1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices...

74
1 CHAP3: MOS Field-Effect Transistors (MOSFETs)

Transcript of 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices...

Page 1: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

1

CHAP3: MOS Field-EffectTransistors (MOSFETs)

Page 2: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Similarities:• Amplifiers• Switching devices• Impedance matching circuitsDifferences:• FETs are voltage controlled devices. BJTs are current controlleddevices.• FETs have a higher input impedance. BJTs have higher gains.• FETs are less sensitive to temperature variations and are more easily integrated on ICs.• FETs are generally more static sensitive than BJTs.

FETs vs. BJTs

FET Types•JFET: Junction FET•MOSFET: Metal–Oxide–Semiconductor FET

D-MOSFET: Depletion MOSFETE-MOSFET: Enhancement MOSFET

Page 3: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

FET Operating CharacteristicsJFET operation can be compared to a water spigot.

The source of water pressure is the accumulation of electrons at the negative pole of the drain-source voltage.The drain of water is the electron deficiency (or holes) at the positive pole of the applied voltage.The control of flow of water is the gate voltage that controls the width of the n-channel and, therefore, the flow of charges from source todrain.

FET Operation: The Basic IdeaThere are three basic operating conditions for a JFET:

• VGS = 0, VDS increasing to some positive value• VGS < 0, VDS at some positive value• Voltage-controlled resistor

Page 4: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

FET ( Field Effect Transistor)

1. Unipolar device i. e. operation depends on only one type of charge carriers (h or e)

2. Voltage controlled Device (gate voltage controls drain current)

3. Very high input impedance (109-1012 )4. Source and drain are interchangeable in most Low-frequency

applications

5. Low Voltage Low Current Operation is possible (Low-power consumption)

6. Less Noisy as Compared to BJT7. No minority carrier storage (Turn off is faster) 8. Self limiting device9. Very small in size, occupies very small space in ICs10. Low voltage low current operation is possible in MOSFETS 11. Zero temperature drift of out put is possible

Few important advantages of FET over conventional Transistors

Page 5: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Types of Field Effect Transistors (The Classification)

» JFET

MOSFET (IGFET)

n-Channel JFET

p-Channel JFET

n-Channel EMOSFET

p-Channel EMOSFET

Enhancement MOSFET

Depletion MOSFET

n-Channel DMOSFET

p-Channel DMOSFET

FET

Page 6: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

6

Figure Physical structure of the enhancement-type NMOS transistor: (a) perspective view; (b) cross-section. Typically L = 0.1 to 3 mm, W = 0.2 to 100 mm, and the thickness of the oxide layer (tox) is in the range of 2 to 50 nm.

Fundamentals of FET

Page 7: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

7

Figure The enhancement-type NMOS transistor with a positive voltage applied to the gate. An n channel is induced at the top of the substrate beneath the gate.

Page 8: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

8

Figure An NMOS transistor with vGS > Vt and with a small vDS applied. The device acts as a resistance whose value is determined by vGS. Specifically, the channel conductance is proportional to vGS – Vt’ and thus iD is proportional to (vGS – Vt) vDS. Note that the depletion region is not shown (for simplicity).

Page 9: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

9

Figure The iD–vDS characteristics of the MOSFET in Fig. 4.3 when the voltage applied between drain and source, vDS, is kept small. The device operates as a linear

resistor whose value is controlled by vGS.

Page 10: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

10

Figure Operation of the enhancement NMOS transistor as vDS is increased. The induced channel acquires a tapered shape, and its resistance increases as vDS is increased. Here, vGS is kept constant at a value > Vt.

Page 11: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

11

Figure The drain current iD versus the drain-to-source voltage vDS for an enhancement-type NMOS transistor operated with vGS > Vt.

Page 12: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

12

Figure: Increasing vDS causes the channel to acquire a tapered shape. Eventually, as vDS reaches vGS – Vt’ the channel is pinched off at the drain end. Increasing vDS above vGS – Vt

has little effect (theoretically, no effect) on the channel’s shape.

Page 13: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Figure: Circuit for drain characteristics of the n-channel JFET and its Drain characteristics.

Non-saturation (Ohmic) Region:

The drain current is given by

2'

2

1DSDStGSDS VVVV

L

WkI

2

21

221

'

'

tGS

DSDS

VVL

WK

VL

WKI

2

1 and

P

GSDSSDS V

VII

Where, IDSS is the short circuit drain current, VP is the pinch off voltage

Output or Drain (VD-ID) Characteristics of n-MOSFET

Saturation (or Pinchoff) Region:

tGSDS VVV

tGSDS VVV

Page 14: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Application1:

Page 15: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

15

Application2:

Page 16: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

16

Figure: (a) Circuit for Example. (b) The circuit with some of the analysis details shown.

Application3:

Page 17: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Figure: Circuit for drain characteristics of the n-channel JFET and its Drain characteristics.

Non-saturation (Ohmic) Region:

The drain current is given by

2

2 2

2DS

DSPGSP

DSSDS

VVVV

V

II

2

2 PGSP

DSSDS

VVV

II

2

1 and

P

GSDSSDS V

VII

Where, IDSS is the short circuit drain current, VP is the pinch off voltage

Output or Drain (VD-ID) Characteristics of n-JFET

Saturation (or Pinchoff) Region:

PGSDSVVV

PGSDSVVV

Page 18: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Figure: Typical drain characteristics of an n-channel JFET.

VD-ID Characteristics of EMOS FET

Saturation or Pinch off Reg.

Locus of pts where PGSDS VVV

Page 19: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Figure: Transfer (or Mutual) Characteristics of n-Channel JFET

2

1

P

GSDSSDS V

VII

IDSS

VGS (off)=VP

Transfer (Mutual) Characteristics of n-Channel JFET

Page 20: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

JFET Transfer CurveThis graph shows the value of ID for a given value

of VGS

Page 21: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Figure: Transfer (or Mutual) Characteristics of n-Channel FET

2

1

P

GSDSSDS V

VII

IDSS

VGS (off)=VP

Transfer (Mutual) Characteristics of n-Channel FET

Page 22: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Biasing Circuits used for JFET

Just as we learned that the BJT must be biased for proper

operation, the JFET also must be biased for operation point

(ID, VGS, VDS)

In most cases the ideal Q-point will be at the middle of the

transfer characteristic curve, which is about half of the IDSS.

3 types of DC JFET biasing configurations

Fixed bias circuit

Self bias circuit

Potential Divider bias circuit

Page 23: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Fixed-bias

VDS

+_

VGG

VGS_

RD

VDD

RG

+C1

C2

Fixed-bias

+

Vin

_

+

Vout

_

+ • Use two voltage sources: VGG, VDD

• VGG is reverse-biased at the Gate – Source (G-S) terminal, thus no current flows through RG (IG = 0).

Page 24: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Fixed-bias..• DC analysis

– All capacitors replaced with open-circuit

VDS

+_

VGG

VGS_

RD

VDD

RG

+

Loop 1

Page 25: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Fixed-bias…

1. Input Loop • By using KVL at loop 1:

VGG + VGS = 0 VGS = - VGG

• Replace VGS = -VGG in Shockley’s Eq. ,therefore:

2. Output loop- VDD + IDRD + VDS = 0

VDS = VDD – IDRD

3. Then, plot graph by using Shockley’s Eq

2

)(

2

)(

11

offGS

GGDSS

offGS

GSDSSD V

VI

V

VII

Page 26: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Example : Fixed-bias

2GS

D DSSP

V I = I 1 -

V

Determine the following network:

1. VGSQ

2. IDQ

3. VD

4. VG

5. VS

Page 27: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Solutions

GSQ GGV = - V = - 2

2 2GS

DQ DSSP

2

V - 2 I = I 1 - = 10mA 1 -

V -8

= 10mA 0 5.6.75 25mA

DS DD D DV = V - I R = 16 - 5.625mA 2k

= 16V -11.25V = 4.75V

D D S

G G S

S

V = V - V =

V = V

4.75V

-- V =

V

2V

= 0V

Page 28: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Graphical solution for the network

GSQ GGV = - V = - 2

DQ 5.I = 625mA

DS 4V = .75V

D

G

S

V =

V =

4.75V

- 2V

V = 0V

Page 29: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Self-bias

• Using only one voltage source

Page 30: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

DC analysis of the self-bias configuration.

RS D S

GS RS

GS RS

D S

V = I R

-V - V = 0

V = -V

= - I R

G G GRG

RG

Since I 0A, V I R

thus V 0A,

Q point for VGS

VGS + VRS = 0

Page 31: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Defining a point on the self-bias line.

Vgs ID0 IDSS

0.3Vp IDSS/2

0.5Vp IDSS/4

Vp 0 mA

Page 32: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Sketching the self-bias line.

D DSS

GS D S

DSS S

I = I 2

V = -I R

I R = -

2 DS DD D S DV = V - I R + R

S D SV = I R

Page 33: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Example : Self-bias configuration

GSQ

DQ

D

G

1. V

2. I

Det

3. V

e

rmine the following for

4. V

the network

5. Vs

Page 34: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Solutions:

D

GS D S

D GS D S

GS D S

When I = 4mA,

V = - I R

= - 4mA 1k =

When I = 8mA, V = - I R

V = - I R

= - 8 4m

-

A 1k

4V

= - 8V

Page 35: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Sketching the device characteristics

Vgs ID

0 IDSS

0.3Vp IDSS/2

0.5Vp IDSS/4

Vp 0 mA

Page 36: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Sketching the self-bias line

D GS

D GS

When I = 4mA, V =

When I = 8mA, V

- 4V

= - 8V

Page 37: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Graphical Solutions: Determining the Q-point

Q-point

IDQ=2.6mAVGSQ=-2.6mV

Page 38: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Mathematical Solutions

VVandmAIchoosetherefore

VV

kmAkmA

RIVRIV

mAImAI

IkI

kIII

MIkIkIm

kIm

kImI

V

RII

RIVrecallV

VII

GSD

SDGSSDGS

DD

DD

DDD

DDD

DDD

P

SDDSS

SDGSP

GSDSSD

6.2588.2;

6.29.13

)1(588.2)1(9.13

588.29.13

0288.01328

896288.036

1663636

8

6

)1(68

6

)1(18

)(1

1

211

2

2

2

22

2

2

Page 39: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Solutions

GSQV = - 2.6V

DQI = 2.6V

DS DD D D SV = V - I R + R

= 20V - 2.6mA 4.3kΩ

= 8.82V

G G S

D DS S D DD D S

DS S

V = V - V =

V = V + V or V = V - I R

= V + V = 8.82V + 2.6V

0V

11= .42V

S D SV = I R = 2.6mA 1kΩ

= 2.6V

IDQ = 2.6mA

Page 40: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Voltage-divider bias

A

IG=0A

Page 41: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Redrawn network

2G DD

1 2

RV = V

R + R

Page 42: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Sketching the network equation for the voltage-divider configuration.

D

GS

GS G I =0mA

GD

S V =0V

V = V

VI

R

G GS RS

GS G RS

GS G D SV

V - V - V = 0

V = V

= V - I

V

R

-

Page 43: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Effect of RS on the resulting Q-point.

Page 44: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Example : Voltage-divider bias

DQ GSQ

D

S

DS

DG

1. I andV

2. V

3. V

Determine the following for th

4. V

e netw k

5. V

or

Page 45: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Solutions

2G DD

1 2

DD2

RV = V

R + R

270kΩ 16V = V

2.1MΩ + 0.27MΩ

= 1.82V

D GSWhen I = 0mA, V = +1.82V

GS G D S

D

V = V - I R

= 1.82V - I 1.5kΩ

GS D

+1.82VWhen V = 0V, I = = 1.21mA

1.5kΩ

Page 46: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Determining the Q-point for the network

GS DV = 1.82V - I 1.5kΩ

IDQ=2.4mAVGSQ=-1.8mV

DS DD SS D S D

DS S

V = V + V - I R R

= V + V = 8.82V + 2 11.6V = .42V

Page 47: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

solutions

• How to get IDS, VGS and VDS for voltage-divider bias configuration by using mathematical solutions?

Page 48: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Exercise 3:

DQ GSQ

DS

D

S

1. I andV

2. V

Determine the

followi

3. V

ng for the

networ

4. V

k

Page 49: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Drawing the self bias line

GS D S

GS D

V + I R -10V = 0

V = 10V - I 1.5k

D GSWhen I = 0mA, V = 10V

GS D

10VWhen V = 0V, I = = 6.67mA

1.5kΩ

Page 50: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Determining the Q-point

IDQ=6.9mAVGSQ=-0.35V DS DD SS D S DV = V - V - I R + R

= 20 +10 - (6.9mA)(1.8kΩ +1.5kΩ)

= 7.23V

D DD D DV = V - I R = 7.58V

S D DSV = V - V

= 7.58V - 7.23V = 0.35V

Page 51: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Exercise 4

D S

Determine the required

values of R and R

Page 52: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Determining VGSQ for the network.

DD DQRDD

DQ DQ

V VV 20V 12VR = =

I I 2.5mA

= 3.2k

GSQ

SDQ

V -1R = = 0.4k

I 2.5mA

Page 53: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

FET (n-channel) Biasing Circuits

2

1

P

GSDSSDS V

VII

0, GGSGSGGGG IFixedVVRIV

DDSDDDS

P

GSDSSDS

RIVV

V

VII

and

12

S

GSDS

SDSGS

R

VI

RIV

0

For Self Bias Circuit

For Fixed Bias Circuit

Applying KVL to gate circuit we get

and

Where, Vp=VGS-off & IDSS is Short ckt. IDS

Page 54: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

FET Biasing Circuits Count…

or Fixed Bias Ckt.

Page 55: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

FET Self (or Source) Bias Circuit

2

1 and

P

GSDSSDS V

VII

S

GS

P

GSDSS R

V

V

VI

2

1

021

2

S

GS

P

GS

P

GSDSS R

V

V

V

V

VI

This quadratic equation can be solved for VGS & IDS

Page 56: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

The Potential (Voltage) Divider Bias

01

2

S

GSG

P

GSDSS R

VV

V

VI

DSGSI V gives equation quadratic this Solving and

Page 57: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

A Simple CS Amplifier and Variation in IDS with Vgs

Page 58: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

FET frequency Analysis:

A common source (CS) amplifier is

shown to the right.

Rs Ci

RL

Co

CSS vi

vo

+

+

vs

+

_ _

_

io

ii

D

S

G

VDD

VDD

R1

RSS

RD

R2

The mid-frequency circuit is drawn as follows:

• the coupling capacitors (Ci and Co) and the

bypass capacitor (CSS) are short circuits

• short the DC supply voltage (superposition)• replace the FET with the hybrid-p model

The resulting mid-frequency circuit is shown

below.

Page 59: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Figure: Simple NMOS amplifier circuit and Characteristics with load line.

Page 60: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Figure: Drain characteristics and load line

Page 61: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

For drawing an a c equivalent circuit of Amp.• Assume all Capacitors C1, C2, Cs as short circuit

elements for ac signal• Short circuit the d c supply• Replace the FET by its small signal model

Page 62: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Analysis of CS Amplifier

LgsmLoo

gs

ov

RvgRiv

v

vA

gain, Voltage

dDLLmgs

ov

rRRRgv

vA ,

Dd

DdDdo Rr

RrRrZ

imp., put Out

21 imp., Input RRRZ

Gin

A C Equivalent Circuit

Simplified A C Equivalent Circuit

Page 63: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Analysis of CS Amplifier with Potential Divider Bias

)R||(rgAv Ddm

DR10r D,m

dRgAv

)R||(rgAv Ddm

This is a CS amplifier configuration therefore the input is on the gate and the output is on the drain. 21 R||RZi

Dd R||rZo

DdD 10RrRZo

Page 64: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

Application 1

Page 65: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

The small signal equivalent circuit of CS Amp.

Page 66: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

66

Application 2

Page 67: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

67

Application 3

Page 68: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

68

Application 4

Page 69: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

69

Application 5

Page 70: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

70

Application 6

Page 71: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

71

Application: VIII

Application 7

Page 72: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

72

Application 8

Page 73: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

73

Application 9

Page 74: 1 CHAP3: MOS Field-Effect Transistors (MOSFETs). Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage.

FET Amplifier Configurations and

Relationships:

'' ' m L

vi m L m L 'm L

'L d D L d D L SS L

i Th SS Thm

o d D d D SSm

i i ivs vi vi vi

s i s i s i

i i iI vi vi vi

L L L

P vi I vi I

CS CG CD

g RA -g R g R

1 g R

R r R R r R R R R

1Z R R R

g

1Z r R r R R

g

Z Z ZA A A A

R + Z R + Z R + Z

Z Z ZA A A A

R R R

A A A A A

vi I

Th 1 2

A A

where R = R R

VCC

RD

S

R2

RSS

Rs Ci

RL

Co

C2

vi vo

+

+

vs

+

_

_ _

io ii

Common Gate (CG) Amplifier

R1

D

G

Note: The biasing circuit is the same for each amp.

Rs C i

vi

+

vs

+

_

_

ii G

VDD

VDD

R1

RSS

R2

Common Drain (CD) Amplifier (also called “source follower”)

RL

C o

vo

+

_

io

D

S