08 Mf e&p - Microfluidic Design and Analysis II Cfd

download 08 Mf e&p - Microfluidic Design and Analysis II Cfd

of 20

Transcript of 08 Mf e&p - Microfluidic Design and Analysis II Cfd

  • 7/30/2019 08 Mf e&p - Microfluidic Design and Analysis II Cfd

    1/20

    MF Effects & Phenomena: 08 Design & Analysis / slide 1www.imtek.de/anwendungen Roland Zengerle / 11.07.2008

    Microfluidics 1: Effects & Phenomena

    08 Design & Analys is8.4 CFD Computational Fluid Dynamics

    8.5.1 Applications of CFD in Microfluidics

    8.5.2 CFD solves transport equations

    8.5.3 Numerically solving the transport equations

    8.5.4 Modelling a complex problem

    8.5 CFD Resources at the IMTEK

    MF Effects & Phenomena: 08 Design & Analysis / slide 2www.imtek.de/anwendungen Roland Zengerle / 11.07.2008

    CFD is a Standard Tool in Microf ludicsWide range of applications

    Dispensers

    Capillary priming

    Heat transfer

    Movement of gas bubbles

    Mixing

    CFD is used to

    Prove the principal of newsystems

    Detailed insight into fluidicsystems

    Find optimized parameters for asystem

    detailed insight into coriolis mixing(IMTEK Laboratory for MEMS Applications)

    optimization of droplet ejected from a nozzle

    (IMTEK Laboratory for MEMS Applications)

    prove of principlewater removal in fuel cell

    (IMTEK Laboratory for MEMS Applications)

  • 7/30/2019 08 Mf e&p - Microfluidic Design and Analysis II Cfd

    2/20

    MF Effects & Phenomena: 08 Design & Analysis / slide 3www.imtek.de/anwendungen Roland Zengerle / 11.07.2008

    1 10 100 1000

    0

    5

    10

    15

    20

    CriticalPressure[kPa]

    Density [g/cm3]

    Surface Tension [mN/m]

    Dynamic Viscosity [mPas]

    Nozzle Diameter [m]

    CFD allows to find optimal parameters fora system

    Example: optimize pressurepulses for the dispensing of

    different liquids

    Varying interfacial tension

    Varying viscosity

    Varying density

    Varying nozzle geometry

    droplet ejected from a Top Spot nozzle

    (IMTEK Laboratory for MEMS Applications)

    critical pressure for droplet ejection in

    dependence of material and nozzle parameter

    MF Effects & Phenomena: 08 Design & Analysis / slide 4www.imtek.de/anwendungen Roland Zengerle / 11.07.2008

    CFD allows a detailed insight into fluidic

    systemsExample: Is coriolis force

    responsible for mixing on a rotating

    disk?

    Detailed insight by CFD made

    visible:

    Liquid is transported outwardsby centrifugal force

    Coriolis force acts normal to flowdirection

    Coriolis force and viscosity inducecomplex flow pattern: mixing

    CoMix mixer CD

    (IMTEK Laboratory for MEMS Applications)

    simulated coriolis flow on a rotating disk

    (IMTEK Laboratory for MEMSpplications)

    liquid A

    liquid Bcentrifugal force

    movement

    coriolis force

  • 7/30/2019 08 Mf e&p - Microfluidic Design and Analysis II Cfd

    3/20

    MF Effects & Phenomena: 08 Design & Analysis / slide 5www.imtek.de/anwendungen Roland Zengerle / 11.07.2008

    CFD allows a detailed insight into fluidicsystems

    simulation of coriolis induced mixing pattern

    (IMTEK Laboratory for MEMS Applications)

    Coriolis force and viscosity induce

    complex flow pattern: mixing

    Fluid is folded

    Fluid fluid interface increases

    Increase of fluid fluid interface leads toan enhanced diffusive mixing

    MF Effects & Phenomena: 08 Design & Analysis / slide 6www.imtek.de/anwendungen Roland Zengerle / 11.07.2008

    CFD allows to prove of principal of new

    systems

    Example: Can water be removed by capil lary forces

    from the active area (MEA) of a fuel cell?

    CFD simulation proved that it is possible tolift water droplets from a MEA

    Usage of contrast in wetting behaviour andgeometry

    droplets lifted from the MEA in a fuel

    cell

    during operation

    CFD simulation of droplets lifted from a MEA by capillary forces

    (IMTEK Laboratory for MEMS Applications)

    hydrophobic MEA/GDL

    hydrophillic

    channel walls

    1mm

    realized test cell

    (IMTEK Laboratory for MEMS Applications)

  • 7/30/2019 08 Mf e&p - Microfluidic Design and Analysis II Cfd

    4/20

    MF Effects & Phenomena: 08 Design & Analysis / slide 7www.imtek.de/anwendungen Roland Zengerle / 11.07.2008

    8. Methods of Microfluidic Design andAnalysis

    08 Design & Analys is

    8.4 CFD Computational Fluid Dynamics

    8.5.1 Applications of CFD in Microfluidics

    8.5.2 CFD solves transport equations

    8.5.3 Numerically solving the transport equations

    8.5.4 Modelling a complex problem

    8.5 CFD Resources at the IMTEK

    MF Effects & Phenomena: 08 Design & Analysis / slide 8www.imtek.de/anwendungen Roland Zengerle / 11.07.2008

    CFD solves Transport Equations

    Transport phenomena in micro fluidics

    Mass

    Momentum

    Heat

    Dispersed particles

    Phase boundaries,

    Transport systems are coupled by the interaction of forces

  • 7/30/2019 08 Mf e&p - Microfluidic Design and Analysis II Cfd

    5/20

    MF Effects & Phenomena: 08 Design & Analysis / slide 9www.imtek.de/anwendungen Roland Zengerle / 11.07.2008

    Generic Transport Equation (1)

    Transport equations can be mapped to one generic transportequation

    Generic transport equation for any transport variable :

    temporalchange

    explicitsources

    ( ) ( )( )ii i i j

    v q ft

    + = + +

    coupling toother fieldvariables

    convection transport with moving liquid

    diffusion

    (generic parameter)

    source termstemporal change

    MF Effects & Phenomena: 08 Design & Analysis / slide 10www.imtek.de/anwendungen Roland Zengerle / 11.07.2008

    Generic Transport Equation (2): Example 1

    = velocities transport ofmomentum (Navier Stokes equations)

    ( ) ( )( )ii i i j

    v q ft

    + = + +

    2( )

    volumep

    t

    + = + v v v v f

    generic transport equation:

    Navier stokes Equation (->lecture fluid dynamics I)

    i = vector of

    momentum v

    diffusion =

    viscosity

    =

    sources of

    moment = volume

    forces

    pressure

    gradient

    = coupling term

  • 7/30/2019 08 Mf e&p - Microfluidic Design and Analysis II Cfd

    6/20

    MF Effects & Phenomena: 08 Design & Analysis / slide 11www.imtek.de/anwendungen Roland Zengerle / 11.07.2008

    Generic Transport Equation (3): Example 2

    = concentration transport of concentration: 2nd Ficks Law

    ( ) ( )( )ii i i j

    v q ft

    + = + +

    generic transport equation:

    2

    2

    x

    cDt

    c

    =

    2nd Ficks law(-> lecture diffusion)

    diffusion:

    D =

    i =

    concentrationno convection no sources no couplings

    MF Effects & Phenomena: 08 Design & Analysis / slide 12www.imtek.de/anwendungen Roland Zengerle / 11.07.2008

    = density conservation of mass(continuity)

    = impulses transport ofmomentum(Navier Stokes equations)

    = enthalpy (cpT) heat transport

    = concentration chemical reactionsystems

    = fluid fractions multiphase systems(volume of fluid)

    = particle distributions

    Overview of Transport Equations in

    Microfluidics

    simulation of coriolis induced mixing

    pattern(IMTEK Laboratory for MEMS

    Applications)

    ( )( )ii i i j

    v q ft

    + = + +

  • 7/30/2019 08 Mf e&p - Microfluidic Design and Analysis II Cfd

    7/20

    MF Effects & Phenomena: 08 Design & Analysis / slide 13www.imtek.de/anwendungen Roland Zengerle / 11.07.2008

    Example: apparent forces in a

    rotational framework, source of

    momentumother

    Gravity on mass, source of momentum

    Heating from radiation, heat source

    External sources to the transportequations

    simulated coriolis flow on a rotating disk

    (IMTEK Laboratory for MEMS Applications)

    liquid A

    liquid Bcentrifugal force

    movement

    coriolis force

    ( )( )ii i i j

    v q ft

    + = + +

    MF Effects & Phenomena: 08 Design & Analysis / slide 14www.imtek.de/anwendungen Roland Zengerle / 11.07.2008

    Any functions of other field variables jexample: capillary pressure is momentum

    source as function ofcurvature of

    interface (distribut ion o f phases) other:

    chemical processes: coupling of eductconcentrations, temperature, pressure and

    generation of products and heat

    friction generates heat as a function of velocity

    Coupling terms between transport

    equations

    water removal in fuel cell

    (IMTEK Laboratory for MEMS Applications)

    ( )( )ii i i j

    v q ft

    + = + +

  • 7/30/2019 08 Mf e&p - Microfluidic Design and Analysis II Cfd

    8/20

    MF Effects & Phenomena: 08 Design & Analysis / slide 15www.imtek.de/anwendungen Roland Zengerle / 11.07.2008

    What makes up the real strength of CFD?

    Many different transport equations can be addressed in the sameway

    Map to the generic transport equation

    Complex systems can be addressed by coupling of dif ferent

    transport equations

    Only one numerical scheme will be necessary to solve an arbitrary

    complex system of transport equations (-> next section)

    CFD-codes can be applied straightforward to a wide range of

    applications!

    CFD-codes can be appl ied straightforward to a wide range of

    applications!

    MF Effects & Phenomena: 08 Design & Analysis / slide 16www.imtek.de/anwendungen Roland Zengerle / 11.07.2008

    8. Methods of Microfluidic Design and

    Analysis

    08 Design & Analys is

    8.4 CFD Computational Fluid Dynamics

    8.5.1 Applications of CFD in Microfluidics

    8.5.2 CFD solves transport equations

    8.5.3 Numerically solving the transport equations

    8.5.4 Modelling a complex problem

    8.5 CFD Resources at the IMTEK

  • 7/30/2019 08 Mf e&p - Microfluidic Design and Analysis II Cfd

    9/20

    MF Effects & Phenomena: 08 Design & Analysis / slide 17www.imtek.de/anwendungen Roland Zengerle / 11.07.2008

    Al l equations can be solved in the sameway

    ( )( )ii i i j

    v q ft

    + = + +

    discretize geometry

    map transport equationsto generic equation

    matrix equations

    solve numerically

    discretization of

    generic equation

    problem dependent

    genericgeneric

    MF Effects & Phenomena: 08 Design & Analysis / slide 18www.imtek.de/anwendungen Roland Zengerle / 11.07.2008

    Detailed view: Numerically solving the

    transport equations

    Three iteration loops

    Solve field matrix for each variable(iteratively): inner iteration

    Coupling + solution: outer iteration

    Solve next time step

    Convergence criteria

    Breakdown criteria of iteration loops

    Strong criteria: high quality of solution

    long calculation time

    Weak criteria: low quality

    short calculation timesolution Strategy of the CFX Solver (CFX Manual)

  • 7/30/2019 08 Mf e&p - Microfluidic Design and Analysis II Cfd

    10/20

    MF Effects & Phenomena: 08 Design & Analysis / slide 19www.imtek.de/anwendungen Roland Zengerle / 11.07.2008

    General workflow in CFD

    .

    ....

    ...

    ....

    ....

    ...

    ....

    .........

    .....

    .....

    01040497093

    9323590162154019543208

    954160703106920776002000901553052

    8050244541192714332107591525819134

    problem definition algorithm solves equations interpretation & analysis

    developer & computeruser

    postprocessingpreprocessing solving

    user

    MF Effects & Phenomena: 08 Design & Analysis / slide 20www.imtek.de/anwendungen Roland Zengerle / 11.07.2008

    Verification and Validation

    Like any sof tware a CFD model must be

    verified and validated (Def. IEEE 1012)

    Verification mathematical correctness of the model

    done by the developer

    user: are the error criterias in the verified

    range?

    Validation agreement of model results with experimental

    results

    done by the developer

    always only a few cases are tested and

    documented

    user: is the simulation in a validated

    parameter range?

    All CFD simulations are

    wrong!

    All CFD simulations are

    right!

    A simulation is done by a model so it is a

    question of the proper interpretation and

    right usage wheter it is right or wrong!

  • 7/30/2019 08 Mf e&p - Microfluidic Design and Analysis II Cfd

    11/20

    MF Effects & Phenomena: 08 Design & Analysis / slide 21www.imtek.de/anwendungen Roland Zengerle / 11.07.2008

    8. Methods of Microfluidic Design andAnalysis

    08 Design & Analys is

    8.4 CFD Computational Fluid Dynamics

    8.5.1 Applications of CFD in Microfluidics

    8.5.2 CFD solves transport equations

    8.5.3 Numerically solving the transport equations

    8.5.4 Modelling a complex problem

    8.5 CFD Resources at the IMTEK

    MF Effects & Phenomena: 08 Design & Analysis / slide 22www.imtek.de/anwendungen Roland Zengerle / 11.07.2008

    The passive DMFC

    1) Tapered channel structure forcapillary induced fluid flow

    2) Hydrophobic venting membrane

    3) Bubble fence

    4) Membrane electrodeassembly, gas diffusion Layer

    5) Cathode Flow Field

    6) Flexible tubing

    7) Fuel reservoir

    8) Flow Sensor

    9) Camera

    1

    2

    3

    4

    5

    7

    6

    O2 supply by diffusion

    89

    1.2 mm

  • 7/30/2019 08 Mf e&p - Microfluidic Design and Analysis II Cfd

    12/20

    MF Effects & Phenomena: 08 Design & Analysis / slide 23www.imtek.de/anwendungen Roland Zengerle / 11.07.2008

    Different pumping modes

    Depending on bubble size twopumping modes can be realized:

    A Non-Blocking and

    B Blocking

    Pump rate adjustable by

    Geometry

    Wetting properties

    Gas flow rate

    A B

    MF Effects & Phenomena: 08 Design & Analysis / slide 24www.imtek.de/anwendungen Roland Zengerle / 11.07.2008

    Modelling

    Modeling and simulation issupposed to shed light on theinfluence of the gas venting andwetting phenomena on

    The different pumping modes Blocking and

    Non Blocking

    Capillary induced fuel circulation

    Requirements

    Bubble generation

    Capillary transport

    Venting

  • 7/30/2019 08 Mf e&p - Microfluidic Design and Analysis II Cfd

    13/20

    MF Effects & Phenomena: 08 Design & Analysis / slide 25www.imtek.de/anwendungen Roland Zengerle / 11.07.2008

    Modelling

    Standard models available inCFD-ACE+ for

    Navier stokes finite volume grid

    Free surfaces Volume of Fluid (VoF)

    Surface tension ContinuumSurface Force (CSF)

    Challenge

    VoF and CSF requires very smalltime steps computationally very

    demanding

    Multiscale problem Nucleation of bubbles

    Triple line phenomena

    Venting process

    MF Effects & Phenomena: 08 Design & Analysis / slide 26www.imtek.de/anwendungen Roland Zengerle / 11.07.2008

    Modelling approach

    Coarse grid modelling

    Capillary transportresolved byfinite volume computational grid

    Addi tional models implementedas user-sub-routines

    Bubble Generation

    Tripple line phenomena

    Bubble Venting

  • 7/30/2019 08 Mf e&p - Microfluidic Design and Analysis II Cfd

    14/20

    MF Effects & Phenomena: 08 Design & Analysis / slide 27www.imtek.de/anwendungen Roland Zengerle / 11.07.2008

    Subdomains for bubble

    generation

    Bubble generation implemented as user-sub-routine

    Approach

    Domain is subdivided in controlvolumes

    Control volume contains gas bubble growth continuously

    Control volume contains no gas CO2 accumulates virtually up to a

    critical mass

    Bubble growth with a dynamic

    based on stability criteria

    Challenge

    Small bubble and CSF unstablecapillary pressure

    MF Effects & Phenomena: 08 Design & Analysis / slide 28www.imtek.de/anwendungen Roland Zengerle / 11.07.2008

    Dynamic contact angle implemented as

    user-sub-rout ine (1)

    Contact Angle changes when

    contact line moves

    Pinning / contact angle hysteresis Contact line is pinned on rough

    surfaces or chemical

    heterogeneities

    Dynamic contact angle Contact angle changes continuously

    with the velocity of moving contact

    linesadvancing

    receding

    vCa

    =

    static

    hysteresis

    0

    ad rec

    Bubble movement

  • 7/30/2019 08 Mf e&p - Microfluidic Design and Analysis II Cfd

    15/20

    MF Effects & Phenomena: 08 Design & Analysis / slide 29www.imtek.de/anwendungen Roland Zengerle / 11.07.2008

    Dynamic contact angle implemented asuser-sub-rout ine (2)

    Dynamic contact angle as userdefined boundary condition

    Challenge Discontinuity at = 0 leads to

    instability

    For a non moving contact line, is

    free between rec and ad

    Approach PI-Controller maintains Ca=0 in each

    cell with hys as the maximum

    correction variable range

    ad>rec

    ad rec

    advancing

    receding

    vCa

    =

    static

    hysteresis

    0

    MF Effects & Phenomena: 08 Design & Analysis / slide 30www.imtek.de/anwendungen Roland Zengerle / 11.07.2008

    Venting implemented as user-sub-rout ine

    Challenge

    Resolution of a single pore of theporous membrane to time

    consuming

    Approach

    Phase specific sink term as aboundary condition derived from

    pressure-velocity characteristicsof the membrane

  • 7/30/2019 08 Mf e&p - Microfluidic Design and Analysis II Cfd

    16/20

    MF Effects & Phenomena: 08 Design & Analysis / slide 31www.imtek.de/anwendungen Roland Zengerle / 11.07.2008

    The presentedmodel combination

    allows for

    Stable long-termsimulations

    Studying bubbleconfigurations

    during the pump

    performance

    Results (1)

    Without Pinning ModelWith Pinning Model

    side view

    top view

    MF Effects & Phenomena: 08 Design & Analysis / slide 32www.imtek.de/anwendungen Roland Zengerle / 11.07.2008

    Results (2)

    The presented model

    combination allows for

    Studying the influence of pinningon pump rates

  • 7/30/2019 08 Mf e&p - Microfluidic Design and Analysis II Cfd

    17/20

    MF Effects & Phenomena: 08 Design & Analysis / slide 33www.imtek.de/anwendungen Roland Zengerle / 11.07.2008

    Results (3)

    MF Effects & Phenomena: 08 Design & Analysis / slide 34www.imtek.de/anwendungen Roland Zengerle / 11.07.2008

    Conclusion

    Challenges

    Computationally demanding

    Presented simulations require4-6 weeks on a single

    processor

    Achievements

    Modelling and simulation of bubble generation

    capillary movement

    and membrane venting

    Studying the influence of eachphenomena on the pump

    performance is now possible

    but

  • 7/30/2019 08 Mf e&p - Microfluidic Design and Analysis II Cfd

    18/20

    MF Effects & Phenomena: 08 Design & Analysis / slide 35www.imtek.de/anwendungen Roland Zengerle / 11.07.2008

    Outlook

    Requirements for quantitativeparameter studies

    Further reduction of the calculationtime more efficient model

    implementation

    Parallelisation of User-Sub-Routines

    MF Effects & Phenomena: 08 Design & Analysis / slide 36www.imtek.de/anwendungen Roland Zengerle / 11.07.2008

    8. Methods of Microfluidic Design and

    Analysis

    08 Design & Analys is

    8.4 CFD Computational Fluid Dynamics

    8.5.1 Applications of CFD in Microfluidics

    8.5.2 CFD solves transport equations

    8.5.3 Numerically solving the transport equations

    8.5.4 Modelling a complex problem

    8.5 CFD Resources at the IMTEK

  • 7/30/2019 08 Mf e&p - Microfluidic Design and Analysis II Cfd

    19/20

    MF Effects & Phenomena: 08 Design & Analysis / slide 37www.imtek.de/anwendungen Roland Zengerle / 11.07.2008

    For Students: Cosmos Flow Works

    Cosmos Flow Works included in Solidworkscampus license

    Available forevery student inside the university

    At home by vpn

    License borrowing possible

    Laminar & turbulent flow

    Heat transfer

    Heat transfer in solids included

    Simple to use

    MF Effects & Phenomena: 08 Design & Analysis / slide 38www.imtek.de/anwendungen Roland Zengerle / 11.07.2008

    For the researchers: ESI CFD-ACE+

    Professional multipurpuse suite

    Strong in free surface modelling

    User friendly, systematic interfaces

    Educational and research licenses

    available at IMTEK

    www.esi-group.com

  • 7/30/2019 08 Mf e&p - Microfluidic Design and Analysis II Cfd

    20/20

    MF Effects & Phenomena: 08 Design & Analysis / slide 39www.imtek.de/anwendungen Roland Zengerle / 11.07.2008

    For the enthusiastic

    Open source CFD code OpenFOAM

    www.opencfd.co.uk

    Linux platform only

    Definition of own transport equations

    Large suit of models

    particles, hour glass

    jet breakoff

    world wide

    wether

    user interface

    MF Effects & Phenomena: 08 Design & Analysis / slide 40www.imtek.de/anwendungen Roland Zengerle / 11.07.2008

    Resources

    CFD-Online: Sponsored information service for CFD-usershttp://www.cfd-online.com

    http://www.cfd-online.com/Resources/homes.html#Company companies and suppliers

    http://www.cfd-online.com/Forum/ discussion and information forum

    http://www.cfd-online.com/Jobs/jobs for CFD Engineers and Researchers

    Hompages of commercial suppliers of software http://www.software.aeat.com/cfx

    http://www.fluent.com

    http://www.flow-3D.com

    http://www.cfdrc.com

    ...

    Service providers for MEMS (not only CFD) http://www.memscap.com

    http://www.coventor.com

    ...