atoms andbonds may have been moved.)

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    7/204

    Symmetry Elements

    Element Symmetry Operation SymbolEntire object Identity E

    n-fold axis Rotation by 2/n Cn

    Mirror plane Reflection

    Center of in- Inversion i

    version

    n-fold axis of Rotation by 2/n Sn

    improper rotation followed by reflectionperpendicular to the

    axis of rotation

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    8/204

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    9/204

    Identity, E

    All molecules have Identity. This operationleaves the entire molecule unchanged. A highlyasymmetric molecule such as a tetrahedral

    carbon with 4 different groups attached has onlyidentity, and no other symmetry elements.

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    10/204

    n-fold Rotation

    Water has a 2-fold axisof rotation. When

    rotated by 180o

    , thehydrogen atoms tradeplaces, but the moleculewill look exactly the same.

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    11/204

    n-fold Axis of Rotation

    Ammonia has a C3 axis. Note that there are twooperations associated with the C

    3axis. Rotation by

    120o in a clockwise or a counterclockwise directionprovide two different orientations of the molecule.

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    12/204

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    13/204

    Mirror Planes

    The reflection of thewater molecule in either ofits two mirror planes results

    in a molecule that looksunchanged.

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    14/204

    Mirror Planes

    The subscript v in v,indicates a vertical plane ofsymmetry. This indicates

    that the mirror planeincludes the principal axis ofrotation (C2).

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    15/204

    Mirror Planes

    The vertical planes, v,go through the carbonatoms, and include the C6

    axis.The planes that bisect

    the bonds are called dihedralplanes, d.

    C6.

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    16/204

    Mirror Planes

    The benzene ring has aC6 axis as its principal axis ofrotation.

    The molecular plane isperpendicular to the C6 axis,and is designated as ahorizontal plane, h.

    C6.

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    17/204

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    18/204

    Inversion

    The inversion operation projects each atomthrough the center of inversion, and across tothe other side of the molecule.

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    19/204

    Improper Rotation

    An improper rotation is rotation, followedby reflection in the plane perpendicular to theaxis of rotation.

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    20/204

    Improper Rotation

    The staggeredconformation ofethane has an S6 axis

    that goes throughboth carbon atoms.

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    21/204

    Improper Rotation

    Likewise, an S2axis is a center of

    inversion.

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    22/204

    Point Groups

    Molecules with the same symmetry elementsare placed intopoint groups.

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    23/204

    Identifying point groups

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    24/204

    Identifying point groups

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    25/204

    Identifying point groups

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    26/204

    Point Groups Definitions:

    1. Point Group = the set of symmetry operations for a molecule

    2. Group Theory = mathematical treatment of the properties of the group whichcan be used to find properties of the molecule

    Assigning the Point Group of a Molecule

    1. Determine if the molecule is of high or low symmetry by inspection

    a. Low Symmetry Groups

    b High Symmetry Groups

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    27/204

    b. High Symmetry Groups

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    28/204

    2. If not, find the principle axis

    3. If there are C2 axes perpendicular

    to Cn the molecule is in D

    If not, the molecule will be in C or S

    a. Ifsh perpendicular to Cn then Dnh or CnhIf not, go to the next step

    b. Ifs contains Cn then Cnvor DndIf not, Dn or Cn or S2n

    c. If S2n along Cn then S2nIf not Cn

    Id if i i

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    29/204

    We can use a flow chart such as this one todetermine the point group of any object.

    The steps in this process are:

    1. Determine the symmetry is special (e.g.octahedral).

    2. Determine if there is a principal rotationaxis.

    3. Determine if there are rotation axesperpendicular to the principal axis.

    4. Determine if there are mirror planes.

    5. Assign point group.

    Identifying point groups

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    30/204

    Point Groups

    Molecules are classified and groupedbased on their symmetry. A point group

    contains all objects that have the samesymmetry elements.

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    31/204

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    32/204

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    33/204

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    34/204

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    35/204

    Point Groups

    Water andammonia both belongto the Cnvclass of

    molecules. Thesehave vertical planes ofreflection, but no

    horizontal planes.

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    36/204

    Point Groups

    The Dnh groupshave a horizontalplane in addition to

    vertical planes. Manyinorganic complexesbelong to these

    symmetry groups.

    X

    X

    X

    X

    Y

    Y

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    37/204

    C. Examples: Assign point groups of molecules in Fig 4.8

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    38/204

    p g p g p g

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    39/204

    Rotation axes of normal symmetry molecules

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    40/204

    Perpendicular C2 axes

    Horizontal Mirror Planes

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    41/204

    Vertical or Dihedral Mirror Planes and S2n Axes

    Examples: XeF4

    , SF4

    , IOF3

    , Table 4-4, Exercise 4-3

    f

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    42/204

    D. Properties of Point Groups1. Symmetry operation of NH3

    a. Ammonia has E, 2C3

    (C3 and C23) and 3sv

    b. Point group = C3v

    2. Properties of C3v(any group)

    a. Must contain E

    b. Each operation must

    have an inverse; doing bothgives E (right to left)

    c. Any product equalsanother group member

    d. Associative property

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    43/204

    REPRESENTATIONS OF

    POINT GROUPS

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    44/204

    Matrices Why Matrices? The matrix representations of the point groups operations will

    generate a character table. We can use this table to predict properties.

    Definitions and Rules Matrix = ordered array of numbers

    Multiplying Matrices

    The number of columns of matrix #1 must = number of rows of matrix#2

    Fill in answer matrix from left to right and top to bottom

    The first answer number comes from the sum of [(row 1 elements ofmatrix #1) X (column 1 elements of matrix #2)]

    The answer matrix has same number of rows as matrix #1

    The answer matrix has same number of columns as matrix #2

    5243or17

    23

    5438

    4327

    4862414

    403207

    84

    37

    62

    51

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    45/204

    e) Relevant example:

    321

    100

    010

    001

    321

    II.Representations of Point Groups

    Matrix Representations of C2v

    Choose set of x,y,z axes

    z is usually the Cn axis

    xz plane is usually the plane of the moleculeExamine what happens after the molecule undergoes each symmetry

    operation in the point group (E, C2, 2s)

    T f ti M t i t i i th ff t f t

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    46/204

    3) Transformation Matrix = matrix expressing the effect of a symmetry

    operation on the x,y,z axes

    4) E Transformation Matrix

    a. x,y,z x,y,zb. What matrix times x,y,z doesnt change anything?

    z

    y

    x

    ???

    ???

    ???

    z'

    y'

    x'

    transformationmatrix

    z

    y

    x

    z

    y

    x

    100

    010

    001

    E Transformation Matrix

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    47/204

    5) C2 Transformation Matrix

    a. x,y,z -x, -y, z

    b. Correct matrix is:

    6) sv(xz) Transformation Matrix

    a. x,y,z x,-y,z

    b. Correct matrix is:

    7) sv(yz) Transformation Matrix

    a. x,y,z -x,y,z

    b. Correct matrix is:

    z

    y-

    x-

    z

    y

    x

    100

    010

    001

    z

    y-x

    z

    yx

    100

    010001

    z

    y

    x-

    z

    y

    x

    100

    010

    001

    8) Th 4 m tri r th Matri Representation f th C p int r p

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    48/204

    8) These 4 matrices are the Matrix Representation of the C2vpoint group

    a. All point group properties transfer to the matrices as well

    b. Example: Esv(xz) = sv(xz)

    B. Reducible and Irreducible Representations

    Character = sum of diagonal from upper left to lower right (only defined

    for square matrices)

    The set of characters = a reducible representation (G) or shorthandversion of the matrix representation

    For C2vPoint Group:

    100

    010

    001

    100

    010

    001

    100

    010

    001

    E C2 sv(xz) sv(yz)

    3 -1 1 1

    2) Reducible and Irreducible Representations

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    49/204

    2) Reducible and Irreducible Representations

    a. Each matrix in the C2vmatrix representation can be block diagonalized

    b. To block diagonalize, make each nonzero element into a 1x1 matrix

    c. When you do this, the x,y, and z axes can be treated independently

    Positions 1,1 always describe x-axis

    Positions 2,2 always describe y-axis

    Positions 3,3 always describe z-axis

    d. Generate a partial character table from this treatment

    100

    010001

    100

    010001

    100

    010001

    100

    010001

    E C2 sv(xz) sv(yz)

    Axis used E C2 sv(xz) sv(yz)

    x 1 -1 1 -1

    y 1 -1 -1 1

    z 1 1 1 1

    G 3 -1 1 1

    IrreducibleRepresentations

    Reducible Repr.

    Ch t T bl

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    50/204

    III.Character Tables The C2vCharacter Table

    We have found three of the irreducible representations of the character tablethrough matrix math

    One more (A2) irreducible representation is derived from the first three due tothe properties of character tables (below)

    Rx, Ry, Rz stand for rotation about the x, y, z axes respectively

    xs are p and d orbitals

    4) Other symbols we need to know

    R= any symmetry operation

    c = character (#) i,j = different representations (A1, B2, etc)

    h = order of the group (4 total operations in the C2vcase)

    C2v E C2 sv(xz) sv(yz)

    A1 1 1 1 1 z x2, y2, z2

    A2 1 1 -1 -1 Rz xy

    B1 1 -1 1 -1 x, Ry xz

    B2 1 -1 -1 1 y, Rx yz

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    51/204

    B Molecular Vibrations

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    52/204

    B. Molecular Vibrations

    1. To use symmetry, we must assign axes

    to each atom of the molecule

    a. The z-axis is usually the Cn axis

    b. The x-axis is in the molecular planec. The y-axis is perpendicular to the molecular plane

    2. Degrees of Freedom = possible atomic movements in the molecule

    a. 3N degrees of freedom for a molecule of N atoms

    b. Nonlinear molecules

    3 translations (along x, y, z)

    3 rotations (around x, y, z)

    3N6 vibrations

    c. Linear molecules

    Only 2 rotations change the molecule

    3N5 vibrations

    3. We will use group theory to determine the symmetry of all nine motions andthen assign them to translation, rotation, and vibration

    Look at the C character table

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    53/204

    Look at the C2vcharacter table

    Add up how many vectors stay the same after an operation

    If the atom moves, none of its vectors stay the same

    If the atom stays and the vector is unchanged = +1

    If the atom stays and the vector is reversed = -1

    Reduce the reducible representation to its irreducible components

    C2v E C2 sv(xz) sv(yz)

    A1 1 1 1 1 z x2, y2, z2

    A2 1 1 -1 -1 Rz xyB1 1 -1 1 -1 x, Ry xz

    B2 1 -1 -1 1 y, Rx yz

    C2v E C2 sv(xz) sv(yz)

    G 9 -1 3 1

    tionrepresentaeirreducibl

    theofcharacter

    tionrepresentareducible

    theofcharacter

    classin the

    operationsofnumber1

    given typeaof

    tionsrepresentaeirreducibl

    ofnumberThe

    order

    nA1 = [(1x9x1)+(1x-1x1)+(1x3x1)+(1x1x1)] = 3 A1

    [(1 9 1) (1 1 1) (1 3 1) (1 1 1)] 1 A

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    54/204

    nA2 = [(1x9x1)+(1x-1x1)+(1x3x-1)+(1x1x-1)] = 1 A2

    nA1 = [(1x9x1)+(1x-1x-1)+(1x3x1)+(1x-1x1)] = 3 B1

    nA1 = [(1x9x1)+(1x-1x-1)+(1x3x-1)+(1x1x1)] = 2 B2

    d) All motions of water match 3A1 + A2 + 3B1 + 2B2

    e) Use the character table to remove translations

    x, y, z = A1 + B1 + B2

    f) Use the character table to remove rotations

    Rx, Ry, Rz = A2 + B1 + B2

    g) The motions remaining are the vibrations = 2A1 + B1

    A1 = totally symmetric

    B1 = antisymmetric to C2 and to reflection in yz plane

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    55/204

    Character Table (C2v)

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    56/204

    Character Table (C2v)

    The functions to the right are called basis functions.

    They represent mathematical functions such as orbitals,rotations, etc.

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    57/204

    Character Table Representations

    1. Characters of +1 indicate that the basisfunction is unchanged by the symmetryoperation.

    2. Characters of -1 indicate that the basis functionis reversed by the symmetry operation.

    3. Characters of 0 indicate that the basis function

    undergoes a more complicated change.

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    58/204

    Character Table Representations

    1. AnA representation indicates that thefunctions are symmetric with respect to rotationabout the principal axis of rotation.

    2. B representations are asymmetric with respect

    to rotation about the principal axis.3. E representations are doubly degenerate.

    4. Trepresentations are triply degenerate.

    5. Subscrips uandgindicate asymmetric (ungerade)or symmetric (gerade) with respect to a center ofinversion.

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    59/204

    Applications of Group Theory

    1. Predicting polarity of molecules. A moleculecannot have a permanent dipole moment if it

    a) has a center of inversion

    b) belongs to any of the D point groups

    c) belongs to the cubic groups T or O

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    60/204

    Applications of Group Theory

    2. Predicting chirality of molecules. Chiralmolecules lack an improper axis of rotation (Sn),a center of symmetry (i) or a mirror plane ().

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    61/204

    Applications of Group Theory

    3. Predicting the orbitals used in bonds. Grouptheory can be used to predict which orbitals on acentral atom can be mixed to create hybrid

    orbitals.

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    62/204

    Applications of Group Theory

    4. Predicting the orbitals used in molecular orbitals.Molecular orbitals result from the combining oroverlap of atomic orbitals, and they encompass

    the entire molecule.

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    63/204

    Applications of Group Theory

    5. Determining the symmetry properties of allmolecular motion (rotations, translations andvibrations). Group theory can be used to

    predict which molecular vibrations will be seenin the infrared or Raman spectra.

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    64/204

    Molecular Vibrations

    Molecular motion includes translations,rotations and vibrations. The total number ofdegrees of freedom (types of molecular motion)

    is equal to 3N, where N is the number of atomsin the molecule.

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    65/204

    Molecular Vibrations

    Of the 3N types of motion, three representmolecular translations in the x, y or z directions.Linear molecules have two rotational degrees of

    freedom, and non-linear molecules have threerotational degrees of freedom.

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    66/204

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    67/204

    Molecular Vibrations

    To obtain red for all molecular motion, wemust consider the symmetry properties of thethree cartesian coordinates on all atoms of the

    molecule.

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    68/204

    Molecular Vibrations

    The molecule lies in the xz plane. The x axisis drawn in blue, and the y axis is drawn in black.

    The red arrows indicate the z axis.

    xyz

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    69/204

    Molecular Vibrations

    The molecule lies in the xz plane. The x axis

    is drawn in blue, and the y axis is drawn in black.The red arrows indicate the z axis.

    yx

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    70/204

    Molecular Vibrations

    If a symmetry operation changes theposition of an atom, all three cartesian

    coordinates contribute a value of 0.

    xyz

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    71/204

    Molecular Vibrations

    For operations that leave an atom in place,the character is +1 for an axis that remains in

    position, -1 for an axis that is reversed, and 0 foran axis that has been moved.

    xyz

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    72/204

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    73/204

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    74/204

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    75/204

    Page 75

    3

    3

    3

    2

    2

    2

    1

    1

    1

    3

    3

    3

    2

    2

    2

    1

    1

    1

    .

    100000000

    010000000

    001000000

    000100000

    000010000

    000001000

    000000100000000010

    000000001

    z

    y

    x

    z

    y

    x

    zy

    x

    z

    y

    x

    z

    y

    x

    zy

    x

    E

    For E c = + 9

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    76/204

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    77/204

    000000001 xx

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    78/204

    3

    3

    3

    2

    2

    2

    1

    1

    1

    3

    3

    3

    2

    2

    2

    1

    1

    1

    )( .

    000100000

    000010000

    000001000

    100000000

    010000000

    001000000

    000000100

    000000010

    000000001

    z

    y

    x

    z

    y

    x

    z

    y

    x

    z

    y

    x

    z

    y

    x

    z

    y

    x

    yzs

    Only require the characters: The sum of diagonal elements

    For s(xz) c = + 1

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    79/204

    M l l Vib i

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    80/204

    Molecular Vibrations

    E C2 v(xz) v(yz)

    Identity leaves all 3atoms in position, sothe character will be

    9.

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    81/204

    M l l Vib i

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    82/204

    Molecular Vibrations

    E C2 v(xz) v(yz)

    9

    The C2 axis goesthrough the oxygenatom, and exchanges

    the hydrogen atoms.

    M l l Vib i

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    83/204

    Molecular Vibrations

    E C2 v(xz) v(yz)

    9

    The z axis (red) onoxygen stays inposition. This axis

    contributes +1towards thecharacter for C2.

    M l l Vib i

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    84/204

    Molecular Vibrations

    E C2 v(xz) v(yz)

    9

    The y axis (black) onoxygen is rotated by180o. This reverses

    the axis, andcontributes -1 to thecharacter for C2.

    M l l Vib i

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    85/204

    Molecular Vibrations

    E C2 v(xz) v(yz)

    9

    The x axis (blue) onoxygen is also rotatedby 180o. This reverses

    the axis, andcontributes -1 to thecharacter for C2.

    M l l Vib i

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    86/204

    Molecular Vibrations

    E C2 v(xz) v(yz)

    9

    The character for the C2 operation will be+1 (z axis on oxygen) -1 (y axis onoxygen) -1 (x axis on oxygen) = -1

    M l l Vib i

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    87/204

    Molecular Vibrations

    E C2 v(xz) v(yz)

    9 -1

    The character for the C2 operation will be+1 (z axis on oxygen) -1 (y axis onoxygen) -1 (x axis on oxygen) = -1

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    88/204

    M l l Vib i

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    89/204

    Molecular Vibrations

    E C2 v(xz) v(yz)

    9 -1

    The z axis and the xaxis both lie within thexz plane, and remain

    unchanged.

    x

    M l l Vib ti

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    90/204

    Molecular Vibrations

    E C2 v(xz) v(yz)

    9 -1

    Each unchanged axiscontributes +1 to thecharacter for the

    symmetry operation.

    x

    M l l Vib ti

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    91/204

    Molecular Vibrations

    E C2 v(xz) v(yz)

    9 -1

    For 3 atoms, thecontribution to thecharacter will be:

    3(1+1) =6

    x

    M l l Vib ti

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    92/204

    Molecular Vibrations

    E C2 v(xz) v(yz)

    9 -1

    The y axis will bereversed by the mirrorplane, contributing a

    value of -1 for each ofthe three atoms on theplane.

    xy

    M l l r Vibr ti n

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    93/204

    Molecular Vibrations

    E C2 v(xz) v(yz)

    9 -1 3

    The character for thexz mirror plane will be:

    6-3 = 3

    xy

    M l c l r Vibr ti n

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    94/204

    Molecular Vibrations

    E C2 v(xz) v(yz)

    9 -1 3

    The yz mirror planebisects the molecule.Only the oxygen atom

    lies in the plane.

    xy

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    95/204

    Molecular Vibrations

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    96/204

    Molecular Vibrations

    E C2 v(xz) v(yz)

    9 -1 3

    The x axis on oxygen isreversed by thereflection, and

    contributes a -1towards the character.

    xy

    Molecular Vibrations

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    97/204

    Molecular Vibrations

    E C2 v(xz) v(yz)

    9 -1 3 1

    The character forreflection in the yzplane is:

    1+1-1=1

    xy

    Character Table (C )

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    98/204

    Character Table (C2v)

    E C2 v(xz) v(yz)

    9 -1 3 13N

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    99/204

    This formula was derived from the Great orthorgonality theorem.

    nA1 = [(1x9x1)+(1x1x1)+(1x3x1)+(1x1x1)] = 3 A1 (1 9 1) (1 1 1) (1 3 1) (1 1 1) 1 A

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    100/204

    nA2 = [(1x9x1)+(1x-1x1)+(1x3x-1)+(1x1x-1)] = 1 A2

    nB1 = [(1x9x1)+(1x-1x-1)+(1x3x1)+(1x-1x1)] = 3 B1

    nB2 = [(1x9x1)+(1x-1x-1)+(1x3x-1)+(1x1x1)] = 2 B2

    All motions of water match

    3A1 + A2 + 3B1 + 2B2

    Molecular Vibrations

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    101/204

    Molecular Vibrations

    E C2 v(xz) v(yz)

    9 -1 3 1

    The above reducible representation issometimes called 3N, because it reduces to all(3N) modes of molecular motion.

    3N for water reduces to:3A1 + A2 + 3B1 + 2B2

    Molecular Vibrations

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    102/204

    Molecular Vibrations

    3N for water = 3A1 + A2 + 3B1 + 2B2

    Note that there are 9 modes of motion.

    These include vibrations, rotations andtranslations.

    Molecular Vibrations

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    103/204

    Molecular Vibrations

    3N for water = 3A1 + A2 + 3B1 + 2B2

    Translations have the same symmetry

    properties as x, y and z.

    Molecular Vibrations

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    104/204

    Molecular Vibrations

    3N for water = 3A1 + A2 + 3B1 + 2B2

    Translations have the same symmetry

    properties as x, y and z.

    Molecular Vibrations

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    105/204

    Molecular Vibrations

    3N for water = 3A1 + A2 + 3B1 + 2B2

    Translations have the same symmetry

    properties as x, y and z.

    2

    Molecular Vibrations

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    106/204

    Molecular Vibrations

    3N for water = 3A1 + A2 + 3B1 + 2B2

    Translations have the same symmetry

    properties as x, y and z.

    2 2

    Molecular Vibrations

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    107/204

    Molecular Vibrations

    3N for water = 3A1 + A2 + 3B1 + 2B2

    Translations have the same symmetry

    properties as x, y and z.

    2 2

    Molecular Vibrations

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    108/204

    Molecular Vibrations

    3N for water = 3A1 + A2 + 3B1 + 2B2

    Translations have the same symmetry

    properties as x, y and z.

    2 2 1

    Molecular Vibrations

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    109/204

    Molecular Vibrations

    rot & vib = 2A1 + A2 + 2B1 + 1B2

    Molecular Vibrations

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    110/204

    Molecular Vibrations

    rot & vib = 2A1 + A2 + 2B1 + 1B2

    Rotations have the same symmetry as

    Rx, Ryand Rz.

    Molecular Vibrations

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    111/204

    Molecular Vibrations

    rot & vib = 2A1 + A2 + 2B1 + 1B2

    Rotations have the same symmetry as

    Rx, Ryand Rz.

    Molecular Vibrations

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    112/204

    Molecular Vibrations

    rot & vib = 2A1 + 2B1 + 1B2

    Rotations have the same symmetry as

    Rx, Ryand Rz.

    1

    Molecular Vibrations

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    113/204

    Molecular Vibrations

    rot & vib = 2A1 + 1B1 + 1B2

    Rotations have the same symmetry as

    Rx, Ryand Rz.

    Rotations and Translations

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    114/204

    Rotations and Translations

    Rz

    Rx

    Ry

    Transz

    Transy

    Transx

    Molecular Vibrations

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    115/204

    Molecular Vibrations

    vib = 2A1 + B1The three vibrational modes remain.

    Two have A1 symmetry, and one has B1

    symmetry.

    Molecular Vibrations

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    116/204

    Molecular Vibrations

    vib = 2A1 + B1Two vibrations are symmetric with

    respect to all symmetry operations of the

    group.

    Molecular Vibrations

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    117/204

    Molecular Vibrations

    vib = 2A1 + B1One vibration is asymmetric with

    respect to rotation and reflection

    perpendicular to the molecular plane.

    Molecular Vibrations

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    118/204

    Molecular Vibrations

    vib

    = 2A1

    + B1

    A1 symmetric stretch

    A1 bend

    B1 asymmetric stretch

    TINJAUAN SIMETRI PADA SiH2Cl2

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    119/204

    Example - SiH2Cl2 Point group C2v

    Character table

    C2v E C2 sv(xz) sv(yz) h= 4A1 +1 +1 +1 +1 z x

    2, y2, z

    A2 +1 +1 -1 -1 Rz xy

    B1 +1 -1 +1 -1 x, Ry xz

    B2 +1 -1 -1 +1 y, Rx yzSi

    Cl2

    H1

    Cl1

    H2

    z

    x

    y

    Draw x, yand zvectors on all atoms

    Count +1, -1, 0 if vector transforms to itself, minus itself, or moves

    Perform symmetry operations

    Character table

    C2v E C2 sv(xz) sv(yz) h= 4H1 H2z

    x

    y

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    120/204

    A1 +1 +1 +1 +1 z x2, y2, z2

    A2 +1 +1 -1 -1 Rz xyB1 +1 -1 +1 -1 x, Ry xz

    B2 +1 -1 -1 +1 y, Rx yz

    Si

    Cl2

    1

    Cl1

    2 x

    Operation E

    Si atom xtransforms into Si x count +1

    ytransforms into Si y count +1

    ztransforms into Si z count +1

    total +3

    Same for other 4 atoms grand total +15

    Character table

    C2v E C2 sv(xz) sv(yz) h= 4H1 H2z

    x

    y

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    121/204

    A1 +1 +1 +1 +1 z x2, y2, z2

    A2 +1 +1 -1 -1 Rz xyB1 +1 -1 +1 -1 x, Ry xz

    B2 +1 -1 -1 +1 y, Rx yz

    Si

    Cl2

    1

    Cl1

    2 x

    Operation C2 Si atom xtransforms into Si -x count -1

    ytransforms into Si -y count -1

    ztransforms into Si z count +1

    total -1

    H1 and H2 move - swap places count 0

    Cl1 and Cl2 swap places count 0

    grand total -1

    Character table

    C2v E C2 sv(xz) sv(yz) h= 4H1 H2z

    x

    y

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    122/204

    A1 +1 +1 +1 +1 z x2, y2, z2

    A2 +1 +1 -1 -1 Rz xyB1 +1 -1 +1 -1 x, Ry xz

    B2 +1 -1 -1 +1 y, Rx yz

    Si

    Cl2

    1

    Cl1

    2 x

    Operation sv(xz) Si atom xtransforms into Si x count +1ytransforms into Si -y count -1

    ztransforms into Si z count +1

    total +1H1 and H2 also lie in xzplane, and behave as Si count +1 each

    Cl1 and Cl2 swap places count 0

    grand total +3

    Character table

    C2v E C2 sv(xz) sv(yz) h= 4H1 H2z

    x

    y

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    123/204

    A1 +1 +1 +1 +1 z x2, y2, z2

    A2 +1 +1 -1 -1 Rz xyB1 +1 -1 +1 -1 x, Ry xz

    B2 +1 -1 -1 +1 y, Rx yz

    Si

    Cl2Cl1

    Operation sv(yz) Si atom xtransforms into Si -x count -1ytransforms into Si y count +1

    ztransforms into Si z count +1

    total +1

    H1 and H2 swap places count 0

    Cl1 and Cl2 also lie in yzplane, and behave as Si count +1 each

    grand total +3

    No. of modes of each symmetry species

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    124/204

    Example - SiH2Cl2 Point group C2v

    Overall we have:

    E C2 sv(xz) sv(yz)+15 -1 +3 +3

    This is the reducible representationof the setof 3N (=15) atomic displacement vectors

    We reduce it to the irreducible representations,using a formula

    1

    Reduce the reducible representation

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    125/204

    Character table

    C2v 1E 1C2 1sv(xz) 1sv(yz) h= 4A1 +1 +1 +1 +1 z x

    2, y2, z2

    A2 +1 +1 -1 -1 Rz xy

    B1 +1 -1 +1 -1 x, Ry xz

    B2 +1 -1 -1 +1 y, Rx yz

    Formula is )(.)(.1

    RRgh

    aR

    Ri cc

    Reduciblerepresentation15 -1 3 3

    No. of A1 motions = 1/4 [1.15.1 + 1.(-1).1 + 1.3.1 + 1.3.1] = 5

    Formula is )(.)(.1 RRgh

    aR

    Ri cc

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    126/204

    Character table

    C2v 1E 1C2 1sv(xz) 1sv(yz) h= 4A1 +1 +1 +1 +1 z x

    2, y2, z2

    A2

    +1 +1 -1 -1 Rz

    xy

    B1 +1 -1 +1 -1 x, Ry xz

    B2 +1 -1 -1 +1 y, Rx yz

    Reduciblerepresentation15 -1 3 3

    No. of A1

    motions = 1/4 [1.15.1 + 1.(-1).1 + 1.3.1 + 1.3.1] = 5

    No. of A2 motions = 1/4 [1.15.1 + 1.(-1).1 + 1.3.(-1) + 1.3.(-1)] = 2

    Formula is )(.)(.1 RRgh

    aR

    Ri cc

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    127/204

    Character table

    C2v 1E 1C2 1sv(xz) 1sv(yz) h= 4A1 +1 +1 +1 +1 z x

    2, y2, z2

    A2 +1 +1 -1 -1 Rz xyB1 +1 -1 +1 -1 x, Ry xz

    B2 +1 -1 -1 +1 y, Rx yz

    Reduciblerepresentation15 -1 3 3

    No. of A1

    motions = 1/4 [1.15.1 + 1.(-1).1 + 1.3.1 + 1.3.1] = 5

    No. of A2 motions = 1/4 [1.15.1 + 1.(-1).1 + 1.3.(-1) + 1.3.(-1)] = 2

    No. of B1 motions = 1/4 [1.15.1 + 1.(-1).(-1) + 1.3.1 + 1.3.(-1)] = 4

    No. of B2 motions = 1/4 [1.15.1 + 1.(-1).(-1) + 1.3.(-1) + 1.3.1] = 4

    Translations, rotations, vibrations

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    128/204

    Symmetry speciesof all motions are:-

    5A1 + 2A2 + 4B1 + 4B2 - the irreducible representation

    3 of these are translationsof the whole molecule

    3 are rotations

    Symmetry species of translations are given by

    vectors (x, y, z) in the character table

    Symmetry species of rotations are given by Rx,Ryand Rz in the character table

    ymmetry species of all motions are:-

    Translations, rotations, vibrations

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    129/204

    ymmetry speciesof all motions are:-

    5A1 + 2A2 + 4B1 + 4B2

    Character table

    C2v 1E 1C2 1sv(xz) 1sv(yz) h= 4A

    1

    +1 +1 +1 +1 z x2, y2, z2

    A2 +1 +1 -1 -1 Rz xy

    B1 +1 -1 +1 -1 x, Ry xz

    B2 +1 -1 -1 +1 y, Rx yz

    Translationsare:- A1 + B1 + B2

    otationsare:- A2 + B1 + B2

    so vibrationsare:- 4A1 + A2 + 2B1 + 2B2

    Vibrational modes of SiH2Cl2

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    130/204

    Symmetry speciesof vibrations

    are:- 4A1 + A2 + 2B1 + 2B2

    What does each of these modes look like?

    2 rules

    (i) there is 1 stretching vibration per bond

    (ii) must treat symmetry-related atoms together

    Vibrational modes of SiH2Cl2

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    131/204

    2 rules

    (i) there is 1 stretching vibration per bond

    (ii) we must treat symmetry-related atoms together

    We therefore have:-

    two stretching modes of the SiCl2 group

    two of the SiH2 group

    The remaining five modes must be deformations(angle bending vibrations)

    Vibrational modes of SiH2Cl2

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    132/204

    We therefore have:-

    two stretching modes of the SiCl2 group

    We can stretch the two Si-Cl bonds

    together in phase

    or together out of phase

    Is vibration symmetrical with respectto each symmetry operation?

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    133/204

    - if yes +1, if no -1

    From the character table, this belongsto the symmetry species A1

    We call the mode of vibrationsymSiCl2

    E C2 sxz syz+1 +1 +1 +1

    x

    z

    y

    Is vibration symmetrical withrespect to each symmetryoperation?

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    134/204

    operation?

    - if yes +1, if no -1

    E C2 sxz syz

    From the character table, thisbelongs to the symmetry speciesB2

    We call the mode of vibrationasymSiCl2

    +1 -1 -1 +1

    x

    z

    y

    Vibrational modes of SiH2Cl2

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    135/204

    We therefore have:-

    two stretching modes of the SiCl2 group

    We can stretch the two Si-H bonds

    together in phase

    or together out of phase

    and two stretching modes of the SiH2 group

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    136/204

    x

    z

    y

    From the character table, this belongsto the symmetry species A1

    We call the mode of vibrationsym SiH2

    E C2 sxz syz+1 +1 +1 +1

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    137/204

    From the character table, this belongs tothe symmetry species B1

    We call the mode of vibrationasym SiH2

    E C2 sxz syz+1 -1 +1 -1

    x

    z

    y

    Vibrational modes of SiH2Cl2

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    138/204

    We now have:-

    two stretching modes of the SiCl2 group

    two of the SiH2 group

    The remaining five modes must be deformations(angle bending vibrations)

    As with stretches, we must treat symmetry-

    related atoms together

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    139/204

    From the character table, this belongs tothe symmetry species A1

    We call the mode of vibrationsym SiCl2(or SiCl2 scissors)

    E C2 sxz syz+1 +1 +1 +1

    x

    z

    y

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    140/204

    From the character table, this belongs tothe symmetry species A1

    We call the mode of vibrationsym SiH2(or SiH2 scissors)

    +1 +1 +1 +1

    E C2 sxz syz

    x

    z

    y

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    141/204

    From the character table, this belongs tothe symmetry species B1

    We call the mode of vibration SiH2 (orSiH2 wag)

    E C2 sxz syz+1 -1 +1 -1

    x

    z

    y

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    142/204

    From the character table, this belongs tothe symmetry species B2

    We call the mode of vibration SiH2 (orSiH2 rock)

    +1 -1 -1 +1

    E C2 sxz syz

    x

    z

    y

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    143/204

    y

    x

    From the character table, this belongs tothe symmetry species A2

    We call the mode of vibration SiH2 (orSiH2 twist)

    E C2 sxz syz+1 +1 -1 -1

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    144/204

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    145/204

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    146/204

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    147/204

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    148/204

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    149/204

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    150/204

    Molecular Vibrations

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    151/204

    For a molecular vibration to be seen in theinfrared spectrum (IR active), it must change thedipole moment of the molecule. The dipole

    moment vectors have the same symmetryproperties as the cartesian coordinates x, y and z.

    Molecular Vibrations

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    152/204

    Raman spectroscopy measures thewavelengths of light (in the IR range) scatted bya molecule. Certain molecular vibrations will

    cause the frequency of the scattered radiation tobe less than the frequency of the incidentradiation.

    Molecular Vibrations

    http://www.uncp.edu/home/mcclurem/ptable/transelm.jpg
  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    153/204

    For a molecular vibration to be seen in theRaman spectrum (Raman active), it must changethe polarizability of the molecule. The

    polarizability has the same symmetry propertiesas the quadratic functions:

    xy, yz, xz, x2, y2 and z2

    Molecular Vibrations of Water

    2A + B

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    154/204

    vib = 2A1 + B1

    The two vibrations with A1 symmetryhave z as a basis function, so they will be

    seen in the infrared spectrum of water.This will result in two peaks (at differentfrequencies) in the IR spectrum of water.

    Molecular Vibrations of Water

    2A + B

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    155/204

    vib = 2A1 + B1

    The two vibrations with A1 symmetryalso have quadratic basis functions, so they

    will be seen in the Raman spectrum ofwater as well.

    Molecular Vibrations of Water

    2A + B

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    156/204

    vib = 2A1 + B1

    The two vibrations with A1 symmetrywill appear as two peaks in both the IR and

    Raman spectra. The two frequenciesobserved in the IR and Raman for thesevibrations will be the same in both spectra.

    Molecular Vibrations of Water2A B

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    157/204

    vib = 2A1 + B1

    The vibration with B1 symmetry has xand xz as basis functions. This vibration will

    be both IR active and Raman active. Thisvibration will appear as a peak (at the samefrequency) in both spectra.

    Molecular Vibrations of Water 2A B

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    158/204

    vib = 2A1 + B1

    Both the IR and Raman spectrashould show three different peaks.

    Summary

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    159/204

    1. Obtain the point group of the molecule.2. Obtain 3N by considering the three cartesian

    coordinates on all atoms that arent moved by

    the symmetry operation.3. Reduce 3N .

    4. Eliminate translations and rotations.

    5. Determine if remaining vibrations are IRand/or Raman active.

    Application: Carbonyl Stretches

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    160/204

    Can IR and Raman spectroscopy determine thedifference between two square planarcomplexes: cis-ML2(CO)2 and trans-ML2(CO)2?

    cisand transML2(CO)2

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    161/204

    cisisomerC2v transisomerD2h

    cis- ML2(CO)2

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    162/204

    C2v: E C2 xz yz

    CO: 2 0 2 0

    cis- ML2(CO)2

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    163/204

    CO reduces to A1 + B1.A1 is a symmetricstretch, and B1 is an

    asymmetric stretch.

    cis- ML2(CO)2

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    164/204

    CO reduces to A1 + B1.The symmetricstretch (A1) is IR and

    Raman active.

    cis- ML2(CO)2

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    165/204

    CO reduces to A1 + B1.The asymmetricstretch (B1) is both IR

    and Raman active.

    transML2(CO)2

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    166/204

    transisomerD2h

    The transisomer lies inthe xy plane. The pointgroup D2h has thefollowing symmetry

    elements:

    D2h E C2(z) C2(y) C2(x) i xy xz yz

    y

    x

    transML2(CO)2

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    167/204

    transisomerD2h

    The transisomer lies inthe xy plane. CO isobtained by lookingonly at the two C-O

    bonds.

    D2h E C2(z) C2(y) C2(x) i xy xz yz

    CO 2 0 0 2 0 2 2 0

    y

    x

    transML2(CO)2

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    168/204

    transisomerD2h

    CO

    reduces to Ag

    (asymmetric stretch) andB3u(an asymmetricstretch).

    y

    x

    transML2(CO)2

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    169/204

    transisomerD2h

    CO

    reduces to Ag

    (asymmetric stretch) andB3u(an asymmetricstretch).

    Aghas x2, y2 and

    z2 as basis functions, sothis vibration is Ramanactive.

    y

    x

    transML2(CO)2

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    170/204

    transisomerD2h

    Ag

    has x2, y2 andz2 as basis functions, sothis vibration is Ramanactive.

    B3u has x as abasis function, so thisvibration is IR active.

    y

    x

    transML2(CO)2

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    171/204

    Aghas x2, y2 and z2 as basis functions, sothis vibration is Raman active.

    B3u has x as a basis function, so this

    vibration is IR active.

    The IR and Raman spectra will each showone absorption at different frequencies.

    Exclusion Rule

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    172/204

    If a molecule has a center of symmetry, none of its modes

    of vibration can be both infrared and Raman active.

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    173/204

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    174/204

    Chemical Applications of GroupTheory

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    175/204

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    176/204

    We have learnt the point group theory of molecularsymmetry. We shall learn how to use this theory inour chemical research.

    1. Representation of groups1.1 Matrix representation and reducible representation

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    177/204

    1.2 Reducing of representations

    Suppose that we have a set of n-dimensional matrices, A, B,

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    178/204

    C, , which form a representation of a group. These n-D

    matrices themselves constitute a matrix group.

    If we make the same similarity transformation on each matrix,

    we obtain a new set of matrices,

    This new set of matrices is also a representation of the group.

    If A is a blocked-factored matrix, then it is easy to prove that

    B,C are also blocked-factored matrices.

    ...CC;BBAA 111 '';' GGGGGG

    ,.....','

    4

    3

    2

    1

    4

    3

    2

    1

    B

    B

    B

    B

    B

    A

    A

    A

    A

    A

    A1 A2 A3 are n1 n2 n3 D submatrices with n n1 + n2 + n3 +

    Furthermore, it is also provable that the various sets of

    submatrices

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    179/204

    {A1,B1,C1}, {A2,B2,C2}, {A3,B3,C3}, {A4,B4,C4},are in themselves representations of the group.

    We then call the set of matrices A,B,C, a reducible

    representation of the group.

    If it is not possible to find a similarity transformation to reduce

    a representation in the above manner, the representation is

    said to be irreducible.

    The irreducible representations of a group is of fundamental

    importance.

    2. Character Tables of Point Groups

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    180/204

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    181/204

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    182/204

    These translation vectors constitute a set of bases of C2v group.

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    183/204

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    184/204

    .2 symmetry species: Mulliken symbols

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    185/204

    All 1-D irreducible reps. are labeled by either A or B, 2-D irreducible rep.by E, 3-D irreducible rep. by T and so on.

    A: symmetric with respect to Cn rotation, i.e., c(Cn)=1.

    B: asymmetric with respect to Cn rotation, i.e., c(Cn)=-1.

    Subscriptions 1 or 2 designates those symmetric or asymmetric withrespect to a C2 or a sv .

    Subscripts g or u for universal parity or disparity.

    Superscripts or designates those symmetric or asymmetric withrespect to sh

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    186/204

    This formula was derived from the Great orthorgonality theorem.

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    187/204

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    188/204

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    189/204

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    190/204

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    191/204

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    192/204

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    193/204

    CO2 has 3 modes of vibration

    Vibrational spectroscopy

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    194/204

    O=C=O O=C=O O=C=O

    Infra-red inactive - nodipole change IR active IR active

    H2O has 3 modes of vibration

    IRactive

    IR active IR active

    HO

    H HO

    H HO

    H

    Numberof active modes tells us about symmetry

    Molecular vibrations - number of modes

    yz

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    195/204

    4 atoms - can move independently in x, y, z directions

    x

    xyz

    xy

    zxy

    z

    3N degrees of freedom for a N-atom molecule.

    If atoms fixed, there are: 3 translational degrees

    3 rotational degrees

    and the rest (3N-6) are vibrational modes

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    196/204

    Good Luck In the Final Exam!

    Final Exam

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    197/204

    Content: Chapters 5-9Time: June 13, 8:00-10:00

    Venue: -102

    Tools: : June 10-12,

    316()

    4) Symmetry and IRa. IR only sees a vibration if the vibration changes the molecules dipole

    b. Motion along the x, y, z axes creates a changed dipole

    a. Infrared Active vibrations match up with x, y, z on character table

    I f d I ti ib ti d t

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    198/204

    b. Infrared Inactive vibrations dont

    c. For water, all three vibrations are infrared active

    5) Examples and Exercises pages 113-116

    C. Molecular Vibrations of ML2(CO)2 complexes

    The symmetry ofcis- ML2(CO)2 complexes is C2v

    The C=O stretch has only one possible direction of motion

    Instead of using xyz vectors at each atom, we can use a single vector

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    199/204

    C2v E C2 sv(xz) sv(yz)

    G 2 0 2 0

    2) The symmetry oftrans- ML2(CO)2 complexes is D2ha. Symmetry operations on the vectors generate a reducible representation

    b. Reduction formula give 2 irreducible representations

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    200/204

    c. Only the B3u representation is IR Active

    d. We can tell cisfrom transby the number of C=O IR bands

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    201/204

    2) Though more complex, the C3vCharacter Table can be generated similarly to thatof the C2vgroup

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    202/204

    C. Notes on Character Tables

    Multiple operations in the same class are listed together

    Different C2axes are listed separately with primes ()

    Those through outer atoms are

    Those not through outer atoms are

    Symmetry of orbitals are listed except for s orbitals, which are always in the firstlisted A irreducible representation

    Irreducible Representation Labels

    Degeneracy (dimension) is determined by the character of E operation A if E = 1 and c of Cn = 1

    B if E = 1 and c of Cn = -1

    E if E = 2 (doubly degenerate)

    T if E = 3 (triply degenerate)

    b) Subscripts 1 if symmetric to perpendicular C2 axis (or sv)

    2 if antisymmetric to perpendicular C2 axis (or sv)

    g if symmetric to i

    u if antisymmetric to i

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    203/204

    u if antisymmetric to i

    Primes

    if symmetric to sh

    if antisymmetric to sh

    IV.Applications of Symmetry Chiral Molecules

    Molecules not superimposable with their mirror images are called chiral ordissymetric

    They may still have some symmetry operations: E, Cn

    Chiral molecules cannothave i, s, or Sn symmetry operations

    IV.Applications of Symmetry Chiral Molecules

    Molecules not superimposable with their mirror images are called chiral or

  • 8/2/2019 (1) Teori Grup Dan Vibrasi-revisi

    204/204

    p p g

    dissymetric They may still have some symmetry operations: E, Cn

    Chiral molecules cannothave i, s, or Sn symmetry operations