© 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based...

53
© 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500 Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox

Transcript of © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based...

Page 1: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

Cobra Toolbox

Page 2: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

Learning Objectives

Each student should be able to:

• Explain the purpose of the Cobra Toolbox,

• Demonstrate basic operation of the Cobra Toolbox,

• Explain the capabilities of BIGG Database,

• Explain the capabilities of Pathway Pioneer,

• Explain the capabilities of Paint4Net.

Page 3: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

Cobra Toolbox

• Cobra Toolbox Overview

• Cobra Toolbox Fundamentals

• Cobra Examples

• BIGG Database & Maps

• Pathway Pioneer

• Paint4Net

Page 4: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

COBRA TOOLBOX OVERVIEW

Matlab Cobra Toolbox

• Flux Optimization

• Robustness Analysis

• Phenotype Phase Plane Analysis

• Flux Variability Analysis

• Gene Additions & Knockouts

• Production Envelopes

• More Tools

Load ModelsSBML, Excel

Graphical Output

Output Maps

Numerical Output

Save Models

Matlab CodeM-Files

Schellenberger J, Que R, Fleming RMT, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S, Kang J, Hyduke DR, Palsson BØ. 2011 Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nature Protocols 6:1290-1307.

Page 5: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

COBRA TOOLBOX INSTALLATION

http://opencobra.sourceforge.net/openCOBRA/Install.html

http://sourceforge.net/projects/opencobra/files/cobra/

Page 6: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

MatlabGUI

Page 7: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

Cobra Toolbox

• Cobra Toolbox Overview

• Cobra Toolbox Fundamentals

• Cobra Examples

• BIGG Database & Maps

• Pathway Pioneer

• Paint4Net

Page 8: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

Starting Matlab

Start Matlab

Cobra Toolbox

Page 9: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

Run initCobraToolbox.m

Initializing the Cobra Toolbox

Page 10: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

Load Model: model=readCbModel('ecoli_textbook');

Loading a Cobra-based

Model

Command

Loaded Model

Cobra Model

Structure

Reactions

Metabolites

S matrix

Lower Bounds

Upper Bounds

Objective Function

Page 11: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

Cobra Model Structure

Double click on Model to open window with the model variables

Page 12: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

MODEL STRUCTURE USED BY THE COBRA TOOLBOX• rxns: A list of all of the reaction abbreviations in the same order they appear in the stoichiometric matrix

• mets: A list of all of the metabolite abbreviations in the model in the same order they appear in the stoichiometric matrix

• S: The stoichiometric matrix in sparse format

• lb: The lower bound corresponding to each reaction, in order

• ub: The upper bound corresponding to each reaction, in order

• c: The relative weight of each reaction in the objective function—often a single one in the position corresponding to the biomass reaction and zeros elsewhere

• subSystem: The metabolic subsystem for each reaction

• rules: Boolean rules for each reaction describing the gene-reaction relationship. For example ‘gene1 and gene2’ indicate that the two gene products are part of a enzyme comples whereas ‘gene1 or gene2’ indicate that the two gene products are isozymes that catalyze the same reaction.

• genes: The gene names of all the genes included in the model

• rxnGeneMat: A matrix with as many rows as there are reactions in the model and as many columns as there are genes in the model. The ith row and jth column contains a one if the jth gene in genes is associated with the ith reaction in rxns and zero otherwise.

Page 13: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

DRAWING MAPS

• Maps for a variety of metabolic pathways are available for many of the models hosted in the BiGG knowledgebase (http://bigg.ucsd.edu).

• Read the map into Cobra

map=readCbMap('ecoli_Textbook_ExportMap');

• Cobra saves a map into a file named “target.svg” that will be written into the current directory.

drawCbMap(map);

target.svg

Page 14: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

MODEL SPREADSHEETecoli_core_model.xls [writeCbModel(model, ‘xls’)]

abbreviation officialName equation subSystemACALD acetaldehyde dehydrogenase (acetylating) [c] : acald + coa + nad <==> accoa + h + nadh Pyruvate MetabolismACALDt acetaldehyde reversible transport acald[e] <==> acald[c] Transport, ExtracellularACKr acetate kinase [c] : ac + atp <==> actp + adp Pyruvate MetabolismACONTa aconitase (half-reaction A, Citrate hydro-lyase) [c] : cit <==> acon-C + h2o Citric Acid CycleACONTb aconitase (half-reaction B, Isocitrate hydro-lyase) [c] : acon-C + h2o <==> icit Citric Acid CycleACt2r acetate reversible transport via proton symport ac[e] + h[e] <==> ac[c] + h[c] Transport, ExtracellularADK1 adenylate kinase [c] : amp + atp <==> (2) adp Oxidative PhosphorylationAKGDH 2-Oxogluterate dehydrogenase [c] : akg + coa + nad --> co2 + nadh + succoa Citric Acid CycleAKGt2r 2-oxoglutarate reversible transport via symport akg[e] + h[e] <==> akg[c] + h[c] Transport, ExtracellularALCD2x alcohol dehydrogenase (ethanol) [c] : etoh + nad <==> acald + h + nadh Pyruvate MetabolismATPM ATP maintenance requirement [c] : atp + h2o --> adp + h + pi Oxidative PhosphorylationATPS4r ATP synthase (four protons for one ATP) adp[c] + (4) h[e] + pi[c] <==> atp[c] + (3) h[c] + h2o[c] Oxidative PhosphorylationCO2t CO2 transporter via diffusion co2[e] <==> co2[c] Transport, ExtracellularCS citrate synthase [c] : accoa + h2o + oaa --> cit + coa + h Citric Acid Cycle

CYTBD cytochrome oxidase bd (ubiquinol-8: 2 protons) (2) h[c] + (0.5) o2[c] + q8h2[c] --> (2) h[e] + h2o[c] + q8[c] Oxidative PhosphorylationD_LACt2 D-lactate transport via proton symport h[e] + lac-D[e] <==> h[c] + lac-D[c] Transport, ExtracellularENO enolase [c] : 2pg <==> h2o + pep Glycolysis/GluconeogenesisETOHt2r ethanol reversible transport via proton symport etoh[e] + h[e] <==> etoh[c] + h[c] Transport, ExtracellularEX_ac(e) Acetate exchange [e] : ac <==> ExchangeEX_acald(e) Acetaldehyde exchange [e] : acald <==> ExchangeEX_akg(e) 2-Oxoglutarate exchange [e] : akg <==> Exchangeabbreviation officialName equation subSystemACALD acetaldehyde dehydrogenase (acetylating) [c] : acald + coa + nad <==> accoa + h + nadh Pyruvate MetabolismACALDt acetaldehyde reversible transport acald[e] <==> acald[c] Transport, ExtracellularACKr acetate kinase [c] : ac + atp <==> actp + adp Pyruvate MetabolismACONTa aconitase (half-reaction A, Citrate hydro-lyase) [c] : cit <==> acon-C + h2o Citric Acid CycleACONTb aconitase (half-reaction B, Isocitrate hydro-lyase) [c] : acon-C + h2o <==> icit Citric Acid Cycle

Page 15: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

MODIFYING COBRA TOOLBOX MODELS

• The cobra model can be modified to simulate different conditions by altering reaction flux rates. This includes, adding and/or removing reactions or changing the model objective function.

• Altering reaction bounds (adding and/or removing reactions)• model = changeRxnBounds(model, rxnNameList, value, boundType);

• rxnNameList is a cell array of reaction IDs corresponding to reaction IDs in model.rxns; value is a floating point number representing the bound of the flux rate through the reaction; boundType specifies which bounds to change for the reactions and can take values of ‘l’, ‘u’, or ‘b’ for lower, upper, or both, respectively.

• Add reaction• [model] = addReaction(model, rxnName, metaboliteList, stoichCoeffList, [revFlag], [lowerBound],

[upperBound], [objCoeff], [subsystem], [grRule], [geneNameList], [systNameList], [checkDuplicate]);

• Remove reaction• [model] = removeRxns(model, rxnRemoveList)

• Change the objective function (typically growth)• model = changeObjective(model, rxnNameList, [objectiveCoeff]);

Page 16: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

Solve for Fluxessolution = optimizeCbModel(model,'max');

Solving for Fluxes

Structure used to store solution

Page 17: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

Flux Vector

Objective Function Value

Shadow Prices

Reduced Costs

Solver

Structure of Optimization

Solution

Page 18: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

Printing the Optimized Flux

Solutions

Printing Flux Solutions printFluxVector(model, solution.x,

true)

Flux Passing through the Reaction (mmols gDW

-1h-1)

Reaction Name

Page 19: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

Print Flux ValuesprintFluxVector(model, solution.x, true)

ACONTa 6.00725ACONTb 6.00725AKGDH 5.06438ATPM 8.39ATPS4r 45.514Biomass_...0.873922CO2t -22.8098CS 6.00725CYTBD 43.599ENO 14.7161EX_co2(e)22.8098EX_glc(e) -10EX_h2o(e)29.1758EX_h(e) 17.5309EX_nh4(e)-4.76532EX_o2(e) -21.7995EX_pi(e) -3.2149

PGK -16.0235

PGL 4.95998

PGM -14.7161

PIt2r 3.2149

PPC 2.50431

PYK 1.75818

RPE 2.67848

RPI -2.2815

SUCDi 5.06438

SUCOAS -5.06438

TALA 1.49698

TKT1 1.49698

TKT2 1.1815

TPI 7.47738

FBA 7.47738FUM 5.06438G6PDH2r 4.95998GAPD 16.0235GLCpts 10GLNS 0.223462GLUDy -4.54186GND 4.95998H2Ot -29.1758ICDHyr 6.00725MDH 5.06438NADH16 38.5346NH4t 4.76532O2t 21.7995PDH 9.28253PFK 7.47738PGI 4.86086

GrowthRate

Inputs & Outputs

(Exchange Reactions)

Page 20: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

printFluxVector

ACALD -14.6749ACALDt 0ACKr -15.1732ACONTa 0.507693ACONTb 0.507693ACt2r -15.1732ADK1 0AKGDH 0AKGt2r 0ALCD2x -14.6749ATPM 8.39ATPS4r -11.1879Biomass... 0.470565CO2t 0.840759CS 0.507693CYTBD 0D_LACt2 0ENO 35.0451ETOHt2r -14.6749EX_ac(e) 15.1732EX_acald(e)-0EX_akg(e) -0EX_co2(e) -0.840759EX_etoh(e) 14.6749EX_for(e) 32.1194EX_fru(e) -0EX_fum(e) -0EX_glc(e) -18.5EX_gln_L(e) -0

ACALD -14.6749ACKr -15.1732ACONTa 0.507693ACONTb 0.507693ACt2r -15.1732ALCD2x -14.6749ATPM 8.39ATPS4r -11.1879Biomass... 0.470565CO2t 0.840759CS 0.507693ENO 35.0451ETOHt2r -14.6749EX_ac(e) 15.1732EX_co2(e) -0.840759EX_etoh(e) 14.6749EX_for(e) 32.1194EX_glc(e) -18.5EX_h2o(e) -12.0879EX_h(e) 56.7321EX_nh4(e) -2.5659EX_pi(e) -1.73107

printFluxVector(model, solution.x) printFluxVector(model, solution.x, true) printFluxVector(model, solution.x, true,true)

Biomass... 0.470565EX_ac(e) 15.1732EX_co2(e) -0.840759EX_etoh(e) 14.6749EX_for(e) 32.1194EX_glc(e) -18.5EX_h2o(e) -12.0879EX_h(e) 56.7321EX_nh4(e) -2.5659EX_pi(e) -1.73107

Only prints Exchange Reactions that are

nonzero

Only prints Reactions that are nonzero

http://opencobra.sourceforge.net/openCOBRA/opencobra_documentation/cobra_toolbox_2/index.html

Page 21: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

DRAWING FLUX VALUES ONTO A MAP

drawFlux(map, model, solution.x)

Page 22: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

MATLAB EDITOR

• The Matlab editor allows m-files to be created

• m-files can contain a list of Matlab commands to be executed sequentially.

Run m-file

Comments

Clear the Workspace

Supports multiple m-file windows

Page 23: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

Cobra Toolbox

• Cobra Toolbox Overview

• Cobra Toolbox Fundamentals

• Cobra Examples

• BIGG Database & Maps

• Pathway Pioneer

• Paint4Net

Page 24: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

Aerobic E.coli Growth on Glucose("What is flux balance analysis? - Supplementary tutorial“)

Set the maximum glucose uptake rate to 18.5 mmol gDW -1 hr-1 (millimoles per gram dry cell weight per hour, the default flux units

used in the COBRA Toolbox), enter:

model = changeRxnBounds(model,'EX_glc(e)',-18.5,'l');

This changes the lower bound ('l') of the glucose exchange reaction to -18.5, a biologically realistic uptake rate (note that the import

of a metabolite is listed as a negative flux). To allow unlimited oxygen uptake, enter:

model = changeRxnBounds(model,'EX_o2(e)',-1000,'l');

By setting the lower bound of the oxygen uptake reaction to such a large number, it is practically

unbounded. Set the biomass reaction is set as the objective function, enter:

model = changeObjective(model,'Biomass_Ecoli_core_N(w/GAM)_Nmet2');

To perform FBA with maximization of the biomass reaction as the objective, enter:

FBAsolution = optimizeCbModel(model,'max');

FBAsolution.f then gives the value of the objective function (Z) as 1.6531 (the model predicts a growth rate of 1.6531 hr -1). The flux

distribution vector FBAsolution.x shows that there is high flux in the glycolysis, pentose phosphate, TCA cycle, and oxidative

phosphorylation pathways, with no secreted organic by-products. See AerobicGlucoseBioMass.m

Page 25: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

AerobicGlucoseBioMass.m

clear; % Clear Workspace

model=readCbModel('ecoli_textbook'); % Read textbook model

model = changeRxnBounds(model,'EX_glc(e)',-18.5,'l'); % Set lower bound of glucose

model = changeRxnBounds(model,'EX_o2(e)',-1000,'l'); % Set lower bound of oxygen

model = changeObjective(model,'Biomass_Ecoli_core_N(w/GAM)_Nmet2'); % Set objective function (Biomass)

FBAsolution = optimizeCbModel(model,'max‘,0,0); % Find optimized flux values

map=readCbMap('ecoli_Textbook_ExportMap'); % Input ecoli textbook map template

options.zeroFluxWidth = 0.1;

options.rxnDirMultiplier = 10;

drawFlux(map, model, FBAsolution.x, options); % Draw Map

printFluxVector(model, FBAsolution.x, true); % Print flux values

Page 26: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

Biomass 1.65

EX_co2(e)

40.6527

EX_glc(e) -18.5

EX_h2o(e)

52.6943

EX_h(e) 33.1606

EX_nh4(e) -

9.01387

EX_o2(e) -38.7416

EX_pi(e) -6.08116

Exchange Reactions

EX_glc(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e) EX_co2(e)EX_h2o(e)

EX_h(e)

Aerobic Growth on Glucose

AerobicGlucoseBioMass.m

Page 27: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

Anaerobic E.coli Growth on Glucose("What is flux balance analysis? - Supplementary tutorial“)

Set the maximum glucose uptake rate to 18.5 mmol gDW-1 hr-1 (millimoles per gram dry cell weight per hour, the default flux

units used in the COBRA Toolbox), enter:

model = changeRxnBounds(model,'EX_glc(e)',-18.5,'l');

This changes the lower bound ('l') of the glucose exchange reaction to -18.5, a biologically realistic uptake rate (note that the

import of a metabolite is listed as a negative flux). To prevent oxygen uptake, enter:

model = changeRxnBounds(model,'EX_o2(e)',0,'l');

Anaerobic operation is achieved by setting the lower bound of the oxygen uptake reaction to zero.

Set the biomass reaction is set as the objective function, enter:

model = changeObjective(model,'Biomass_Ecoli_core_N(w/GAM)_Nmet2‘,0,0);

To perform FBA with maximization of the biomass reaction as the objective, enter:

FBAsolution = optimizeCbModel(model,'max');

FBAsolution.f then gives the value of the objective function (Z) as 0.4706 (the model predicts a growth rate of 0.4706 hr-1). The

flux distribution vector FBAsolution.x shows that oxidative phosphorylation is not used in these conditions, and that acetate,

formate, and ethanol are produced by fermentation pathways. See AnaerobicGlucoseBioMass.m

Page 28: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

Biomass 0.470565

EX_ac(e)15.1732

EX_co2(e) -

0.840759

EX_etoh(e)

14.6749

EX_for(e)

32.1194

EX_glc(e) -18.5

EX_h2o(e) -

12.0879

EX_h(e) 56.7321

EX_nh4(e) -

2.5659

EX_pi(e) -1.73107

Exchange Reactions

Anaerobic Growth on Glucose

AnaerobicGlucoseBioMass.m

Page 29: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

Aerobic Growth Anaerobic Growth

AEROBIC vs. ANAEROBIC GROWTHOrth, J. D., I. Thiele, et al. (2010). "What is flux balance analysis?" Nature biotechnology 28(3): 245-248.

a. b.

Page 30: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

Growth on Alternate Substrates("What is flux balance analysis? - Supplementary tutorial“)

The core E. coli model contains exchange reactions for 13 different organic compounds, each of which can be

used as the sole carbon source under aerobic conditions. For example, to simulate growth on succinate instead of

glucose

model = changeRxnBounds(model,'EX_glc(e)',0,'l'); % Required if glucose uptake is zero

model = changeRxnBounds(model,'EX_succ(e)',-20,'l');

FBAsolution = optimizeCbModel(model,'max');

The growth rate, given by FBAsolution.f, will be 0.8401 hr-1

Growth can also be simulated under anaerobic conditions with any substrate by using changeRxnBounds to set the lower bound of the oxygen exchange reaction (EX_o2(e)) to 0 mmol gDW-1 hr-1, so no oxygen can enter the system. When this constraint is applied and succinate is the only organic substrate, optimizeCbModel returns a growth rate of 0 hr-1, and does not calculate a flux vector v (depending on which linear programming solver is used with the COBRA Toolbox, a growth rate may not be calculated at all). In this case, FBA predicts that growth is not possible on succinate under anaerobic conditions. Because the maximum amount of ATP that can be produced from this amount of succinate is less than the minimum bound of 8.39 mmol gDW-1 hr-1 of the ATP maintenance reaction, ATPM, there is no feasible solution.organic by-products.

See AerobicSuccinateBioMass.m and AnaerobicSuccinateBioMass.m

Page 31: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

Growth on Succinate

AerobicSuccinateBioMass.m

Page 32: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

Substrate Maximum Growth Rate

Substrate Aerobic (hr-1) Anaerobic (hr-1)acetate 0.3893 0

acetaldehyde 0.6073 0

2-oxoglutarate 1.0982 0

ethanol 0.6996 0

D-fructose 1.7906 0.5163

fumarate 0.7865 0

D-glucose 1.7906 0.5163

L-glutamine 1.1636 0

L-glutamate 1.2425 0

D-lactate 0.7403 0

L-malate 0.7865 0

pyruvate 0.6221 0.0655

succinate 0.8401 0("What is flux balance analysis? - Supplementary

tutorial“)

The core E. coli model contains exchange reactions for 13 different organic compounds, each of which can be used as the sole carbon source under aerobic or anaerobic conditions.

Page 33: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

Cobra Toolbox

• Cobra Toolbox Overview

• Cobra Toolbox Fundamentals

• Cobra Examples

• BIGG Database & Maps

• Pathway Pioneer

• Paint4Net

Page 34: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

Schellenberger, J., J. O. Park, et al. (2010). "BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions." BMC Bioinformatics 11: 213.

( http://bigg.ucsd.edu/bigg/home.pl )

Full E.coli model “ecoli_iaf1260.xml”

Page 35: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

Cobra Toolbox

• Cobra Toolbox Overview

• Cobra Toolbox Fundamentals

• Cobra Examples

• BIGG Database & Maps

• Pathway Pioneer

• Paint4Net

Page 36: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

Pathway Pioneerhttp://pathwaypioneer.com/

• Can be used with multiple models

• Visually centered

• Intuitive to use

• Editing capability

• Embedded search engine

• Includes chemical information

• One-click operations

• Rapid explorations

• Save and share designs/results Requires Firefox or Chrome

Page 37: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

Cobra Toolbox

• Cobra Toolbox Overview

• Cobra Toolbox Fundamentals

• Cobra Examples

• BIGG Database & Maps

• Pathway Pioneer

• Paint4Net

Page 38: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

Visualization ToolsBiliverdinOptimize_Visualize.m

BIGG Database

Paint4Net Tool

Page 39: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

Paint4Nethttp://www.biosystems.lv/index.php?option=com_content&view=category&layout=blog&id=65&Itemid=86

• Developed by Andrejs Kostromins

• Paint4Net is the COBRA Toolbox extension for visualization of constraints-based reconstruction and analysis (COBRA) models and reconstructions in the MATLAB environment.

• Uses the Bioinformatics toolbox to visualize COBRA models and reconstructions as a hypergraph.

• Paint4Net contains two main commands:• draw_by_rxn

• For visualization of all or a part of a COBRA model by specified list of reactions.

• draw_by_met• For visualization of the connectivity of a particular

metabolite with other metabolites through reactions of a COBRA model

Page 40: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

draw_by_rxn • Rectangles represent reactions;

• Numbers in rectangles represent flux rate through reaction.

• Red rectangles represent reactions with only one input or output flux (signaling a potential dead reaction);

• Ellipses represent metabolites;

• Red ellipses represent dead end metabolites;

• Grey edges represent zero-rate fluxes;

• Green edges represent positive-rate (forward) fluxes;

• Blue edges represent negative-rate (backward) fluxes.

• The thickness of the edges is calculated as percentage assuming the maximum rate of flux in the model corresponds to 100%.

Page 41: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

Plotting Textbook ModelVisualizeFlux_Textbook.m

clear;

model=readCbModel('ecoli_textbook');

model = changeRxnBounds(model,'EX_glc(e)',-5,'l');

model = changeRxnBounds(model,'EX_o2(e)',-20,'l');

model = changeObjective(model,'Biomass_Ecoli_core_N(w/GAM)_Nmet2');

FBAsolution = optimizeCbModel(model,'max‘,0,0);

cofactors = {'cmp[c]','ctp[c]','acp[c]','ACP[c]','malACP[c]','amp[c]','atp[c]','adp[c]','pi[c]','ppi[c]','nad[c]','nadh[c]','nadph[c]','nadp[c]','h[c]','h2o[c]','co2[c]'};

% Plot includes cofactors

[involvedMets,deadEnds]= draw_by_rxn (model,model.rxns,true,'struc',{''},{''},FBAsolution.x);

% Plot removes cofactors

[involvedMets,deadEnds]= draw_by_rxn (model,model.rxns,true,'struc',{''},cofactors,FBAsolution.x);

Page 42: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

Textbook Model With Cofactors

Page 43: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

Textbook Model Without Cofactors

Page 44: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

Plotting Active Reactions in Core Model

VisualizeFlux_core.mclear;

model=readCbModel('ecoli_textbook');

model = changeRxnBounds(model,'EX_glc(e)',-5,'l');

model = changeRxnBounds(model,'EX_o2(e)',-20,'l');

model = changeObjective(model,'Biomass_Ecoli_core_N(w/GAM)_Nmet2');

FBAsolution = optimizeCbModel(model,'max‘,0,0);

rxnID = findRxnIDs(model,'Biomass_Ecoli_core_N(w/GAM)_Nmet2');

m = 0;

[n,nLab] = size(model.rxns);

for i=1:n

if(i~=rxnID)

if(FBAsolution.x(i) ~= 0)

m = m+1;

fluxReactions(m) = model.rxns(i);

end

end

end

cofactors = {'cmp[c]','ctp[c]','acp[c]','ACP[c]','malACP[c]','amp[c]','atp[c]','adp[c]','pi[c]', ppi[c]','nad[c]','nadh[c]','nadph[c]','nadp[c]','h[c]','h2o[c]','co2[c]'};

[involvedMets,deadEnds]= draw_by_rxn (model,fluxReactions,true,'struc',{''},cofactors,FBAsolution.x);

Page 45: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

Plot of the Active Reactions

in Core ModelVisualizeFlux_core.m

Page 46: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

Model Subsystems (Reactions)

Page 47: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

Plotting Model SubsystemsPaint4Net_core_subSystem.m

clear;

model=readCbModel('ecoli_textbook');

model = changeRxnBounds(model,'EX_glc(e)',-5,'l');

model = changeRxnBounds(model,'EX_o2(e)',-20,'l');

model = changeObjective(model,'Biomass_Ecoli_core_N(w/GAM)_Nmet2');

FBAsolution = optimizeCbModel(model,'max');

% Identify cofactors

cofactors = {'atp[c]','adp[c]','pi[c]','nad[c]','nadh[c]','nadph[c]','nadp[c]','h[c]','h2o[c]'};

%Extract & plot single subsystem reactions (Citric Acid Cycle)

fluxReactions = model.rxns(ismember(model.subSystems,'Citric Acid Cycle'));

[involvedMets,deadEnds]= draw_by_rxn (model,fluxReactions,true,'struc',{''},{''},FBAsolution.x);

% Extract multiple subsystem reactions

includedSubSystems = {'Citric Acid Cycle','Pyruvate Metabolism','Oxidative

Phosphorylation','Glycolysis/Gluconeogenesis','Pentose Phosphate Pathway','Glutamate Metabolism'};

fluxReactions = model.rxns(ismember(model.subSystems,includedSubSystems));

% Plot multiple subsystem

[involvedMets,deadEnds]= draw_by_rxn (model,fluxReactions,true,'struc',{''},cofactors,FBAsolution.x);

Page 48: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

Citric Acid Cycle Multiple Subsystems

Paint4Net Plots

Page 49: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

draw_by_met

• Rectangles represent reactions;

• Numbers in rectangles represent flux rate through reaction.

• Red rectangles represent reactions with only one input or output flux (signaling a potential dead reaction);

• Ellipses represent metabolites;

• Red ellipses represent dead end metabolites;

• Grey edges represent zero-rate fluxes;

• Green edges represent positive-rate (forward) fluxes;

• Blue edges represent negative-rate (backward) fluxes.

• The thickness of the edges is calculated as percentage assuming the maximum rate of flux in the model corresponds to 100%.

Page 50: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

Plotting ‘etoh[c]’ ConnectivityVisualizeMets_Textbook.m

clear;

model=readCbModel('ecoli_textbook');

model = changeRxnBounds(model,'EX_glc(e)',-5,'l');

model = changeRxnBounds(model,'EX_o2(e)',-20,'l');

model = changeObjective(model,'Biomass_Ecoli_core_N(w/GAM)_Nmet2');

FBAsolution = optimizeCbModel(model,'max');

cofactors =

{'cmp[c]','ctp[c]','acp[c]','ACP[c]','malACP[c]','amp[c]','atp[c]','adp[c]','pi[c]','ppi[c]','nad[c]','nadh[c]

','nadph[c]','nadp[c]','h[c]','h2o[c]','co2[c]'};

% Plot connectivity to 'etoh[c]', include cofactors. Radius = 1

[invovledRxns,involvedMets,deadEnds]= draw_by_met (model,{'etoh[c]'},true,1,'struc',{''},FBAsolution.x);

% Plot connectivity to 'etoh[c]', remove cofactors. Radius = 1

[invovledRxns,involvedMets,deadEnds]= draw_by_met (model,{'etoh[c]'},true,1,'struc',cofactors,FBAsolution.x);

Page 51: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

‘etoh[c]’ Connectivity (Radius = 1)VisualizeMets_Textbook.m

With Cofactors Without Cofactors

Page 52: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

‘etoh[c]’ Connectivity (Radius = 2)VisualizeMets_Textbook.m

Without Cofactors

Page 53: © 2015 H. Scott Hinton Lesson: Cobra Toolbox BIE 5500/6500Utah State University Constraint-based Metabolic Reconstructions & Analysis Cobra Toolbox.

© 2015 H. Scott Hinton

Lesson: Cobra ToolboxBIE 5500/6500Utah State University

Constraint-based Metabolic Reconstructions & Analysis

Cobra Toolbox

• Cobra Toolbox Overview

• Cobra Toolbox Fundamentals

• Cobra Examples

• BIGG Database & Maps

• Pathway Pioneer

• Paint4Net