X-Ray Scattering Studies of Thin Polymer Films...

Post on 20-Jun-2018

216 views 0 download

Transcript of X-Ray Scattering Studies of Thin Polymer Films...

X-Ray Scattering Studies of Thin Polymer Films

Introduction to Neutron and X-Ray Scattering

Sunil K. Sinha

UCSD/LANL

Acknowledgements: Prof. R.Pynn( Indiana U.)Prof. M.Tolan (U. Dortmund)

Wilhelm Conrad Röntgen 1845-1923

1895: Discovery of X-Rays

1901 W. C. Röntgen in Physics for the discovery of x-rays. 1914 M. von Laue in Physics for x-ray diffraction from crystals. 1915 W. H. Bragg and W. L. Bragg in Physics for crystal structure determination.1917 C. G. Barkla in Physics for characteristic radiation of elements. 1924 K. M. G. Siegbahn in Physics for x-ray spectroscopy. 1927 A. H. Compton in Physics for scattering of x-rays by electrons. 1936 P. Debye in Chemistry for diffraction of x-rays and electrons in gases. 1962 M. Perutz and J. Kendrew in Chemistry for the structure of hemoglobin. 1962 J. Watson, M. Wilkins, and F. Crick in Medicine for the structure of DNA. 1979 A. McLeod Cormack and G. Newbold Hounsfield in Medicine for computed axial

tomography. 1981 K. M. Siegbahn in Physics for high resolution electron spectroscopy. 1985 H. Hauptman and J. Karle in Chemistry for direct methods to determine

x-ray structures. 1988 J. Deisenhofer, R. Huber, and H. Michel in Chemistry for the structures

of proteins that are crucial to photosynthesis.

Nobel Nobel Prizes for Prizes for ResearchResearchwith with XX--RaysRays

Brightness & Fluxes for Neutron & X-Ray Sources

10Undulator

(APS)

0.1Bending Magnet

0.02Rotating Anode

2Neutrons

FluxDivergencedE/EBrightness

1510 1110

2010 14105×

1010×

)( 121 −−− sterms (%) )( 2mrad )( 21 −− ms

105.0 ×

1.001.0 ×

51.0 × 20105×

24103310

2710

WhySynchrotron-

radiation ?

Intensity Intensity !!!!!!

Synchrotron-and NeutronScattering

Places

The photon also has wave and particle properties

E=hν =hc/l= hckCharge = 0 Magnetic Moment = 0Spin = 1

E (keV) λ (Å)0.8 15.08.0 1.540.0 0.3100.0 0.125

Intrinsic Cross Section: Neutrons

const.

dd 2

0

==

Ω

Intrinsic Cross Section:X-Rays

m1082.2

4

:radius)electron (classicalElectron theof

Length ScatteringThomson

cos)(

),(

cos)()/(

)/(

4

),(

15

2

02

0

i

0

in

rad

/i

in

2

0

rad

×==

−=−=−

−=mc

e

r

Re

r

E

tRE

eE

me

cRtx

cRtxRc

e

tRE

kR

cR

πε

ψωα

ψωα

πε

ω&&

&&

)(i0in

trkeEE ω−⋅=rrrr

radEr

220

2

0

2

2

2

22

0

2

in

rad

)()cos1(2

1

dd

)(

)()(

),(

ωαψσ

ψωα

r

Rf

P

Rr

E

tRE

+=

Ω

Ω

==

Intrinsic CrossSection: X-Rays

0d

d

Ωσ

rωω

1 2 3 40

ηωωω

ωωα

i

)( 22r

2−−

=

ResonanceScattering

rωω ≈ Thomson Scattering

Pr 20

0r d

d =

Ω

⇒>> σωω4ω∝

RayleighScattering

k’

k

Adding up phases at the detector of thewavelets scattered from all the scatteringcenters in the sample:

q = kf - k i

Wave vector transferis defined as

X-rays

dσ = r02[1 + Cos2(2θ)] S(q)dΩ 2

S(q) = ⟨Σij exp[-iq.(r i-r j)]⟩

r i == electron positions.

Now, Σi exp[-iq.Ri] = ρN(q) Fourier Transform of nuclear density [ sometimes also referred to as F(q) ]

Proof:

ρN(r ) = Σi δ( r - Ri)

ρN(q) = ∫ ρN(r ) exp[-iq.r ] dr = ∫ Σi δ( r - Ri) exp[-iq.r ] dr

= Σi exp[-iq.Ri]

Similarly,

Σi exp[-iq.r i] = ρel(q) Fourier Transform of electron density

So, for neutrons, S(q) = ⟨ ρN(q) ρN*(q) ⟩

And, for x-rays, S(q) = ⟨ ρel(q) ρel*(q) ⟩

qx

qy

qz

X-Ray Scattering Scheme

Scattering ~ Power Spectral DensityI(qx,qy) ~ S(qx,qy) = FT ( C(X,Y) )

ki

kfq qz

qx

Scattering Geometry & Notation

Wave-Vector: q = q = kkff –– kkii

Reflectivity:qx= qy = 0qz= (4π/λπ/λπ/λπ/λ)sinααααi

Reflection of Visible Light

Perfect & Imperfect „Mirrors“

Basic Equation: X-Rays

Helmholtz-Equation & Boundary Conditions

magneticpart+

magneticpart+

DispersionAbsorptionMinus!!

Refractive Index: X-Rays & Neutrons

Electron DensityProfile !

Refractive Index: X-Rays

E = 8 keV λλλλ = 1.54 Å

n(x,y,z) = n(z) + δδδδn(x,y,z)

Lateral Distortions

DiffuseScattering

Refractive Index Profile

Reflectivity

Refractive Indexof the

samplen(x,y,z)

Formal Solution

n1

n2

n1<n2Visible Light Reflectivity: n2 > 1

n1

n2

n1>n2X-Ray Reflectivity:

n2 < 1

X-Ray Reflectivity: Principle

cos ααααi ==== (1– δδδδ) cos ααααt ααααt=0 Critical Angle:ααααc ≈≈≈≈ √√√√2δδδδ ~ 0.3°

GRAZING ANGLES !!!

Total External Reflection

ReflectedAmplitude

TransmittedAmplitude

Wave-Vectors

Single Interface: Vacuum/Matter

Fresnel-Formulae

Total External Reflection

Regime

Fresnel Reflectivity: RF(ααααi)

Reformulation for Interfaces

The „Master Formula“

Electron Density ProfileFresnel-Reflectivity

of the Substrate

σσσσj ==== 10 Åλλλλ ==== 1.54 Å

Roughness Damps Reflectivity

Braslau et al.PRL 54, 114 (1985)

Fresnel Reflectivity

Measurement

X-Ray Reflectivity:Water Surface

Difference Experiment-

Theory:Roughness Roughness !!!!

Example: PS Film on Si/SiO2

X-Ray Reflectivity (NSLS)λλλλ ==== 1.19Å d ==== 109Å

Data & Fit

Density Profile

Slicing of Density Profile

εεεε ~ 1Å

Slicing&

Parratt-Iteration

Reflectivityfrom

ArbitraryProfiles !

• Drawback:Numerical Effort !

Calculation of Reflectivity

Grazing-Incidence-Diffraction

X-Ray Reflectometers

Laboratory

Setup

HASYLAB: CEMO

Synchrotron

Setup

SynchrotronSetup (APS)

Reflectivity from Liquids I

Photon Correlation Spectroscopy

sample detectorcoherentbeam

X-ray speckle pattern from a static silica aerogel