第一組 3D-Bioprinting Organs

33
第一組 3D-Bioprinting Organs 組員: B04209035 佘慶峰 B04901050 羅浩 B04901059 蔡承佑

Transcript of 第一組 3D-Bioprinting Organs

Page 1: 第一組 3D-Bioprinting Organs

第一組3D-Bioprinting Organs

組員:B04209035 佘慶峰B04901050 羅浩B04901059 蔡承佑

Page 2: 第一組 3D-Bioprinting Organs
Page 3: 第一組 3D-Bioprinting Organs

3D organ printing 流程圖

Page 4: 第一組 3D-Bioprinting Organs

Design Approaches

• Biomimicry:Reproducing cellular and extracellular components present in the native

tissue

• Autonomous self-assembly:Utilizes embryonic organ development

to replicate a specific organ/tissue

Page 5: 第一組 3D-Bioprinting Organs

Design Approaches

• Mini-tissue approach:

Entails creation of the small function

unit of the tissue/organ to drive the

generation of the tissue or organ.

Page 6: 第一組 3D-Bioprinting Organs

3D organ printing 流程圖

Page 7: 第一組 3D-Bioprinting Organs

Cell Selection

• Robust

Survive printing process and physiological

stress

• Expand rate

Maintain suitable cell proliferation rate

Page 8: 第一組 3D-Bioprinting Organs

Cell Selection

• Primary cellDirect from animal tissue

• Advantages:

Biocompatibility

• Disadvantages:

Hard to isolate

Finite lifespan

Page 9: 第一組 3D-Bioprinting Organs

Cell Selection

• Stem cell

• Advantages:

Self-renewal

Can generate multiple functional cell

• Disadvantages:

Undesired differentiate ability.

Poor self-renew ability.

Page 10: 第一組 3D-Bioprinting Organs

3D organ printing 流程圖

Page 11: 第一組 3D-Bioprinting Organs

Inkjet Bioprinting• Thermal Inkjet Printer

– Electrically heating the print head to produce pulses of pressure that force droplets from the nozzle

– Localized heating which can range from 200 °C to 300 °C

– Risk of exposing cells and materials to thermal

Page 12: 第一組 3D-Bioprinting Organs

Inkjet Bioprinting• Piezoelectric Inkjet Printer

– When an electrical charge is applied to Piezoelectric elements, these elements flex, forcing precise amounts of bioink onto the substrate

– Risk of the damage of the cell membrane and lysis caused by the 15-25 kHz frequencies used by piezoelectric crystal

Page 13: 第一組 3D-Bioprinting Organs

Inkjet Bioprinting

• Advantages– Low cost– High resolution– High speed– Compatibility with many biological materials

• Disadvantages– The biological material has to be in a liquid form to

enable droplet formation

Page 14: 第一組 3D-Bioprinting Organs

Microextrusion BioprintingPneumatic dispensing system

Extrude the materials by releasing compressed air

Have simpler drive-mechanism components

Because using air pressure to dispense fluids, it will

force out more when it’s warm, but less when it’s

cooler

Page 15: 第一組 3D-Bioprinting Organs

Microextrusion Bioprinting

• Mechanical(piston or screw) dispensing

system

– Offer consistent and accurate volume control

– Have smaller and more complex components

Page 16: 第一組 3D-Bioprinting Organs

Microextrusion Bioprinting

• Advantages

– The ability to deposit high cell densities and accelerated

tissue organization

• Disadvantages

– Cell viability is lower than that with inkjet-based

bioprinting

– The loss of resolution and print speed to maintain cell

viability with low pressure and large nozzle sizes

Page 17: 第一組 3D-Bioprinting Organs

Laser-assisted Bioprinting

• Using focused laser pulses on the absorbing layer of the

ribbon to generate a high-pressure bubble that propels

cell-containing materials toward the collector substrate

Page 18: 第一組 3D-Bioprinting Organs

Laser-assisted Bioprinting

• Advantages

– High resolution

– Nozzle-free

• Disadvantages

– Become onerous if multiple cell types or materials

have to be co-deposited

– The metallic residues owe to the vaporization

during printing

Page 19: 第一組 3D-Bioprinting Organs

Bioprinters

Page 20: 第一組 3D-Bioprinting Organs

3D organ printing 流程圖

Page 21: 第一組 3D-Bioprinting Organs

Classification of Bioink

• DBB ( droplet/inkjet-based bioprinting )

• 1. Low viscosity and a non-fibrous nature

• 2. Supported viscosity : 3.5 ~ 12 mPa/s

• 3. Medium surface tension

• 4. Solidify immediately after landing

Page 22: 第一組 3D-Bioprinting Organs

Classification of Bioink

• EBB ( extrusion-based bioprinting )

• 1. Non-Newtonian fluids

• 2. Supported viscosity : 30 mPa/s ~ 600k Pa/s

• 3. Hydrogel concentration changes the viscosity.

• 4. Low adhesion and Low surface tension

Page 23: 第一組 3D-Bioprinting Organs

Classification of Bioink

• LBB ( laser-based bioprinting )

• 1. Sufficient adhesion and low surface tension

• 2. Supported viscosity: 1 ~300 mPa/s

• 3. Stability and high-mechanical strength

Page 24: 第一組 3D-Bioprinting Organs

Common Material

• Alginate

• Gelatin (明膠/凝膠)

• Collagen (膠原蛋白)

Page 25: 第一組 3D-Bioprinting Organs

Alginate (海藻酸)

Page 26: 第一組 3D-Bioprinting Organs

Alginate

• Different ions (e.g. Ca)

• Two types of monomers: G & M

• Different proportion

Page 27: 第一組 3D-Bioprinting Organs

Collagen (膠原蛋白)

• The most abundant protein in the body ( 25% )

• High sensitivity to temperatures

• Different types for different organs (I~VIII)

Page 28: 第一組 3D-Bioprinting Organs
Page 29: 第一組 3D-Bioprinting Organs

Comparison of bioprinter type

Page 30: 第一組 3D-Bioprinting Organs

Future Goal

Page 31: 第一組 3D-Bioprinting Organs

Kidney

Bladder

Page 32: 第一組 3D-Bioprinting Organs

References

• https://ac.els-cdn.com/S0734975016301719/1-s2.0-S0734975016301719-main.pdf?_tid=a7956e7e-86b2-4d59-915e-6fbf56f716f7&acdnat=1525011931_6d7faaa64832084226351d4ae02aa062

• https://www.nature.com/articles/ncomms4935

• https://www.researchgate.net/publication/272997432_Inkjet_3D_Printing

• https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5309712/

• http://technews.tw/2013/05/23/3d-organ-printer/

Page 33: 第一組 3D-Bioprinting Organs

• 3D-Bioprinting:

https://3dprintingindustry.com/news/korean-3d-printing-

manufacturer-rokit-makes-their-mark-on-3d-bioprinting-

66869/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5309712/

https://openwetware.org/wiki/3D_Bioprinting#Inkjet_Biopri

nter

https://www.nature.com/articles/nbt.2958