1 Introduction - UPC Universitat Politècnica de Catalunya

25
1 Introduction Polymer films are used in a wide variety of applications. Their toughness is often a basic requisite to meet some industry needs. The Linear Elastic Fracture Mechanics (LEFM) approach is used to study fractures occurring at nominal stresses well below the material yield stress. The dissipated energy is confined in a small area near the crack tip, and the fracture is brittle. The LEFM approach is not applicable when the plasticity around the crack tip becomes large; in those cases the Elastic Plastic Fracture Mechanics (EPFM) is applied. When the crack propagation occurs through a highly deformed and yielded material then Post-Yield Fracture Mechanics can also be applied and the Essential Work of Fracture (EWF) is a suitable methodology. The EWF approach has become very popular to characterise fracture of polymer films and is increasingly used due to its apparent simple preparation and easy testing. The EWF characterises the plane stress toughness in mode I, generally using the double edge notched tension (DENT) configuration for the specimens. In spite of the apparent simplicity of the EWF test, some aspects of the validity of this technique remain controversial; there are intricate details that seem to play an important role in the repeatability and reproducibility of the test. This problem has been and still is a topic of much debate, and these questions indicate that the EWF procedure is not yet sufficiently well-defined to be standardised. Some of the aspects of the test validity are related to the specimen manufacture, particularly the quality of the notches. Two sets of specimens have been prepared, the first one sharpened by the femtosecond laser ablation technique, and the second one sharpened by the classical razor blade sliding technique. These two sets of specimens have Test Method The fracture testing of ductile polymer films: Effect of the specimen notching N. León a, [email protected] A.B. Martínez a P. Castejón a D. Arencón a P.P. Martínez b a Centre Català del Plàstic, Departament de Ciència dels Materials i Enginyeria Metal-lúrgica, Universitat Politècnica de Catalunya, BarcelonaTech, C/Colom 114, 08222 Terrassa, Spain b NUDEC SA, C/ Pintor Vila Cinca, 24-28, Pol. Ind. Can Humet de Dalt, 08213 Polinyà, Spain Corresponding author. Abstract The fracture of a ductile polymer film, a heterophase ethylene-propylene block copolymer, has been studied, combining a range of characterisation methods in an attempt to provide a better understanding of the intricate details that play an important role in the repeatability and reproducibility of the essential work of fracture test. The experimental factors that have a strong influence on the resulting parameters are clearly explained, with particular attention to the effect of the quality of the notches, the non-collinearity of the two edge notches in double edge notched tension specimens, and the lack of alignment of the specimen with the load axis once it is mounted on the load train. Furthermore, the influence of these experimental factors on the registered stress-displacement curves is also studied, and a criterion and the method for separating non-valid specimens are established. Keywords: Fracture; Essential work of fracture; J-integral; Polymer film

Transcript of 1 Introduction - UPC Universitat Politècnica de Catalunya

1IntroductionPolymerfilmsareusedinawidevarietyofapplications.Theirtoughnessisoftenabasicrequisitetomeetsomeindustryneeds.

TheLinearElasticFractureMechanics(LEFM)approachisusedtostudyfracturesoccurringatnominalstresseswellbelowthematerialyieldstress.Thedissipatedenergyisconfinedinasmallareanearthecracktip,andthe

fractureisbrittle.TheLEFMapproachisnotapplicablewhentheplasticityaroundthecracktipbecomeslarge;inthosecasestheElasticPlasticFractureMechanics(EPFM)isapplied.Whenthecrackpropagationoccursthrougha

highlydeformedandyieldedmaterialthenPost-YieldFractureMechanicscanalsobeappliedandtheEssentialWorkofFracture(EWF)isasuitablemethodology.

TheEWFapproachhasbecomeverypopulartocharacterisefractureofpolymerfilmsandisincreasinglyusedduetoitsapparentsimplepreparationandeasytesting.TheEWFcharacterisestheplanestresstoughnessin

modeI,generallyusingthedoubleedgenotchedtension(DENT)configurationforthespecimens.

InspiteoftheapparentsimplicityoftheEWFtest,someaspectsofthevalidityofthistechniqueremaincontroversial;thereareintricatedetailsthatseemtoplayanimportantroleintherepeatabilityandreproducibilityofthe

test.Thisproblemhasbeenandstillisatopicofmuchdebate,andthesequestionsindicatethattheEWFprocedureisnotyetsufficientlywell-definedtobestandardised.Someoftheaspectsofthetestvalidityarerelatedtothe

specimenmanufacture,particularlythequalityofthenotches.

Twosetsofspecimenshavebeenprepared,thefirstonesharpenedbythefemtosecondlaserablationtechnique,andthesecondonesharpenedbytheclassicalrazorbladeslidingtechnique.Thesetwosetsofspecimenshave

TestMethod

Thefracturetestingofductilepolymerfilms:Effectofthespecimennotching

N.Leóna,∗

[email protected]

A.B.Martíneza

P.Castejóna

D.Arencóna

P.P.Martínezb

aCentreCatalàdelPlàstic,DepartamentdeCiènciadelsMaterialsiEnginyeriaMetal-lúrgica,UniversitatPolitècnicadeCatalunya,BarcelonaTech,C/Colom114,08222Terrassa,Spain

bNUDECSA,C/PintorVilaCinca,24-28,Pol.Ind.CanHumetdeDalt,08213Polinyà,Spain

∗Correspondingauthor.

Abstract

The fractureofaductilepolymer film,aheterophaseethylene-propyleneblockcopolymer,hasbeenstudied, combininga rangeof characterisationmethods inanattempt toprovideabetterunderstandingof the

intricate details that play an important role in the repeatability and reproducibility of the essentialwork of fracture test. The experimental factors that have a strong influence on the resulting parameters are clearly

explained,withparticularattentiontotheeffectofthequalityofthenotches,thenon-collinearityofthetwoedgenotchesindoubleedgenotchedtensionspecimens,andthelackofalignmentofthespecimenwiththeload

axis once it ismountedon the load train.Furthermore, the influenceof theseexperimental factors on the registered stress-displacement curves is also studied, anda criterionand themethod for separatingnon-valid

specimensareestablished.

Keywords:Fracture;Essentialworkoffracture;J-integral;Polymerfilm

beencharacterisedbycombiningtheEWF,J-integral,andcracktipopeningdisplacement(CTOD)methodsinanattempttoprovideabetterunderstandingoftheEWFfractureapproachforcharacterisingthefracturetoughnessofa

ductilepolymerfilm.Theconnectionbetweenthequalityofthenotchesandtheshapeandsizeoftheregisteredstress-displacementcurveshasbeenestablished.Thiswasdoneinordertofindacriterionandamethodtoeliminate

non-validspecimens.Furthermore,ithasbeenstudiedindetailhowthesizeandshapeofthestress-displacementcurvesarerelatedtotheEWFfractureparameters.

Theeffectonthestress-displacementcurvesofspecimenswithnon-collinearnotches,specimenswithdifferentqualitybetweenthetwoedgenotches,andspecimenshavingalackofalignmentwiththeloadaxisoncemounted

onthetestingmachinegripshavebeenalsostudied.

Moreover, there is a limited understanding of the polymers towhich theEWFapproach can be applicable. TheEWFapproachhas been successfully applied to polymers that undergo necking before crack propagation.

However,thereissomecontroversyovertheapplicabilityoftheEWFapproachtoheterophasepolymers,whichcandeformbyothermechanisms.Forthisreason,averyductilegradeofanethylene-propyleneblockcopolymer(EPBC),

whichispronetoplasticdeformationandthusproblematicforthenotchsharpening,wastested.

ThemainobjectiveofthisworkistocontributetoabetterunderstandingandtoclarifysomeofthecontroversialfactorsinvolvedintheEWFtest.

2TheEWFapproach2.1TheEWFconcept

TheEWFapproach[1]isbasedonthehypothesisthatthetotalenergyinvolvedduringtheductilefractureofapre-crackedspecimen(Wf)canbeseparatedintotwoterms.

whereWe, theessentialworkof fracture, represents theenergy required for the creationof twonewsurfacesduring the crackpropagation,whereas the second term,Wp, is called theplasticworkor thenon-essentialworkof

fractureandcollectsallothersourcesofenergyproducedthroughoutthefractureprocess.ThetermWeisconsideredtobeproportionaltotheareaoftheFractureProcessZone(FPZ)whileWpisproportionaltothevolumeofthe

OuterPlasticZone(OPZ).ThesezonesareschematisedinFig.1foraDENTspecimen.

RewritingEq.(1)usingspecificterms,

wheretisthespecimenthickness,loistheoriginalligamentlengthandβisafactorthatdependsontheshapeoftheOPZ.

ItispossibletoassessEq.(2)byperformingaseriesoftestsonspecimenswithdifferentligamentlengths,andsubsequentlyplottingthespecifictotalworkoffracturevalues,wf,asafunctionoftheirligamentlengths.A

(1)

Fig.1DENTspecimengeometry.

alt-text:Fig.1

(2)

simpleregressionanalysisofthisplotshowsthatthespecificessentialworkoffracture,we,andthespecificnon-essentialworkoffracture,βwp,aretheinterceptforazeroligamentlengthandtheslopeofthelinearregressionline,

respectively.

Thevaluewhichrepresentsthetoughness,namely,we,isaninherentmaterialparameteronlyiftheligamentyieldsfullybeforetheonsetofcrackpropagation.

2.2KeyassumptionsIntheEWFanalysis,thefollowingthreebasickeyassumptionsaremade:

a) Theloisfullyyieldedpriortotheonsetofcrackpropagation.

InaDENTspecimen,itcouldbeestimatedthatlowillbecompletelyyieldedpriortotheonsetofcrackpropagationifitislessthantwicethesizeoftheplasticzoneradius,rp.Underplanestressconditions,foralinearplastic

zone

andforacircularplasticzone

whereEistheelasticmodulusandσyistheuniaxialyieldstress.

Althoughhavinglo≤2rpisareasonablesizecriterion,itappearstobetoorestrictive.

b) Fractureoccursunderplanestressconditions.

Aspolymerfilmshaveathicknessoflessthan1mm,apracticallowerlimitof5mmforlohasbeenacceptedwhenpreparingDENTspecimenstobeproperlyhandled.Theupperlimitforlorequiresfull-ligamentyieldingbefore

crackpropagation.Hence,lohastobelessthantwicerpinDENTspecimens.

Anotherupperlimitisgivenbytherelationship:

whereWisthespecimenwidth.Thislastconditionisnecessarytopreventedgeeffects.

c) Goodqualitynotches.

Goodqualitymeans identicalandrepetitivesharpnotcheswithoutplasticdeformation in frontof thenotchtip.Thisrequirementguaranteesself-similar load-displacementand ligament length-displacementcurves for the

testedspecimens[2,3].

Thenotchsharpeningisofcriticalimportanceinobtaininggoodresults[4–6].Thelargernotchtipradiusorplasticdeformation,thehigherwevalues.

2.3OtherconsiderationsWhenthekeyassumptionsaresatisfied,weisthespecificenergyjustbeforecrackinitiation.Thatis,aninitiationvaluewhichcoincideswiththeJ-integralvalueatinitiation,Jo[2].

Hillhasdemonstrated[7]thatintheDENTgeometryunderplanestressconditions,nostresscanexceedthevalueof1.15σy.Thus,themaximumstressregisteredduringtheDENTtest,σmax,hastobebetweenσyand1.15σy,

anditsvalueisequalforalltheligaments.Theoretically,atsmallvaluesoflo,thespecimencanbeinamixedstateofstress,whichincreasesσmax.Therefore,thisHillcriterioncouldbeusefultodeterminethelowerlimitoflo. In

practice,theexperimentalvariabilityintheσmaxvaluescreatesdifficultiesfortheapplicationofthiscriterion.Clutton[4]hassuggestedanothercriterion,whichutilisesthemeanofthemaximumstresses,where

(3)

(4)

(5)

Thiscriteriononlyremovesdatawhereanerrorindimensionalmeasurementorinloadexists.

3Experimentaldetails3.1Material

ThestudyhasbeenconductedonacommercialgradeofEPBC.Themicrostructureconsists[8]ofelastomericethylene-propyleneparticlesembeddedinapolypropylenematrix.

Polypropylenerequiresimprovedtoughnessatbothroomandlowtemperaturestofulfilsomeindustryrequirements.Themechanismresponsibleforthetoughnessreinforcementistheformationofshearbandsaroundthe

elastomericparticles,whichabsorbsmostofthedeformationenergy.

TherawmaterialintheformofpelletswaskindlysuppliedbyREPSOL.Filmsthatwere0.5mmthickwerecast-extrudedfromthepellets.

3.2SpecimenpreparationTwokindsofspecimenswereprepared:dumbbellshapedandDENTspecimens.Allthespecimenswerepreparedandtestedinthemachinedirectionorientation.

DumbbellshapedspecimenswereobtainedinacuttingpresswiththeshapeanddimensionsofISO527-3typeVspecimen.

TheDENTspecimenswereusedtoperformthefracturetests.EPBCfilmswerecutinrectangularcoupons(Fig.1),whichwerepre-notchedformingsawcutslots.Thenotcheshadtobecollinear,andplacedoppositeone

anotheratthemidpointofthespecimenheight.

Themostpopularmethodusedtosharpennotchesistherazorbladeslidingtechnique.Inthistechnique,thenotchesaresharpenedbydrawingafreshrazorbladeacrossthepre-notch.Itisadvisabletodothisinasinglepass

sothattherazorbladefollowsthesametrack,avoidingbifurcations.Insteadofarazorblade,scalpelshavealsobeenused.Coolingthespecimensbelowtheirglasstransitiontemperature(Tg)priortotheslidingtechniquecanbe

helpful.Verysmallnotchtipradiiofaround1μmcanbemanufactured.Unintentionaldevelopmentofaplasticzoneaheadofthenotchtipcanbeinducedbythecompressivecomponentofthesidewaysslidingforce.Thenotchquality

isdependingonthetechniqueused,andevenontheoperatorskill.

The femtosecondpulsed laserablation technique (femtolaser)canbeused tomicromachinepracticallyanymaterial,withnegligible thermaldamage to thesurfacesurrounding theablatedareas.Withproperset-up, this

techniqueallowsobtainingconsistentnotchesthathavenegligiblethermaldamage,noplasticdeformation,andanotchtipradiusofapproximately1μm[2,3,6].

Thesharpeningofthepre-notchedEPBCspecimenswascarriedoutusingtwodifferentmethods,thefemtolaserablationtechniqueandrazorbladesliding.

Inonesetof18specimens,themachinedpre-notchwasextendedbytheapplicationofthefemtolaserablationtechniquewiththesameset-upandothervariables,asdefinedforanotherEPBCgrade[6].

Thesecondsetof18specimenswassharpenedbymanuallyslidinganewrazorbladeacrossthepre-notchinasinglepass.

Theloofeachspecimenwasmeasuredaftertestinginanopticalmicroscope.

Onesurfaceofeachspecimenwasadequatelysprayedwithaspecklepatternbeforebeingtested.

3.3TestconditionsAlltestswerecarriedoutat23±1°Cusingacrossheadspeedof2mm/minonaZwickservo-hydraulictestingmachine,whichwasfittedwithatwo-cameradigitalimagecorrelation(DIC)systemandAramissoftware(GOM,

Germany).

Ingeneral,DICisbasedontheprincipleofcomparingspecklepatternsonthesurfaceofthedeformedsamples,orbetweenanytwodeformationstates.Surfaceswithhighcontrastarerequiredtoavoidimagedistortionand

thereforeinaccuratedata.Hence,beforetesting,onesurfaceofeachspecimenwascoveredwithathinwhitecoatingbeforebeingsprayedinordertoobtainblackpoints,asrequiredbytheDICsystem.

Uniaxialtensiletestswereperformedonthedumbbellshapedspecimens.TheloadwasregisteredbytheloadcellandthedisplacementsbytheDICsystem.

(6)

TheDENTspecimensweretested,inmodeI,untilcompletefailure.ThespecimenswereproperlyclampedwithanoriginaldistancebetweenclampsofZ=60mm.Foreachspecimen,theloadasafunctionofthecross-head

displacement,dz,wasregistered.

DICsystemimagesobtainedduringthetestswererecordedforallthespecimens.Theseimageswerealsoanalysedwiththesoftwareformeasuringthedeformationandtheligamentlengthevolutionthroughoutthetest.The

displacementdopzwasmeasuredwithtworeferencepointsveryneartoeachother,butoutsidetheouterplasticzone,whichcorrespondstothelargestlospecimen.Thedistancebetweenthesetworeferencepointswasalwaysthe

sameforallspecimensofagivenset.Then,byusingtheregisteredloads,displacements,andligamentlengths,twosetsofdata,foreachspecimen,canbeplotted.Specifically,theloadisplottedasafunctionofthedisplacement,and

theligamentlengthlasafunctionofthedisplacement.

4Resultsanddiscussion4.1Uniaxialtensiletest

TheσyandEvaluesoftheEPBCfilmweremeasuredon5dumbbellshapedspecimensfollowingtheISOstandard527,resultinginE=1.24±0.1GPaandσy=25.0±0.2MPa.Thespecimensshowedawhiteningzoneinthe

deformedarea,whichischaracteristicoftheheterophasepolymers.

4.2NotchqualityThenotchesoftwospecimensfromeachsetwereobservedbyopticallightmicroscopyandalsobyscanningelectronmicroscopy(SEM).

Observationoftherazorbladesharpenednotchesunderthelightmicroscope(Fig.2a)revealedsomestresswhiteningaheadofthenotchtip,indicatingthatsomeplasticdeformationhadtakenplace.Thisphenomenonwasnot

presentinthenotchesofthefemtolaserspecimens(Fig.2b).

Fig.2Opticalmicrographs:a)Femtolasernotch,b)Razorbladenotch.

TheSEMmicrographsoftherazorbladenotches(Fig.3)revealedvolumeaccumulationofplasticallydeformedmaterialatthenotchtip.Thenotchtipradiuswaslessthan1μmandthesharpeningextensionvariedbetween

900and1300μm.

All the femtolasernotchesobservedthroughtheSEMturnedout tobevirtually identical (Fig.4),withanotch tipradius less than1μmanda sharpeningdepthof750μm. Itwasalsoobserved that therewasnoplastic

deformationandnegligiblethermaldamageatthenotchroot.

alt-text:Fig.2

Fig.3SEMmicrographsofarazorbladespecimen:a)Extendednotch,b)Notchtipdetail.

alt-text:Fig.3

Both typesofnotcheswerevery sharp,withpractically the samenotch tip radius,but thereweredifferences in theplasticdeformationat thenotch root,whichwasvisible in the razorbladenotchesandabsent in the

femtolaserones.

ThesecondphaseparticlesoftheEPBCactasstressconcentrators,andsoonlyasmallcompressivecomponentoftheslidingforceisneededtoproduceplasticdeformation,whichisvisualisedaswhitening.

4.3FemtolaserspecimensTheloadversusdisplacement(dopz)curvesobtainedthroughtestingarerepresentedinFig.5,foreachoneofthe16specimenstested.Here,apartialoverlapofthecurvescorrespondingtolo=5.89mmandlo=6.45mmas

wellasthecurveslo=19.37mmandlo=20.39mmcanbeobserved.

Fig.4SEMmicrographsofafemtolasernotch:a)Generalview,b)Detailofthecracktip.

alt-text:Fig.4

Theligamentlengths(l)asafunctionofthedisplacement(dopz)arerepresentedinFig.6forthesame16testedspecimens.AsinFig.5,apartialoverlapisalsoobservedforthesamelocurves.

Eq.(2)canbeevaluatedasexplainedbefore.InFig.7,wfasafunctionofloisrepresented,using,dzanddopz,twodifferentwaysofmeasuringthedisplacements.Thewevalues,127.05±12.64kJ/m2(dz)and130±9.59kJ/m2

(dopz),arepracticallycoincidentbuttheslopes,21.35±0.90MJ/m3(dz)and19.94±0.70MJ/m3(dopz),changeslightly.

Fig.5Registeredload-dopzcurvesforthe16femtolaserspecimens.

alt-text:Fig.5

Fig.6Registeredlversusdopzcurvesforthe16femtolaserspecimens.

alt-text:Fig.6

ThedopzwasmeasuredusingtworeferencepointscloselylocatedtotheOPZ,andinthiswaytheOPZwascontainedwithinthesetwopoints,forallspecimens.Thedistancebetweenthesereferencepointswasconstantforall

specimens.Thedisplacementsat rupturemeasured fromthecrosshead (dz)are larger than thedisplacementsmeasured fromthe limitsdefinedby theouterplastic zone (dopz).Theelasticdeformationoutside theplastic zone is

recoveredonunloadingsothatbothrupturedisplacementswouldbeexpectedtobeequalatleastthatthetotalrecoveryofotherdisplacements,asviscoelastic,doesnothappenbeforespecimenrupture.

Oncewe,σy,andEwereobtained,therpwascalculatedandEqs.(3)–(5)wereaccomplished.Thus,twoofthekeyassumptionsoftheEWFaresatisfied,i.e.,theligamentlengthiscompletelyyieldedpriortotheonsetofcrack

initiation,andfractureisunderplanestressconditions.

IftheloadinFig.5isdividedbytheareaofitsinitialligament,astressversusdopzrepresentationisobtained.ThisnewplotisrepresentedinFig.8.Thehatchedareaundertheσ-dopzcurvesisequaltowe=130kJ/m2.Asetof

overlappingcurves(heads)canbeobservedinthelowdisplacementrangeuptoafairlyrecognizablevalue,di,fromwhichthecurves(tails)starttodiverge.Thehatchedareabeginsatdopz=0untilthedisplacementdi,wherethe

crackinitiationbegins.Whenthedisplacementsarelargerthandithenthereiscrackpropagation.FromtheanalysisofFig.8thecrackinitiationdisplacementdi=4.94±0.11mm,themaximumstressσmax=28.75±0.74MPa,and

thecrackinitiationstressσi=25.89±0.46MPacanbeidentified.

Theσmaxvaluesarebetweenσyand1.15σyandthereforeEq.(6)isalsovalidforallspecimens.TheCluttonandHillcriteriaarenowsatisfied.

InFig.8someoftheframesregisteredbytheDICcamerasarealsoschematised.Theexactframewherecrackinitiationbeginscannotbevisuallydetected,butthearrowsintheframeofFig.8showthatinthisframethecrack

Fig.7EWFplotforthe16femtolaserspecimens:●)Displacementdopz,▲)Displacementdz.

alt-text:Fig.7

Fig.8Stressversusdopzcurvesforthe16femtolaserspecimens.

alt-text:Fig.8

initiationhasbeeninitiated.TheframesdisplayedinFig.8indicatethatpriortodithereisnocrackpropagationandafterwards,thecrackgrowthhasalreadybegun.Thecrackinitiationcorrespondsverywellwithcoordinates(di,σi),

confirmingtheonsetofcrackinitiation.Then,weisthespecificenergyjustuptocrackinitiation.TheframesinFig.8followasequenceofeventsleadingtofractureoftheDENTspecimens.Theprocessbeginswiththeopeningand

bluntingofthenotchandtheyieldingoftheligamentarea,followedbycrackinitiationandpropagationuntilcompletefailure.

Thecracktipopeningdisplacementattheonsetofcrackinitiation,CTODis

wheredristhedisplacementatcompleterupture.

InFig.9theobtaineddrvalues(Fig.2)infrontofloareplottedforthe16specimens.AsimplelinearregressionanalysisofthisplotshowsthattheCTODvalueistheinterceptforazeroligamentlength.TheCTODvalueof

4.94mmiscoincidentwithdithedisplacementattheonsetofcrackinitiation(Fig.8).

Thecracklengthincrementduetoblunting,Δab,justpriortocrackinitiationisgiven(Fig.1)by

where li is the ligament length at the onset of crack initiation. When li is represented as a function of lo, there is a linear dependence between the two variables. The li values can be determined in Fig. 6 from the di values

correspondingtoeachlospecimen.InFig.10thelivaluesobtainedforeachlospecimenaregraphed.AsimplelinearregressiononthisgraphresultsinaninterceptΔab=1.42mmandaslopeof1,aspredicted.

(7)

Fig.9DeterminationofCTODforthe16femtolaserspecimens.

alt-text:Fig.9

(8)

Fig.10DeterminationofΔabforthe16femtolaserspecimens.

alt-text:Fig.10

Toensurethatthefracturemechanismisthesame,irrespectiveoftheligamentlength,thespecimensmustshowacommonandsteadyfracturephenomenologyduringcrackgrowth.

InFig.6,thecrackgrowthiscomprisedbetweentheCTODanddrvalues.ThecrackgrowthrangeofFig.6canbenormalisedusingtheΔabandCTODvalues.Thenormalisedresultscanberepresentedinaplotliketheone

showninFig.11.Here,allthecurvesoverlapexceptforthespecimenswithlo=5.89mmandlo=19.37mm,whichshowslightdeviations.Inthiswaythesametwospecimensareidentified,whichalsohavedeviationsinFigs.5and6.

Thesetwospecimenswereexcludedandalltheworkwasrecalculated.Attheendofthenewanalysis(we=128.81kJ/m2andβwp=19.87MJ/m3usingdopz),theinfluenceofthesetwospecimensonthepreviousresultswas

insignificant.

Now,thelastofthekeyassumptionsissatisfiedbecausetheremaining14specimenshadrepetitivesharpnotcheswithoutplasticdeformationaheadofthecracktip.Assuch,weisaninherentmaterialproperty.

Duringthecrackpropagation,theloadPversusthecracklengtha[2]isrepresentedby

anditsderivative

Thus,ifPisrepresentedasafunctionofa,astraightlinewithslope–tσishouldbefound.

Thecracklength(Fig.1)isgivenby

Then,bycombiningEq.(11)withFigs.5and6,PasafunctionofaisdepictedinFig.12forthetails.ThetwocurvesthatdeviatedfromtheothersinFig.12aredirectlyrelatedtothetwopreviouslydiscardedspecimens.The

lineardependenceindicatesthatallpropagationsfollowthesametrendexceptatthehigheravalues,nearthecompletespecimenfracture,wheretheslopeincreases.Fromtheslopecalculatedofthe14validspecimens,itisfound

thatσi=25.20±0.96MPa,whichagreeswiththepreviouslydeterminedvalueinFig.8.

Fig.11Normalisationofcrackgrowthforthe16femtolaserspecimens.

alt-text:Fig.11

(9)

(10)

(11)

TheJ-integralconceptrepresentsanenergycontourpathintegralthatisindependentofthepatharoundthecrack.TheJ-integralcanberepresented[9]as

whereU is theexternalworkdoneup toagivenconstantdisplacementd, anda is thecrack length.TheLandesandBegleyexperimentalmethod [9] is usedhere.Thismethod requires two steps.The first step consists of the

graphicalrepresentationoftheenergydividedbyt,asafunctionofa,whendisfixed.TheresultantplotisshowninFig.13.Thepointsbelongingtothesamedisplacementshowlinearityandcanbefittedbyastraightline.ByEq.(12),

theresultantslopeoftheregressionlineis-J.ThesecondstepconsistsofplottingtheJvaluesversusdisplacement,asillustratedinFig.14.

Fig.12Loadversusaforthe16femtolaserspecimens.

alt-text:Fig.12

(12)

Fig.13Inputenergydividedbythicknessversusaforthe14validfemtolaserspecimens.

alt-text:Fig.13

Foranon-workhardeningmaterialandfullyieldingoftheligament[2],U/tisalinearfunctionofaataconstantdisplacement,asithasbeenverified,then

InFig.14,theslopeoftheregressionline,σi=22.76MPa,agreesreasonablywellwiththepreviouslyfoundσivalues.TheJvalueatcrackinitiation,Jo,isobtainedbyintroducingtheCTODvalueintheJ-integralplot,asshown

inFig.14.ThisprovidesavalueofJo=126.49kJ/m2thatmatcheswellwithwe.

TherelationshipbetweenJoorweandCTODgiven[2]by

issatisfied.

4.4RazorbladespecimensTheloadversusdopzcurvesdeterminedduringtestingareshowninFig.15foreachofthe16specimenstested.Here,thereisnooverlapofcurvesobserved.

Fig.16accountsfortheregistereddataoflasafunctionofdopz.Apartialoverlapofthespecimenswithlo=19mmandlo=17.86mmisobserved.

Fig.14J-integralplotforthe14validfemtolaserspecimens.

alt-text:Fig.14

(13)

(14)

Fig.15Registeredloadversusdopzcurvesforthe16razorbladespecimens.

alt-text:Fig.15

TheEWFplotofthe16specimens,whendopzisused,isdisplayedinFig.17.Theinterceptatdopz=0oftheregressionlineyieldswe=175.97kJ/m2.

ThestressversusdopzcurvesaredepictedinFig.18a.Twodifferentpopulationsofcurvescanbeobserved.Onepopulationhasthe4specimenswiththeshorterlospecimens,whiletheotheronecontainstheremaining12

specimens.

Fig.16Registeredlversusdopzcurvesforthe16razorbladespecimens.

alt-text:Fig.16

Fig.17EWFplotfortherazorbladespecimens:●)dopz16specimens,▲)dopz11specimens,■)dz11specimens.

alt-text:Fig.17

Forthiscase,themeanvalueofσmax(Fig.18a)surpassestheupperlimitoftheHillcriterion.Theσmaxvaluesforthe4shorterloarelargerthan1.15σy, indicatingthepossibilitythattheycouldbeinamixedmodestate.

However,thisisnotthecasebecausetheshorterfemtolaserspecimens,whichhavesimilarlo,wereinapureplanestressstate.TheCluttoncriterion(Eq.(6))issatisfied.

Toinvestigatewhetherthefracturemechanismisthesameforallthe16specimens,itisconvenienttoperformthestudyofcrackgrowthrange,aswasdonebefore(Fig.11)forthefemtolaserspecimens.TheCTODandΔab

valuesweredeterminedthroughFigs.19and20,respectively.Now,withΔabandCTOD,thecrackgrowthrangeofthesespecimenscanbenormalised.InFig.21thenormalisedcurvesarerepresented.Itcanbeclearlyobservedthat11

specimensoverlap,4specimenspresentlargedeviations(lo=5.11mm,lo=5.85mm,lo=6.96mmandlo=8.29mm),andthespecimenwithlo=20.38mmhasaslightdeviation.

Fig.18Stressversusdopzcurvesfortherazorbladespecimens:a)16specimens,b)11specimens.

alt-text:Fig.18

Fig.19DeterminationofCTODfortherazorbladespecimens:●)dopz16specimens,▲)dopz11specimens.

alt-text:Fig.19

Fig.20DeterminationofΔabfortherazorbladespecimens:●)dopz16specimens,▲)dopz11specimens.

alt-text:Fig.20

Fig.21Normalisationofcrackgrowthforthe16razorbladespecimens.

alt-text:Fig.21

TheframescollectedbytheDICsystemofthese5specimenswerecarefullyexamined.Inthe4specimenswiththeshorterlo,itisobservedthatthetwonotchesofthesamespecimendonotinitiatethepropagationatthesame

time.Thisfacthasbeenalsoseeninotherpolymerfilms[2,3]andcanbeoriginatedbyqualitydifferencesbetweenthetwonotchesofthespecimen.Suchdifferencesareprobablyproducedduringtheslidingoftherazorbladein

specimenswithshortlo,beingmoredifficulttosharpenthatinspecimenswithlargelovalue.

Intentionally,onespecimenhasbeenpreparedusingadifferentcompressivecomponentoftherazorbladeslidingforceonthetwonotches.Fig.22showstheopticalmicrographsofbothnotches.Here,thedifferentextentof

plasticdeformationcanbeobserved.Aframeofthetestedspecimenshowingthenon-simultaneouspropagationofbothcracksisalsoshown.

Theonlyonedifferenceobservedinthespecimenwithlo=20.38mm,whencomparedwiththeother11validspecimens,wasthatalongertimewasrequiredforcrackinitiation.ThiscanalsobeobservedinFig.18awhereits

divalueislargerthanotherspecimens.Thedivaluecorrespondstoaninitiationstressof25.35MPa.Bothnotchespropagateatthesametime,buttheircomparativelylargerdisplacementandlongertimetocrackinitiationcanbe

attributedtoeithertheirlargercracktipradius,ortheincreasedplasticdeformationaheadofthecracktip,despitetheparityofthenotchquality,whencomparedtotheother11validspecimens.

Now,afterdiscardingthe5anomalousspecimens,theworkwasentirelyrecalculatedwiththe11validspecimens.ThesespecimenssatisfiedEqs.(3)–(5)andtwoofthekeyrequirementswerefulfilled,i.e.,theligamentlengths

arecompletelyyieldedpriortotheonsetofcrackinitiationandfractureisunderplanestressconditions.However,inspiteoftherepetitivesharpnotches,thesespecimenshaveplasticdeformationaheadofthecracktip,andtherefore

thethirdkeyrequirementisnotaccomplished.Thus,wewithavalueequalto168.44kJ/m2isnotaninherentmaterialproperty.

TheEWFplotofthe11validrazorbladesharpenedspecimensisdepictedinFig.17forthemeasureddisplacementsdzanddopz.Thewevaluesforbothdisplacementsarepracticallyidentical,167.29±10.49kJ/m2(dz)and

168.44 ±10.91kJ/m2 (dopz), but the slopes change slightly, 22.33 ±0.73MJ/m3 (dz) and 21.33 ±0.76MJ/m3 (dopz), as in the femtolaser specimens (Fig. 7). Thewe=168.44kJ/m2 for the 11 specimens is slightly less than the

we=175.97kJ/m2obtainedfromthe16specimens.

InFig.18bthecurvesσversusdopzarerepresentedforthe11validspecimens.Theσmaxis28.26±0.25MPa,andeachσmaxvaluemeetsHillandCluttoncriteria.Thehatchedareaundertheσ-dopzcurvesisequalto168.44kJ/m2

(wevalue).Thishatchedareabeginsatdopz=0andextendsuntildi=6.54±0.04mm.Inthislowrangeofdisplacements,allthecurves(heads)overlap.Fromdi,thecurves(tails)starttodivergeuntildr.So,inFig.18b,diisidentified

asthedisplacementattheonsetofcrackinitiationanditscorrespondingstressvalue,σi=25.35±0.15MPa,asthestressattheonsetofcrackinitiation.Thisbehaviourhasbeenpreviouslyfound[2,3]forrazorbladeandfemtolaser

sharpenedspecimens.

TheCTODvalue(6.34mm)isdeterminedinFig.19.Asexpected,thisvalueiscoincidentwiththedivalueidentifiedinFig.18b,andΔab=1.59mmisobtainedinFig.20forthe11specimens.

Proceedingasbeforewiththefemtolaserspecimens;theloadduringthecrackpropagationisrepresentedinFig.23foreachoneofthe16testedrazorbladesharpenedspecimens.Discardingthe4shorterlospecimens,and

thespecimenwithlo=20.38mm,astraightlineaspredictedbyEq.(10),results.The5curvesthatdepartfromtheotherinFig.23correspondtothe5specimensdiscardedbefore.ByapplyingEq.(10)totheslopeofthestraightline

obtainedfromthe11validspecimensshowninFig.23,itisfoundthatσi=25.06±0.88MPa,avaluethatagreesverywellwiththeσivaluesdeterminedbefore.

Fig.22Non-simultaneouscrackpropagation.

alt-text:Fig.22

TheJ-integralprocedurewasperformedasdescribedbefore.ThetwostepsoftheexperimentalmethodareshowninFigs.24and25.InFig.24,thepointsbelongingtothesamedisplacementshowlinearityandcanbefittedby

aregressionline.Theslopeofthislineis-J(Eq.(12)).TheseslopesaredisplayedinFig.25asafunctionofthedisplacement.Here,followingEq.(13),theslopeoftheregressionlineσiresultsin22.04MPa,whichagreesreasonably

withtheσivalueencounteredinFig.18b.UsingthedisplacementattheonsetofcrackinitiationgivesJo=166.01kJ/m2,whichalsoagreeswithwe.

Fig.23Loadversusaforthe16razorbladespecimens.

alt-text:Fig.23

Fig.24Inputenergydividedbythicknessversusafortherazorbladespecimens.

alt-text:Fig.24

The11selectedspecimenshaverepetitivesharpnotches,butwithplasticdeformationaheadofthenotchtip,thissetofspecimensdoesnotfulfilthekeyrequirementofconsistent,highqualitynotches.Asaconsequence,weis

notaninherentmaterialproperty.However,therelationshipbetweenwe,Jo,CTODandσi,givenbyEq.(14),iscompletelyfulfilled.Thesevaluesdependonthenotchqualityandtheirrelationshipsaremaintained.

4.5FemtolaserversusrazorbladeTherearedifferencesinthenotchqualitybetweenthefemtolaserandtherazorbladesharpenedspecimens.Theplasticdeformationleadstohighervaluesofwe,CTODandJo,althoughtheirvaluessuccessfullyaccomplishEq.

(14).

Inpolymerfilms[2,3]lessductilethanEPBC,ithasbeenpossibletogeneratenotchesusingtherazorbladeslidingtechniquewithandwithoutplasticdeformationinfrontofthenotchtip.Oncespecimenscontainingplastic

deformationwerediscarded,thefractureparameterswerecoincidentwiththoseobtainedinfemtolaserspecimens.

Themeanσmaxandσivaluesforthefemtolaserandrazorbladespecimenshavethesamevalues.However,theCTODandΔabvaluesarelargerfortherazorbladesharpenedspecimens.

Foramorethoroughanalysisoftheσ-dopzcurves,inFig.26atheregisteredcurvesobtainedfromtwoequalligamentlengthsaredisplayed,onesharpenedbyfemtolaserandtheotherbyrazorblade.Forthesamespecimens,

thel-dopzcurvesareshowninFig.26b.InFig.26aandbcanbeobservedthatthedrvalueislargerfortherazorbladesharpenedspecimen.Anotherwaytorepresentthesedatacanbeperformedbyshiftingtheσ-dopzandl-dopzcurves

alongthedisplacementaxissothattherupturedisplacementscoincide,asshowninFig.27afortheσ-dopzcurvesandinFig.27bforthel-dopzcurves.Doingso,thedivalues fall in thesameplace,andthetailsoverlap.Withsuch

representation,itcanbededucedthatthecrackgrowth,andthepropagationenergy,arethesameforbothsharpeningmethods,andthentheslopeβwpoftheEWFplotwouldhavethesamevalueforbothsetsofspecimens,asis

observed.InFig.26a,itcanbeseenthatthetwocurvesoverlapintherangecomprisedbetweenthedisplacementsdopz=0andthedisplacementcorrespondingtoσmax.InFig.27b,itcanbeobservedthatthetailsalsooverlap.The

differencebetweenbothcurvesoccursintherangecomprisedbetweenthedisplacementcorrespondingtoσmaxanddi.Inspiteofthis,σiisthesameforbothnotchsharpeningprocedures.

Fig.25J-integralplotfortherazorbladespecimens.

alt-text:Fig.25

Fig.26Femtolaserandrazorbladespecimenswithlo=17mm:a)σversusdopz,b)lversusdopz.

alt-text:Fig.26

Thesametrendshavebeenobservedinotherductilepolymerfilms[2,3].Itisclearthattheshapeofthestress-displacementcurvesisgreatlyinfluencedbythequalityofthenotches.

Ifthereisasetofspecimenswiththesamenotchtipradius,buthassomespecimenswith,andotherswithout,plasticdeformationaheadofthenotchtip,then,aftertesting,allspecimenswouldhavethesameσmaxandσibut

differentdi.Thisresultsincrossingcurvesintheload-displacementandligamentlength-displacementplots.Thesebehaviourscanbeexpectedifthesetcontainedspecimensthathaddifferentlevelsofplasticdeformation.

Thenormalisedcrackgrowthversusdisplacementcurvesof thecrackpropagationareshown inFigs. 11and21 for the femtolaserand razorbladespecimens, respectively. If a singlegraphofboth figures ismade,after

discardingthenon-validspecimens,allthecurveswilloverlap,confirmingthatbothsetsofspecimenspresentthesamepropagationbehaviour.Thenormalisedplotsofthecrackgrowthversusdisplacementarehelpfultorejectthose

specimenswithdifferentqualitynotches.

ThisEPBCgradepresentswevaluesof130and168.44kJ/m2forthefemtolaserandrazorbladesetsofspecimens,respectively.Theirβwpvalueisapproximately21MPa/m3,consideringanaverageofthedifferentwaysto

measurethedisplacement.Martínezetal.[6]foundwevaluesof60and116kJ/m2fortwosetsoffemtolaserandrazorbladespecimens,respectively,andanaverageβwpvalueofapproximately15MJ/m3,foranotherEPBCgrade,which

hadthesame8.5%ethylenecontentbutalowermolecularweight.Thus,theincreaseinmolecularweightresultsinanincreaseintoughnessandinpropagationenergy.

4.6Theshapeofthestress-displacementcurvesTheshapeandsizeofthestress-displacementcurvesobtainedfromspecimensthatwerenotchedindifferentways,makesitpossibletoanalysetheirEWFbehaviourwhentheyarecomparedwiththetwopreviouslyanalysed

setsofspecimens,thefemtolaserandtherazorbladesharpenedspecimens.

Fig.27Femtolaserandrazorbladespecimenswithlo=17mm:a)Shiftedσ-dopz,b)Shiftedl-dopz.

alt-text:Fig.27

Fournewspecimenshavebeenmanufactured.Thefirstofthesespecimenswassharpenedbyapplyingtherazorbladeslidingtechnique,but,inthiscase,thesharpeningwascarriedoutoverspecimensthatwerefrozenin

liquidnitrogen,thatis,belowtheTgofthematerial.Reductionoftheplasticdeformationaheadofthenotchtipisexpectedwhenitiscomparedwiththerazorbladesharpenednotchesatroomtemperature.Then,equalvaluesofσmax

andσiwillbeanticipated,unlikethefemtolaserandrazorblade(roomtemperature)sharpenedspecimens,andalsoequaltailsofthestress-displacementcurves.However,intermediatevaluesfordianddrarealsoexpected,resulting

inanintermediatewevalue.

Fig.28ashowstheregisteredstress-displacementcurvesfor3specimenswithsimilarlovalues.ThecurveFcorrespondstolo=11.47mmfemtolaserspecimen,thecurveGcorrespondstolo=10.84mmrazorblade(room

temperature)sharpenedspecimen,andthecurveN2correspondstolo=10.41mmrazorblade(liquidnitrogen)sharpenedspecimen.Fig.28bshowsthesamecurvesofFig.28abutshiftedtothesamedr.Asexpected,the3curveshave

thesameσmax,σi,andtails,butthedi,theCTOD,increaseswiththeplasticdeformation,resultinginhigherwevalues.

Whereasthetwoedgenotcheswereproperlyalignedinallthetestedspecimens,inthesecondofthe4newspecimens,thetwoedgenotches,sharpenedbyrazorbladesliding,werenotcollinear.Instead,theyhad1mm

separation. The non-collinearity of the two edge notches can modify the stress distribution in the ligament zone, and the results will likely be influenced. In Fig. 29, the stress-displacement curve registered for this specimen

(lo=12.28mm)withnon-collinearnotchesispresented.Forcomparisonpurposes,arazorbladesharpenedspecimenwithcollinearnotchesandlo=12.31mmisalsopresented.These2curvesshowequalσmaxvaluesandoverlap

betweendz=0anddz=di.Ifequalσivalues(25.5MPa)arealsoconsideredforbothcurves,equalwevaluesareimplied.However,thecurveofthespecimenwithnon-collinearnotcheshasalargerdrvalue,causingthatthetailsof

bothcurvesdonotoverlap.Further,theareaoftheσ-dzcurvebetweendianddrisalsolarger,causingβwptobehigherforthespecimenwithnon-collinearnotches.

Fig.28Stress-displacementcurvesforF-femtolaser(lo=11.47mm),G-roomtemperaturerazorblade(lo=10.84mm),andN2-liquidnitrogenrazorblade(lo=10.41mm):a)Measureddisplacement,b)Displacementshiftedtodr.

alt-text:Fig.28

Thespecimenshavetobetestedwiththedirectionoftensionperpendiculartothecollinearnotches.Thatis,thespecimensmustbeproperlymountedonthegripsofthetestingmachine.Ifthespecimensaretiltedwhenthey

aremountedonthegrips,thenthecollinearnotchesofthespecimenarenotorientedperpendicularlytothedirectionoftension,andsothestressdistributionintheligamentismodified.Thethirdofthe4newspecimens,arazor

bladesharpenedspecimenwithlo=12.13mm,hasbeentestedwiththespecimentiltedby5°onthegrips.Itsstress-displacementcurveisshowninFig.29andcouldbecomparedtothespecimenwithlo=12.31mm,whichwas

correctlymountedonthegrips.Thecurvesforthesetwospecimensoverlaponlyuptoσmax.Afterthispoint,thecurveofthetiltedspecimenisgreaterandhasalargerdrvaluethanthenon-tiltedspecimen.Consideringσi=25.5MPa,

thetiltedspecimenwillhaveahigherwevaluethantheproperlymountedspecimen.

Inorder to study the influenceof thenotch tip radiuson thestress-displacementcurves,circularholesweredrilled touseasnotches.Thepressureexercisedby thedrillbitat thebeginningcausedavery largeplastic

deformation that extended to thematerial outside the hole, especially for small diameter holes. After several attempts, a specimen (lo=12.26mm)with two edge holes (diameterϕ=2mm) that had the same level of plastic

deformation inbothholeswasobtained.Toobtain thenotches thedrillingwas followedby opening the twoedgenotches.The last of the4new specimenswas tested, and the experimental stress versusdisplacement curve is

representedinFig.30a.Forcomparisonpurposes,thecurvesforthefemtolaser(lo=12.20mm)andrazorblade(lo=12.14mm)specimensarealsopresentedinthisfigure.InFig.30acanbeobservedthatthe3curvesoverlapjustup

toσmax.Fromthispointforward,thedrilledspecimenshowedlargervaluesforthestressandfordr.Thesamestress-displacementcurvesofFig.30awereshiftedalongthedisplacementaxissothattherupturedisplacementswerethe

same,andarerepresentedinFig.30b.Consideringσi=25.5MPaforthedrilledspecimenobtainedfromthefemtolaserandrazorbladespecimens,asrepresentedinFig.30aandb,itcouldbeinferredthatthedrilledspecimenwill

havehigherwe,Δab,andCTODvalues,whilethetailregionseemstobequitesimilartotheothercurves.Inanycase,theinfluenceofthenotchtipradiusonthefractureparametersisclear.

Fig.29Stress-displacementcurvesforG-razorbladecollinearnotches(lo=12.31mm),NA-razorbladenon-collinearnotches(lo=12.28mm),andT-tiltedrazorbladecollinearnotches(lo=12.13mm).

alt-text:Fig.29

5ConclusionsThefemtosecondlaserablationtechniqueenablesobtainingveryconsistent,sharpnotches,withoutplasticdeformationaheadofthenotchtip.Thisnotchsharpeningtechniqueisthemostappropriatetosharpennotchesofthe

mostductilefilmsandgivesthelowestvaluesforthefractureparameters.Thelimitationsincludetheavailabilityoftheequipmentandthehighcostpernotch.

Notchsharpeningusingtheclassicrazorbladeslidingtechniquecanyieldnotcheswithdifferentquality,whichdependsonthematerialductilityandthecompressivecomponentofthesidewaysslidingforcethatisapplied.

Sharpnotcheswithoutplasticdeformationcanbeobtained,andwillyieldvaluessimilartothefemtolaserspecimens.Normally,however,specimenswithplasticdeformationaheadofthenotchtipareobtained.Whenthetwonotches

ofthesamespecimenhavedifferentlevelsofplasticdeformation,thecrackinitiationdoesnotoccuratthesametime.Specimenswithdifferentlevelsofplasticdeformationcanbeobtained.Variabilityinthesamelaboratoryand

betweendifferentlaboratoriesofthewe,Jo,andCTODvaluescanbeexplainedbythedifferent levelsofplasticdeformationaheadofthenotchtiporthenotchtipradiusthatcanbegeneratedbyoperatorswhensharpeningthe

notches.Thelargerthelevelofplasticdeformation,thelargerwillbethedisplacementatinitiation,resultinginhighervaluesofΔabandwe.However,asthepropagationdoesnotdependontheplasticdeformation,thesameβwpvalue

willbeobtained.

Itisconfirmedthatakeyrequirementtoobtainmeaningfulresultsistohaveconsistentnotcheswithoutplasticdeformationinfrontofthenotchroot.Thenotchtipradiushasastronginfluenceonthefractureparameters.

The shape of the stress-displacement curves depends on the notch quality. Consistent notches have the sameσmax, σi, di, CTOD, andΔab values, and then the normalised curves of the propagation region overlap.Non-

overlappingcurvesbelongtospecimenswithdifferentqualitynotchesandcanbediscarded.

Thewe,Jo,andCTODvaluesobtainedfromspecimenswithplasticdeformationatthecracktip,beingthistheonlykeyassumptionnotaccomplished,satisfytherelationshipsamongwe,CTOD,Jo,andσi,butthesevaluesare

Fig.30Stress-displacementcurvesforF-femtolaser(lo=12.20mm),G-razorblade(lo=12.14mm),andD-drilled(lo=12.26mm):a)Measureddisplacement,b)Displacementshiftedtodr.

alt-text:Fig.30

QueriesandAnswersQuery:Pleasenotethatauthor’stelephone/faxnumbersarenotpublishedinJournalarticlesduetothefactthatarticlesareavailableonlineandinprintformanyyears,whereastelephone/faxnumbersarechangeableandthereforenotreliableinthelongterm.Answer:Iagreewithyourobservation.

Query:Pleaseprovidethegrantnumberfor‘NationalCouncilforScienceandTechnology(CONACYT,Mexico)’ifany?Answer:Thereisnograntnumberassociated.

Query:Pleaseconfirmthatgivennamesandsurnameshavebeenidentifiedcorrectlyandarepresentedinthedesiredorderandpleasecarefullyverifythespellingofallauthors’names.Answer:Theyareallcorrect.

notinherentpropertiesofthematerial.

Theinspectionofthenotchesinalightopticalmicroscopebeforetestingcouldbehelpfultodetectplasticdeformationinfrontofthecracktip.

Non-collinearnotches andmisalignment of the specimenson thegrips, affect the stress-displacement curves and the results. Small differencesof less than1mm in the collinearity of thenotches canbeunintentionally

generatedduringthespecimenmanufactureandhaveasmalleffectontheresults.Morecareisnecessarywhenmountingthespecimensonthegripsbecausetheshapeofthestress-displacementcurveismoreaffectedandthusthe

results.Specimenswithnon-collinearnotchesandincorrectlyalignedcanalsobedetectedbynormalisingthecurvesinthepropagationregion.

TheEWFapproachhasbeensuccessfullyappliedonanEPBC.Thisheterophasepolymerhasmultipleshearyieldingasadeformationmechanism,whichisdifferentfrompolymersthatundergoneckingbeforetheonsetof

crackpropagation.InEPBC,giventhesameethylenecontent,thefractureenergyincreasesastheaveragemolecularweightsincrease.

AcknowledgementsTheauthorsacknowledgetheMinisteriodeEconomiayCompetitividadofSpainforitsfinancialsupportthroughtheresearchprojectMAT2012-37762-C02-01.N.LeónexpresseshisgratitudetotheNational

CouncilforScienceandTechnology(CONACYT,Mexico)forthepredoctoralfellowship.

References[1]B.CotterellandJ.K.Reddel,Theessentialworkofplanestressductilefracture,Int.J.Fract.13,1977,267–277.

[2]A.B.Martínez,N.León,D.ArencónandM.Sánchez-Soto,Essentialworkoffracture,cracktipopeningdisplacement,andJ-integralrelationshipforaductilepolymerfilm,Polym.Test.55,2016,247–256.

[3]A.B.Martínez,N.León,D.ArencónandM.Sánchez-Soto,Thepost-yieldfractureofaductilepolymerfilm:notchquality,essentialworkoffracture,cracktipopeningdisplacement,andJ-integral,Eng.Fract.Mech.173,

2017,21–31.

[4]E.Clutton,Essentialworkoffracture,In:D.R.Moore,A.PavanandJ.G.Williams,(Eds.),FractureMechanicsTestingMethodsforPolymers,AdhesivesandComposites,2001,ElsevierScience,Ltd.;Oxford,177–195.

[5]J.G.WilliamsandM.Rink,ThestandardisationoftheEWFtest,Eng.Fract.Mech.74,2007,1009–1017.

[6]A.B.Martínez,A.Segovia,J.Gamez-PerezandM.L.Maspoch,InfluenceoffemtolasernotchsharpeningTechniqueinthedeterminationofessentialworkoffracture(EWF)parameters,Eng.Fract.Mech.76,2009,

1247–1254.

[7]R.Hill,Ondiscontinuousplasticstates,withspecialreferencetolocalizedneckinginthinsheets,J.Mech.Phys.Solids1,1952,19–30.

[8]A.B.Martínez,D.Arencón,J.RodríguezandA.Salazar,Influenceofthenotchsharpeningontheimpactfracturetoughnessofethylene-propyleneblockcopolymers,Polym.Test.36,2014,75–81.

[9]J.A.BegleyandJ.D.Landes,TheJintegralasafracturecriterion,In:FractureToughness,ASTMSTP514,1972,AmericanSocietyforTestingandMaterials;Philadelphia,1–20.