0em Model Reduction for Dynamical Systems Lecture 10 · Model Reduction for Dynamical Systems...

26
Model Reduction for Dynamical Systems –Lecture 10– Lihong Feng Otto-von-Guericke Universitaet Magdeburg Faculty of Mathematics Summer term 2019 Max Planck Institute for Dynamics of Complex Technical Systems Computational Methods in Systems and Control Theory Magdeburg, Germany [email protected] [email protected] https://www.mpi-magdeburg.mpg.de/3668354/mor_ss19

Transcript of 0em Model Reduction for Dynamical Systems Lecture 10 · Model Reduction for Dynamical Systems...

Page 1: 0em Model Reduction for Dynamical Systems Lecture 10 · Model Reduction for Dynamical Systems {Lecture 10{Lihong Feng Otto-von-Guericke Universitaet Magdeburg Faculty of Mathematics

Model Reduction for Dynamical Systems–Lecture 10–

Lihong FengOtto-von-Guericke Universitaet MagdeburgFaculty of MathematicsSummer term 2019

Max Planck Institute for Dynamics of Complex Technical SystemsComputational Methods in Systems and Control TheoryMagdeburg, Germany

[email protected] [email protected]://www.mpi-magdeburg.mpg.de/3668354/mor_ss19

Page 2: 0em Model Reduction for Dynamical Systems Lecture 10 · Model Reduction for Dynamical Systems {Lecture 10{Lihong Feng Otto-von-Guericke Universitaet Magdeburg Faculty of Mathematics

Contents

1. POD method for steady systems

2. POD method for dynamical systems

3. RB method for steady systems

4. RB method for dynamical systems

5. EIM

Lihong Feng Model Reduction for Dynamical Systems 2/26

Page 3: 0em Model Reduction for Dynamical Systems Lecture 10 · Model Reduction for Dynamical Systems {Lecture 10{Lihong Feng Otto-von-Guericke Universitaet Magdeburg Faculty of Mathematics

POD for linear parametric steady systems

Linear Steady systems

E (µ)x = B(µ),y = C (µ)x ,

(1)

µ = (µ1, . . . , µp), x = x(µ).

Lihong Feng Model Reduction for Dynamical Systems 3/26

Page 4: 0em Model Reduction for Dynamical Systems Lecture 10 · Model Reduction for Dynamical Systems {Lecture 10{Lihong Feng Otto-von-Guericke Universitaet Magdeburg Faculty of Mathematics

POD for linear parametric steady systems

POD based PMOR for linear parametric steady systems:1. Specify a group of samples of µ: µi = (µi1, . . . , µ

ip), i = 1, . . . ,m.

2. Solve (1) at each sample µi , and get the solution x(µi ).

3. Form the snapshot matrix X = (x(µ1), . . . , x(µm)).

4. SVD: X = U

0

)QT . Σ = diag(σ1, . . . , σd ), σ1 ≥ σ2 ≥ . . . ≥ σd .

5. Specify the order r of the ROM by checking, e.g.,

d∑j=r+1

σj

d∑j=1

σj

< tol , tol is a small number, e.g., 10−7.

6. Take the first r columns from U: V = U(:, 1 : r).

Form the ROM:VTE(µ)Vz = VTB(µ), y = C(µ)Vz.

Lihong Feng Model Reduction for Dynamical Systems 4/26

Page 5: 0em Model Reduction for Dynamical Systems Lecture 10 · Model Reduction for Dynamical Systems {Lecture 10{Lihong Feng Otto-von-Guericke Universitaet Magdeburg Faculty of Mathematics

POD for nonlinear parametric steady systems

Nonlinear Steady systems

E (µ)x + f (µ, x) = B(µ),y = C (µ)x ,

(2)

f (µ, x) is a nonlinear function of the state x = x(µ).

POD based PMOR for nonlinear parametric steady systems:Specify a group of samples: µi = (µi1, . . . , µ

ip), i = 1, . . . ,m.

Form the snapshot matrix: X = (x(µ1), . . . , x(µm)), and F = (f (µ1, x(µ1)), . . . , f (µm, x(µm))).

SVD: X = U

0

)QT . Σ = diag(σ1, . . . , σd ), σ1 ≥ σ2 ≥ . . . ≥ σd .

Specify the order r of the ROM by, e.g.,

d∑j=r+1

σj

d∑j=1

σj

< tol .

Form the projection matrix V : V = U(:, 1 : r).

Lihong Feng Model Reduction for Dynamical Systems 5/26

Page 6: 0em Model Reduction for Dynamical Systems Lecture 10 · Model Reduction for Dynamical Systems {Lecture 10{Lihong Feng Otto-von-Guericke Universitaet Magdeburg Faculty of Mathematics

POD for nonlinear parametric steady systems

SVD: F = UF

(ΣF

0

)(QF )T . ΣF = diag(σF

1 , . . . , σFd ), σF

1 ≥ σF2 ≥ . . . ≥ σF

d .

Specify dimension rF of the interpolation basis by, e.g.,

d∑j=rF +1

σFj

d∑j=1

σFj

< tol .

Form the DEIM interpolation basis: UFr = UF (:, 1 : rF ).

Use UFr as the input for the DEIM algorithm and generate the indecis ℘1, . . . , ℘l , and the index matrix

P = (e℘1 , . . . , e℘l ).

Form the ROM:VTE(µ)Vz + VTUF

r (PTUFr )−1PT f (µ,Vz)

= VTB(µ),y = C(µ)Vz.

Lihong Feng Model Reduction for Dynamical Systems 6/26

Page 7: 0em Model Reduction for Dynamical Systems Lecture 10 · Model Reduction for Dynamical Systems {Lecture 10{Lihong Feng Otto-von-Guericke Universitaet Magdeburg Faculty of Mathematics

POD for linear parametric dynamical systems

Linear dynamical systems

E (µ)dx/dt = A(µ)x + B(µ)u(t),y = C (µ)x .

(3)

POD based PMOR for linear parametric dynamical systems:Specify samples of µ and u(t): w i = (µi , ui (t)), i = 1, . . . ,m, µi = (µi1, . . . , µ

ip).

Solve (3) at each sample w i , and get the solution X (w i ) := [xt1 (w i ), . . . , xtN (w i )].

SVD of X (w i ): X (w i ) = U i

(Σi

0

)(Q i )T . Σi = diag(σi

1, . . . , σid ), i = 1, . . . ,m, σi

1 ≥ σi2 ≥ . . . ≥ σi

d .

Determine the order ri for each i by e.g. d∑j=ri+1

σij

/

d∑j=1

σij

< tol .

Let: Vi = U i (:, 1 : ri ), i = 1, . . . ,m.

Lihong Feng Model Reduction for Dynamical Systems 7/26

Page 8: 0em Model Reduction for Dynamical Systems Lecture 10 · Model Reduction for Dynamical Systems {Lecture 10{Lihong Feng Otto-von-Guericke Universitaet Magdeburg Faculty of Mathematics

POD for linear parametric dynamical systems

Form X = (V1, . . . ,Vm) ∈ Rn×N , N =m∑i=1

ri .

SVD: X = U

0

)QT , Σ = diag(σ1, . . . , σd ).

Specify the order r of the ROM by e.g.

d∑j=r+1

σj

d∑j=1

σj

< tol .

Form the projection matrix: V = U(:, 1 : r).

Form the ROM:

VTE(µ)Vdz/dt = VTA(µ)Vz + VTB(µ)u(t),y = C(µ)Vz.

Lihong Feng Model Reduction for Dynamical Systems 8/26

Page 9: 0em Model Reduction for Dynamical Systems Lecture 10 · Model Reduction for Dynamical Systems {Lecture 10{Lihong Feng Otto-von-Guericke Universitaet Magdeburg Faculty of Mathematics

POD for nonlinear parametric dynamical systems

Nonlinear parametric dynamical systems

E (µ)dx/dt = A(µ) + f (µ, x) + B(µ)u(t),y = C (µ)x .

(4)

POD based PMOR for nonlinear parametric dynamical systems:1. Specify samples of µ and u(t): w i = (µi , ui (t)), i = 1, . . . ,m, µi = (µi1, . . . , µ

ip).

2. Solve (4) at each sample w i , and get the solution X (w i ) := [xt1 (w i ), . . . , xtN (w i )].

3. Form the snapshots of f :F = [f (X (w1), . . . , f (X (wm)] ∈ Rn×N·m,

where f (X (w i )) := [f (xt1 (w i )), . . . , f (xtN (w i ))].

4. SVD of X (w i ): X (w i ) = U i

(Σi

0

)(Q i )T . Σi = diag(σi

1, . . . , σid ), i = 1, . . . ,m.

Lihong Feng Model Reduction for Dynamical Systems 9/26

Page 10: 0em Model Reduction for Dynamical Systems Lecture 10 · Model Reduction for Dynamical Systems {Lecture 10{Lihong Feng Otto-von-Guericke Universitaet Magdeburg Faculty of Mathematics

POD for nonlinear parametric dynamical systems

5. Determine the order ri for each i by, e.g.,

d∑j=ri +1

σsj

d∑j=1

σij

< tol , let: Vi = U i (:, 1 : ri ), i = 1, . . . ,m.

6. Form X = (V1, . . . ,Vm) ∈ Rn×N , N =m∑i=1

ri .

7. SVD: X = U

0

)QT . Σ = diag(σ1, . . . , σd ).

8. Specify the order r of the ROM by e.g.

d∑j=r+1

σj

d∑j=1

σj

< tol .

9. Form the projection matrix: V = U(:, 1 : r).

Lihong Feng Model Reduction for Dynamical Systems 10/26

Page 11: 0em Model Reduction for Dynamical Systems Lecture 10 · Model Reduction for Dynamical Systems {Lecture 10{Lihong Feng Otto-von-Guericke Universitaet Magdeburg Faculty of Mathematics

POD for nonlinear parametric dynamical systems

10. SVD: : F = UF

(ΣF

0

)(QF )T . ΣF = diag(σF

1 , . . . , σFd ).

11. Specify the dimension r of the basis for interpolation by, e.g.,

d∑j=r+1

σFj

d∑j=1

σFj

< tol .

12. Form the DEIM interpolation basis: Uf = UF (:, 1 : r).

13. Use Uf as the input for DEIM algorithm and generate the indices ℘1, . . . , ℘l , and the index matrixP = (e℘1 , . . . , e℘l ).

14. Form the ROM:

VTE(µ)Vdz/dt = VTA(µ)Vz+VTUf (PTUf )−1PT f (µ,Vz)+VTB(µ)u(t),

y = C(µ)Vz.

Lihong Feng Model Reduction for Dynamical Systems 11/26

Page 12: 0em Model Reduction for Dynamical Systems Lecture 10 · Model Reduction for Dynamical Systems {Lecture 10{Lihong Feng Otto-von-Guericke Universitaet Magdeburg Faculty of Mathematics

Issues under active research

Adaptive (optimal) sampling of the parameters µ1, . . . , µl , and the inputs u(t).

When and how to update the DEIM interpolation?

Error estimation/bound.

Lihong Feng Model Reduction for Dynamical Systems 12/26

Page 13: 0em Model Reduction for Dynamical Systems Lecture 10 · Model Reduction for Dynamical Systems {Lecture 10{Lihong Feng Otto-von-Guericke Universitaet Magdeburg Faculty of Mathematics

Reduced Basis (RB) method for steady systems

RB method for linear parametric steady systems

1. Specify a training set of samples: Ptrain := {µ1, . . . , µm}.

2. Specify an error estimator/indicator/bound η(µ).

3. Use Greedy algorithm to compute the projection matrix V .

4. Form the ROM:V TE (µ)Vz = V TB(µ),

y = C (µ)Vz .

Lihong Feng Model Reduction for Dynamical Systems 13/26

Page 14: 0em Model Reduction for Dynamical Systems Lecture 10 · Model Reduction for Dynamical Systems {Lecture 10{Lihong Feng Otto-von-Guericke Universitaet Magdeburg Faculty of Mathematics

RB method for steady systems

Compute V for steady systems

Algorithm 1 Greedy Algorithm for steady systems

Input: Ptrain, tolRBOutput: Projection matrix V representing the reduced basis.1: Initialization:V = [ ], µ? = µ1, η(µ?)(> tolRB)2: while the error η(µ?) > tolRB do3: Solve (1) or (2) to get the solution x(µ?).4: Update: V :=orth [V , x(µ?)].5: Find µ? := arg max

µ∈Ptrain

η(µ).

6: end while

Lihong Feng Model Reduction for Dynamical Systems 14/26

Page 15: 0em Model Reduction for Dynamical Systems Lecture 10 · Model Reduction for Dynamical Systems {Lecture 10{Lihong Feng Otto-von-Guericke Universitaet Magdeburg Faculty of Mathematics

RB method for steady systems

RB method for nonlinear parametric steady systems

1. Specify Ptrain := {µ1, . . . , µm}.

2. Specify an error estimator/indicator/bound η(µ).

3. Use Greedy algorithm to compute the projection matrix V .

4. Compute the EIM basis Uf using the empirical interpolation method (EIM).

5. Form the ROM:V TE (µ)Vz + V TUfβ(µ) = V TB(µ),

y = C (µ)Vz .

Key points:

EIM.

β(µ) must be updated for each sample of µ when solving the ROM!

Lihong Feng Model Reduction for Dynamical Systems 15/26

Page 16: 0em Model Reduction for Dynamical Systems Lecture 10 · Model Reduction for Dynamical Systems {Lecture 10{Lihong Feng Otto-von-Guericke Universitaet Magdeburg Faculty of Mathematics

RB method for dynamical systems

RB method for linear parametric dynamical systems

1. Specify Ptrain := {w1, . . . ,wm}, w i = (µi , ui (t)).

2. Specify an error estimator/indicator/bound η(w).

3. Use POD-Greedy algorithm to compute the projection matrix V .

4. Form the ROM:

V TE (µ)Vdz/dt = V TA(µ)Vz + V TB(µ)u(t),y = C (µ)Vz .

Lihong Feng Model Reduction for Dynamical Systems 16/26

Page 17: 0em Model Reduction for Dynamical Systems Lecture 10 · Model Reduction for Dynamical Systems {Lecture 10{Lihong Feng Otto-von-Guericke Universitaet Magdeburg Faculty of Mathematics

RB method for dynamical systems

Compute V for dynamical systems

Algorithm 2 POD-Greedy algorithm for dynamical systems

Input: Ptrain, tolRB(< 1)Output: Projection matrix: V = [V1, . . . ,Vm]1: Initialization: s = 0, V = [ ], w? = (µ1, u1(t)), ηs(w?) = 1.2: while the error η(w?) > tolRB do3: Compute the trajectory X = [x(w?, t1), . . . , x(w?, tN)].4: W = colspan{V }.5: IF V 6= [ ] do

For each tk , compute x(w?, tk ) := x(w?, tk ) − ProjW [x(w?, tk )]. (Orthorgonalize the vector x(w?, tk ) with theorthogonal vectors in V .)ENDIF

6: Update X and do SVD: X = UΣVT , Vs+1 := U(:, 1) (only take the first POD basis).7: Update: V = [V ,Vs+1],8: s = s + 1.9: Find w? := arg max

w∈Ptrain

η(w).

10: end while

Lihong Feng Model Reduction for Dynamical Systems 17/26

Page 18: 0em Model Reduction for Dynamical Systems Lecture 10 · Model Reduction for Dynamical Systems {Lecture 10{Lihong Feng Otto-von-Guericke Universitaet Magdeburg Faculty of Mathematics

RB method for dynamical systems

RB method for nonlinear parametric dynamical systems

1. SpecifyPtrain := {w1, . . . ,wm}, w i = (µi , ui (t)).

2. Specify an error estimator/indicator/bound η(w).

3. Use POD-Greedy algorithm to compute the projection matrix V .

4. Compute the EIM basis Uf using the empirical interpolation method (EIM).

5. Form the ROM:V TE (µ)Vdz/dt = V TA(µ)Vz + V TUfβ(w , t) + V TB(µ)u(t, )

y = C (µ)Vz .

Key points:

EIM.

β(w , t) must be updated for each value of µ, and each u(t), at each time step ti , whensolving the ROM!

Efficient error estimation.

Lihong Feng Model Reduction for Dynamical Systems 18/26

Page 19: 0em Model Reduction for Dynamical Systems Lecture 10 · Model Reduction for Dynamical Systems {Lecture 10{Lihong Feng Otto-von-Guericke Universitaet Magdeburg Faculty of Mathematics

Empirical Interpolation Method (EIM)

Algorithm 3 Algorithm 3: EIM for steady systems

Input: Snapshots of f (µ, x(µ)):

F = {f (µ1, x(µ1)), . . . , f (µm, x(µm))}, f k := f (µk , x(µk )),

P = [ ],U = [ ].Output: EI basis: U = [u1, . . . , uM ] and

Indices: {℘1, . . . , ℘M}, index matrix: P = [e℘1 , . . . , e℘M ].1: s = 1, ξ1 := arg max

f k∈F‖f k‖2, ℘1 := arg max

j∈{1,...,n}|ξ1,j |, u1 := ξ1/ξ1,℘1 . P = [P, e℘1 ],U = [U, u1].

Lihong Feng Model Reduction for Dynamical Systems 19/26

Page 20: 0em Model Reduction for Dynamical Systems Lecture 10 · Model Reduction for Dynamical Systems {Lecture 10{Lihong Feng Otto-von-Guericke Universitaet Magdeburg Faculty of Mathematics

Empirical Interpolation Method (EIM)

(continued) Algorithm 3: EIM for steady systems

1: while ‖ξs‖2 > ε do

2: s := s + 1. For each f k , k = 1, . . . ,m: f k ≈∑s−1

i=1 βkiui , i.e.

f k ≈ Uβk , βk = (βk1, . . . , βks−1)T

βk is determined by interpolation:

PT f k = PTUβk ,

so that βk = (PTU)−1PT f k .

3: Let f k?

:= arg maxf k∈F

‖f k − Uβk‖2, ξs = f k? − Uβk?

4: if ‖ξs‖2 ≤ ε then5: Stop and set M = s − 1.6: else7: Define ℘s := arg max

j∈{1,...,n}|ξs,j |, us := ξs/ξs,℘s .

8: P = [P, e℘s ],U = [U, us ].9: end if10: end while

Lihong Feng Model Reduction for Dynamical Systems 20/26

Page 21: 0em Model Reduction for Dynamical Systems Lecture 10 · Model Reduction for Dynamical Systems {Lecture 10{Lihong Feng Otto-von-Guericke Universitaet Magdeburg Faculty of Mathematics

Application of EI to ROM simulation

Simulating the ROM:VTE(µ)Vz + VTUfβ(µ) = VTB(µ),

y = C(µ)Vz.

Uf = U, U is from Algorithm 3 (EIM). f (µ,Vz(µ)) ≈ Uβ(µ), ∀µ.

Using the index matrix P from Algorithm 1,

PT f (µ,Vz(µ)) = PTUβ(µ), ∀µ.(Interpolation)

β(µ) = (PTU)−1PT f (µ,Vz(µ)), ∀µ.

For each value of µ = (p1, . . . , pl ), using Newton’s method to solve

g(µ,Vz(µ)) = B(µ),

where g(µ,Vz(µ)) = VTE(µ)Vz + VTU(PTU)−1︸ ︷︷ ︸precomputed

PT f (µ,Vz(µ)), B(µ) = VTB(µ).

Lihong Feng Model Reduction for Dynamical Systems 21/26

Page 22: 0em Model Reduction for Dynamical Systems Lecture 10 · Model Reduction for Dynamical Systems {Lecture 10{Lihong Feng Otto-von-Guericke Universitaet Magdeburg Faculty of Mathematics

Empirical Interpolation Method (EIM)

Algorithm 4: EIM for dynamical systemsInput: Snapshots of f (w , x(t,w)) (note that f depends not only on µ, but also on the input u(t).):

F = [f (w1, x(t1,w1)), . . . , f (w1, x(tN ,w

1)) . . . , f (wm, x(tN ,wm))],

w i = (µi , ui (t)), f k := F (:, k),P = [ ],U = [ ].Output: EI basis: U = [u1, . . . , uM ] andIndices: {℘1, . . . , ℘M}, index matrix P: P = [e℘1 , . . . , ℘M ].

1. s = 1, ξ1 := arg maxf k ,1≤k≤N·m

‖f k‖2,

℘1 := arg maxj∈{1,...,n}

|ξ1,j |, u1 := ξ1/ξ1,℘1 . P = [P, e℘1 ],U = [U, u1].

Lihong Feng Model Reduction for Dynamical Systems 22/26

Page 23: 0em Model Reduction for Dynamical Systems Lecture 10 · Model Reduction for Dynamical Systems {Lecture 10{Lihong Feng Otto-von-Guericke Universitaet Magdeburg Faculty of Mathematics

Empirical Interpolation Method (EIM)

( Continued) Algorithm 4: EIM for dynamical systems

while ‖ξm‖2 > ε do

2: s := s + 1. For each fk , k = 1, . . . ,N ·m : f k ≈∑s−1

i=1 ckiui , i.e.

f k ≈ Uck , ck = (ck1, . . . , cks−1)T

ck is determined by interpolation:

PT f k = PTUck ,

so that ck = (PTU)−1PT f k .

Let f k?

:= arg maxf k ,1≤k≤N·m

‖f k − Uck‖. ξs = f k? − Uck?

4: if ‖ξs‖ ≤ ε thenStop and set M = s − 1.

6: elseDefine ℘s := arg max

j∈{1,...,n}|ξs,j |, us := ξs/ξs,℘s .

8: end ifend while

Lihong Feng Model Reduction for Dynamical Systems 23/26

Page 24: 0em Model Reduction for Dynamical Systems Lecture 10 · Model Reduction for Dynamical Systems {Lecture 10{Lihong Feng Otto-von-Guericke Universitaet Magdeburg Faculty of Mathematics

Application of EI to ROM simulation

Simulating the ROM:VTE(µ)Vdz/dt = VTA(µ)Vz + VTUfβ(w , t)

+ VTB(µ),y = C(µ)Vz.

Uf = U, U is from Algorithm 4. f (µ,Vz(µ, t)) ≈ Uβ(w , t), ∀µ.

Using the index matrix P from Algorithm 4,

PT f (µ,Vz(µ, t)) = PTUβ(w , t), ∀µ, ∀t.(Interpolation)

β(w , t) = (PTU)−1PT f (µ,Vz(µ, t)), ∀µ.

For each value of µ, each value of input u(t), and at each time step ti , compute:

VTU(PTU)−1︸ ︷︷ ︸precomputed

PT f (µ,Vz(µ, ti )),

to get VTUfβ(w , ti ) in the ROM.

Lihong Feng Model Reduction for Dynamical Systems 24/26

Page 25: 0em Model Reduction for Dynamical Systems Lecture 10 · Model Reduction for Dynamical Systems {Lecture 10{Lihong Feng Otto-von-Guericke Universitaet Magdeburg Faculty of Mathematics

Issues under ative research

Optimal/adaptive defining/updating the trainning set: Ptrain.

Adaptive adjustment of the EIM basis and the reduced basis.

More efficient error estimation/bound.

Lihong Feng Model Reduction for Dynamical Systems 25/26

Page 26: 0em Model Reduction for Dynamical Systems Lecture 10 · Model Reduction for Dynamical Systems {Lecture 10{Lihong Feng Otto-von-Guericke Universitaet Magdeburg Faculty of Mathematics

Reference

M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera, An ‘empirical interpolation’ method:application to efficient reduced-basis discretization of partial differential equations, C. R. Acad. Sci. Paris, Ser. I,339 (2004), pp. 667–672.

M. Drohmann, B. Haasdonk, and M. Ohlberger, Reduced basis approximation for nonlinear parametrizedevolution equations based on empirical operator interpolation, SIAM J. Sci. Comput., 34 (2012), pp. 937–969.

B. Haasdonk and M. Ohlberger, Reduced basis method for finite volume approximations of parametrizedlinear evolution equations, ESAIM: M2AN, 42 (2008), pp. 277–302.

A. T. Patera and G. Rozza, Reduced basis approximation and a posteriori error estimation for parametrizedpartial differential equations, Version 1.0, MIT 2006.

Y. Zhang, L. Feng, S. Li, and P. Benner, Accelerating PDE constrained optimization by the reduced basismethod: application to batch chromatography, International Journal for Numerical Methods in Engineering,104:983–1007, 2015.

Y. Zhang, L. Feng, S. Li, and P. Benner, An efficient output error bound for the reduced basis methodapplied to parametrized evolution equations, 37(6):B910–B936, SIAM Journal on Scientific Computing.

And many more ....

Lihong Feng Model Reduction for Dynamical Systems 26/26