Updating CRE: Applicationsweb.abo.fi/fak/tkf/tek/Files/cacre2014/MicroKin-PC-5.pdf · 2014. 5....

Post on 20-Sep-2020

1 views 0 download

Transcript of Updating CRE: Applicationsweb.abo.fi/fak/tkf/tek/Files/cacre2014/MicroKin-PC-5.pdf · 2014. 5....

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

Updating CRE: Applications

Prof. Paolo Canu

University of Padova - Italy

Computer-Aided Chemical Reaction Engineering Course

Graduate School in Chemical Engineering (GSCE) Åbo Akademi - POKE Researchers network

May 2014

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

Contents 3. Kinetics

3.1 Power law 3.2 LHHW

3.3 Detailed 4. Kinetic studies

5. Applications

A.1 Tuning of Sh(z) in a monolith (2.3 + 3.1) A.2 CH4 combustion on Pt in a monolith (2.3 + 3.1) A.3 CO combustion in an annular reactor (2.2 + 3.3) A.4 CH4 partial oxidation on Rh foam (2.2 + 3.3) A.5 CH4 partial oxidation on Pt monolith (2.3 + 3.3) A.6 Herogeneous reaction simulation by CFD (2.3 + 3.1) A.7 H2 oxidation on pure Pt in stagnation flow (2.3 + 3.3)

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

A1) Tuning of Sh(z) in a monolith CFD+simple kinetics

Correlations for Mass Transfer

in Reacting and Developing Laminar Flow with Arbitrary Kinetics

Fundamental calculation (CFD)

of developing mass- and velocity- boundary layers

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

A1) Tuning of Sh(z) in a monolith Reaction and diffusion in series Wall mass flux is affected by the rate of consumption

0 Rdr

NAA B

r

A

AA

dCN Ddr

= − ⋅

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

A1) Tuning of Sh(z) in a monolith Simple solutions (effective K):

• Infinitely fast reaction

• First order reaction

• Second order reaction

00,, 0

A A

A

r C Cr R C= =

= =0 0A A eff A

DN C K CR

′= − ⋅ = − ⋅

00,

,

A A

AA

r C CNr R Ck

= =

= =0 0

11 1A A eff AN C K C

′′= − ⋅ = − ⋅+

00,

,

A A

AA

r C C

Nr R Ck

= =

= =

2

0 042A A eff AN C K Ckk

β β β

′′′= ± + ⋅ = − ⋅

β

?

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

A1) Tuning of Sh(z) in a monolith ‘effective/apparent’ K’s

It is a concept that holds only for 1st order kinetics

Arbitrary kinetics requires accounting for both MT and reaction at the same time

It remains a series process (MT → reaction)

but MT is influenced by surface reaction

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

A1) Tuning of Sh(z) in a monolith local Sh from CFD

From T(r) , Y(r ) profiles, a local, wall Nu and Sh numbers can be calculated

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

A1) Tuning of Sh(z) in a monolith hm correlations through Sh : HT analogies

• Bräuer and Fetting (’66) (linear correlation)

• i.e. with a first order kinetic Sh lies between constant (=null) wall concentration and constant wall flux (=reaction), with a quadratic function:

(0) ( )(0)(

2)

'2 '

DaIISh ShS ShDaII Sh

hSh

S h −⋅

∞⋅

−+

∞=

1 1 1

effK kβ= +

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

A1) Tuning of Sh(z) in a monolith CFD – First Order Kinetic

• Perfect agreement with asymptotic theoretical value (as expected)

• Experimental correlations for entrance region (very short, semilogx ) not very precise

10-4

10-3

10-2

4

6

8

10

12

14

z (m)

Sh

Variation of Sh number through the reactor channel

Sh FemLabShCShW

Sh(Da)

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

A1) Tuning of Sh(z) in a monolith CFD – Second Order Kinetic

Actual Sh number • doesn’t match

Bräuer’s correlation! • is no more into the

ShC-ShW region

10-4

10-3

10-2

4

6

8

10

12

14

z (m)

Sh

Variation of Sh number through the reactor channel

Sh FemLabShCShW

Sh(Da)

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

A1) Tuning of Sh(z) in a monolith Conclusions

CFD gives precise correlations for local Sh and Nu

→ use in pseudo 2D models

it make sense to use more detailed kinetics, whereas CFD cannot manage

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

A2) CH4 combustion on Pt in a monolith CFD + power law kinetics 1. Investigating the role of transport processes 2. Use of CFD for kinetic studies (as a subroutine)

• Experimental data from literature (10 cm monolith sectioned in 4 segments)

• CFD: CFX4.2 • Optimization: Levenberg-Marquardt open source fortran routine

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

Catalytic wall

inlet outlet

Simmetry axis

A2) CH4 combustion on Pt in a monolith 2D Model - density

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

Catalytic wall

inlet outlet

Simmetry axis

A2) CH4 combustion on Pt in a monolith 2D Model - Axial velocity

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

A2) CH4 combustion on Pt in a monolith 2D Model - CH4 concentration

Catalytic wall

inlet outlet

Simmetry axis

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

Catalytic wall

inlet outlet

Simmetry axis

A2) CH4 combustion on Pt in a monolith 2D Model - Temperature

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

2D Model - literature kinetics

solid = literature kinetics, different A’s dotted = D CH4 / 10

Literature kinetics predicts a sudden ignition MT overestimated

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

2D Model – kinetics tuned

Higher Tin (leading to clear ignition) is difficult to predict – poor mechanism

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

2D Model – gas/surface reactions

Homogeneous reactions are negligible

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

3D Model

Large T gradients along the walls

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

3D Model – segmentation

Perfect mixing between elements is assumed

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

3D Model – segmentation

Larger transients in the corners (the most active) Approaches the continuous channel model

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

3D Model – local CH4 concentration

Corners are active The center supplies CH4 to the walls

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

3D Model – sensitivity analysis

Sensitivity (final XCH4): D >> A

Evidence of mass transfer control

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

3D Model – kinetic study

Inhibition by H2O provides a chemical explanation of the data

(unlikely, if MT prevails)

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

A3) CO combustion in an annular reactor PFR + detailed gas & surface chemistry 1. Goal: validation of literature mechanism 2. Own experimental data

(KTH, syngas from biomass gassification)

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

A3) CO combustion in an annular reactor CO chemistry 1. The lack of hydrogen simplifies the kinetics 2. Surface mechanism extracted from Deutschmann’s CH4 3. gas phase mechanism from GRI 4. CO inlet composition: 0.5, 1 and 2% in air

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

A3) CO combustion in an annular reactor The annular reactor • Annular reactor is supposed isothermal (Beretta & al.) • Actually < 10° longitudinal temperature increase on catalyst • The tubular model (CHEMKIN) used for the annular geometry

preserving the same residence time and catalytic area

Quartz, 0.006 m ID

1% Pt- γAl2O3 washcoated

Thermocouple

Mullite, 0.004 m OD

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

A3) CO combustion in an annular reactor Isothermal simulations • Disagreement with the experiments • Opposite effect of increasing % COin

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

200 250 300 350 400 450 500 550

Catalyst temperature [°C]

Con

vers

ion

of C

O

% Oin

% COin

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

A3) CO combustion in an annular reactor Sensitivity analysis Reducing rate of adsorption of O2 (!)

Better agreement and correct trend for %Coin!

% COin

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

200 250 300 350 400 450 500

Catalyst temperature [°C]

Con

vers

ion

of C

O

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

A3) CO combustion in an annular reactor Isothermal assumption check

Tcat = in the inner pipe, at xcat

• adiabatic temperature increase: 90 K/1%CO • adiabatic reactor Match the measured ΔT • reactor is NOT isothermal!

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

A3) CO combustion in an annular reactor Conclusions

• Detailed mechanisms are required for a predictive intrinsic kinetics

• Mass transfer must be included in the reactor model

• Eventually shown that a too simplified (PFR) model can lead to wrong assumptions on kinetic parameters: be aware of this in deducing mechanisms

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

A4) Kinetics of TOM & POM over Pt in a structured catalyst

• The same in Padua with Pt and KTH with Pt, Rh and Ru • Structured catalyst

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

Typical experimental setup

OVEN

cat PT

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

Experimental Design

• Temperature ramps • Varying C/O GHSV Heating Rate

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

Equilibrium Analysis – C/O=2

• CH4 exp. concentration vs. equilibrium (■)

0

0,2

0,4

0,6

0,8

1

1,2

0 200 400 600 800 1000

temperatura (°C)

conc

etra

zion

e %

concentrazioneCH4 equilibriotermodinamico

GSHV (H-1)24200,concentrazioneCH4GSHV (h-1)49100,concentrazioneCH4GSHV (h-1)73800,concentrazioneCH4

GHSV

24200 h-1

GHSV

49100 h-1

GHSV

73800 h-1

EQUIL

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

0 200 400 600 800 1000

temperatura ( °C )

conc

entra

zion

e %

concentrazioneH2 equilibriotermodinamico

GSHV (H-1)24200,concentrazioneH2

GSHV (h-1)49100,concentrazioneH2

GSHV (h-1)73800,concentrazioneH2

Equilibrium Analysis – C/O=2

• H2 exp. concentration vs. equilibrium (■)

GHSV

24200 h-1

GHSV

49100 h-1

GHSV

73800 h-1

EQUIL

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

0

0,2

0,4

0,6

0,8

1

1,2

0 200 400 600 800 1000temperatura ( °C )

conc

entra

zion

e %

concentrazioneH2O equilibriotermodinamico

GSHV (H-1)24200,concentrazioneH2O

GSHV (h-1)49100,concentrazioneH2O

GSHV (h-1)73800,concentrazioneH2O

Equilibrium Analysis – C/O=2

• H2O exp. concentration vs. equilibrium (■)

GHSV

24200 h-1

GHSV

49100 h-1

GHSV

73800 h-1

EQUIL

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 200 400 600 800 1000

temperatura (°C)

conc

entra

zion

e %

concentrazioneCO2 equilibriotermodinamico

GSHV (H-1)24200,concentrazioneCO2

GSHV (h-1)49100,concentrazioneCO2

GSHV (h-1)73800,concentrazioneCO2

Equilibrium Analysis – C/O=2

• CO2 exp. concentration vs. equilibrium (■)

GHSV

24200 h-1

GHSV

49100 h-1

GHSV

73800 h-1

EQUIL

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0 200 400 600 800 1000

temperatura ( °C )

conc

entra

zion

e %

concentrazioneCO equilibriotermodinamico

GSHV (H-1)24200,concentrazioneCO

GSHV (h-1)49100,concentrazioneCO

GSHV (h-1)73800,concentrazioneCO

Equilibrium Analysis – C/O=2

• CO exp. concentration vs. equilibrium (■)

GHSV

24200 h-1

GHSV

49100 h-1

GHSV

73800 h-1

EQUIL

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

0

0,2

0,4

0,6

0,8

1

1,2

0 200 400 600 800 1000temperatura (°C)

conc

entra

zione

%

concentrazioneCH4 equilibriotermodinamico

GSHV (H-1)25100,concentrazioneCH4

GSHV (h-1)49100,concentrazioneCH4

GSHV (h-1)73800,concentrazioneCH4

Equilibrium Analysis – C/O=1

• CH4 exp. concentration vs. equilibrium (■)

GHSV

24200 h-1

GHSV

49100 h-1

GHSV

73800 h-1

EQUIL

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

0

0,5

1

1,5

2

2,5

0 200 400 600 800temperatura (°C)

conc

entra

zion

e %

concentrazione H2 equilibriotermodinamico

GSHV (H-1)25100,concentrazioneH2

GSHV (h-1)49100,concentrazioneH2

GSHV (h-1)73800,concentrazioneH2

Equilibrium Analysis – C/O=1

• H2 exp. concentration vs. equilibrium (■)

GHSV

24200 h-1

GHSV

49100 h-1

GHSV

73800 h-1

EQUIL

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

0

0,1

0,2

0,3

0,4

0,5

0,6

0 200 400 600 800 1000temperatura (°C)

conc

entra

zion

e %

concentrazione H2O equilibriotermodinamico

GSHV (H-1)25100,concentrazioneH2OGSHV (h-1)49100,concentrazioneH2OGSHV (h-1)73800,concentrazioneH2O

Equilibrium Analysis – C/O=1

• H2O exp. concentration vs. equilibrium (■)

GHSV

24200 h-1

GHSV

49100 h-1

GHSV

73800 h-1

EQUIL

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0 200 400 600 800 1000temperatura (°C)

conc

entra

zion

e %

concentrazione CO2equilibriotermodinamico

GSHV (H-1)25100,concetrazioneCO2

GSHV (h-1)49100,concetrazioneCO2

GSHV (h-1)73800,concentrazione CO2

Equilibrium Analysis – C/O=1

• CO2 exp. concentration vs. equilibrium (■)

GHSV

24200 h-1

GHSV

49100 h-1

GHSV

73800 h-1

EQUIL

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

0

0,2

0,4

0,6

0,8

1

1,2

0 200 400 600 800 1000temperatura (°C)

conc

entra

zion

e %

concentrazioneCO equilibriotermodinamico

GSHV (H-1)25100,concentrazioneCO

GSHV (h-1)49100,concentrazioneCO

GSHV (h-1)73800,concentrazioneCO

Equilibrium Analysis – C/O=1

• CO exp. concentration vs. equilibrium (■)

GHSV

24200 h-1

GHSV

49100 h-1

GHSV

73800 h-1

EQUIL

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

Analysis of the global reaction

ii

i i

j j jj

dC RCd

dC CR

d

υυτυ

υτ

= ⋅ ∆ = ∆= ⋅

Global reaction:

CH4 + aO2 = bH2 + cH2O + dCO + eCO2

A way to look into the data: identify the global reaction occurring into the reactor

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

0 200 400 600 800-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

T [°C]

gam

ma:

[-1

1]

Global reaction,C/O=2(- equil, . exp)

vH2vH2OvCOvCO2vCH4vO2

Global reaction stoichiometry - C/O=2

At higher T exp data approach equilibrium Effective reaction: CH4+O2 = 1.25H2+0.75H2O+0.75CO+0.25CO2

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

Global reaction stoichiometry - C/O=1

Exp stoich. Quite far from equilibrium: Equilibrium reaction: CH4+0.5O2=2H2+CO Effective reaction: CH4+0.77O2= 1.65H2+0.47H2O+1.03CO+0.06CO2

0 200 400 600 800-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

T [°C]

gam

ma:

[-1

1]

Global reaction,C/O=1(- equil, . exp)

vH2vH2OvCOvCO2vCH4vO2 CO – CO2 reach equil.

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

Mechanism recognizing

0 100 200 300 400 500 600 700 800 900-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

T [°C]

gam

ma:

[-1

1]

Contribution of different reactions,C/O=2(- equil, : exp)

CH4+2O2=CO2+2H2OCH4+H2O=CO+3H2CO+H2O=CO2+H2

0 100 200 300 400 500 600 700 800 900-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

T [°C]

gam

ma:

[-1

1]

Contribution of different reactions,C/O=1(- equil, : exp)

CH4+2O2=CO2+2H2OCH4+H2O=CO+3H2CO+H2O=CO2+H2

• Sensitive at the hypotheses on the mechanism • WGS equil. is late in comparison with other reactions

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

scan progressively shorted residence time, to spot the instantaneous stoichiometry

Mechanism recognizing

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

Data simulation Pseudo 2D model with simplified kinetics Species mass balance

Energy balance

( )v 1...7d a idz

= − ⋅ − =Bc B S

c K c c

( ) 1...7Cata iρ⋅ − = − ⋅ =c B SK c c ν R

( )v cp Bt B S

dT a K T Tdz

ρ⋅ ⋅ = − ⋅ −

( ) ( )t B S Cata K T T ρ⋅ − = − ⋅RR ΔH

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

Pseudo 2D simplified kinetics • Groppi kinetic mechanism

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

Transport coefficients Monolith

i ic t

cell cell

Sh D NuK Kd d

λ⋅ ⋅= =

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

Comparison between 1D MODELs

1D MODELS: PFR vs. Sh,Nu

0

20

40

60

80

100

300 350 400 450 500 550 600 650 700 750 800

T(°C)

XC

H4

%

GROPPI + Sh,NuEXPGROPPI + PFR

• Bad agreement of the kinetics in the ignition region • PFR over predicts the conversion at high T • Sh, Nu model matches the data at high T

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

Temperature profiles • Peak in the surface temperature, Tin=750°C • Maximum in gas temperature is shifted downstream • First exothermic, then endothermic surf. reactions

Temperature profiles in the reactor

1023

1043

1063

1083

1103

1123

1143

1163

1183

0 0.002 0.004 0.006 0.008 0.01

z (m)

T(K

) T gas

T sup

Exp, out

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

• Adiabatic reactor

• Channel □ → ○ keeping Scat and τ • Every channel behaves similarly to the others • Calculations made with CHEMKIN PLUG • Deutschmann2001 mechanism

Data simulation PFR model with detailed kinetics

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

Lower flow rate - conversion

meccanismo DEUTSCHMANN-Pt

0,0

0,2

0,4

0,6

0,8

1,0

0,8 1 1,2 1,4 1,6

T/Tinn

XC

H4

Calcolati con PLUG Sperimentali Sperimentali2

• Channel non-adiab. → rescaled T/Tign • At higher T the regime is mostly diffusive

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

Higher flow rate - conversion

meccanismo DEUTSCHMANN-Pt

0

0,2

0,4

0,6

0,8

1

0,8 1 1,2 1,4 1,6T/Tinn

XC

H4

Calcolati con PLUG Sperimentali Sperimentali2 Sperimentali3

• Transport phenomena are increased, determining a better agreement even at higher T

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

Conclusion

• Deutschmann2001 mechanism fits quite well our data, suggesting two chemical regimes

meccanismo DEUTSCHMANN-Pt

0

0,2

0,4

0,6

0,8

1

0,8 1 1,2 1,4 1,6T/Tinn

XC

H4

Calcolati con PLUG Sperimentali Sperimentali2 Sperimentali3

Total Oxidation

Partial Oxidation - Reforming

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

Conclusion

• Pseudo 2D models: for kinetics other than first order, Sh number should be calculated numerically

• 1D model: Extend Chemkin PLUG, to account for both detailed kinetics and transport phenomena (pseudo-2D)

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

A4) CH4 partial oxidation on Rh foam pseudo2D + detailed surface kinetics

• Spatially resolved (x) T and x data

(Horn & Schmidt, MN)

• Validation of literature mechanism (CH4 on Rh)

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

A4) CH4 partial oxidation on Rh foam Chemistry

Global reactions expected:

Total Oxidation: CH4 + 2O2 = 2H2O + CO2 DH= –803 kJ·mol-1 Partial Oxidation to H2O and syngas: CH4 + O2 = H2 + CO + H2O DH = –278 kJ·mol-1 Partial Oxidation to Syngas: CH4 + 1/2O2 = 2H2 + CO DH = –36 kJ·mol-1

After O2 consumption:

Steam Reforming (SR): CH4 + H2O = 3H2 + CO DH = +206 kJ·mol-1 Water Gas Shift (WGS): H2O + CO = H2 + CO2 DH = –41 kJ·mol-1 Dry Reforming (DR): CH4 + CO2 = 2H2+ 2CO DH = +247 kJ·mol-1

P. Canu – CFD + µΚΙΝ Liège, Sept. 2011

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

A4) CH4 partial oxidation on Rh foam Chemistry CPO Mech

R. Schwiedernoch, S. Tischer, C. Correa, O. Deutschmann, Chem. Eng. Sci. 58 (2003) 633.

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

Autothermal Reactor – Rh/Al2O3 Foam Catalyst

FRONT HEAT

SHIELD

BACK HEAT

SHIELD CATALYST

INSULATION

CH4/O2=0.5

Tin = room T

A4) CH4 partial oxidation on Rh foam Catalyst arrangement

65

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

A4) CH4 partial oxidation on Rh foam Reactor setup Reactor assembly, axial T, C measurements and computational domain

66

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

A4) CH4 partial oxidation on Rh foam Measurements T, C spatially resolved

67

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

A4) CH4 partial oxidation on Rh foam Eqs.

68

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

A4) CH4 partial oxidation on Rh foam Bulk simulations Axially resolved results Vs. measurements

69

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

A4) CH4 partial oxidation on Rh foam Simulations - Pure PFR model Axially resolved results Vs. measurements

Exit compositions very close to the experimental → end-of-the-tube data can be misleading

(poorly informative) 70

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

A4) CH4 partial oxidation on Rh foam Simulations - surface

Axially resolved results at the surface

71

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

A4) CH4 partial oxidation on Rh foam Simulations - Coverages Axially resolved results Coverages

72

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

A4) CH4 partial oxidation on Rh foam Analysis of mass-transport limitations

Difference between bulk and superficial mole fractions (∆X), transport coefficient (KC) and production rate ( ˙s) for each species, all scaled with respect to the values of CH4

Marked limitations for both

• species of low diffusivity • species with high net production rates. caution in using the Chilton–Colburn analogy for fast reacting species

73

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

A5) Herogeneous reaction simulation by CFD Hands-on illustration of CFD calculation through Multiphysics:

1. Arbitrary geometry

2. Generic chemistry

3. velocity distribution (simple and variable geometry)

4. homogeneous reaction

5. (simplified) surface reaction

Applications feasible with ordinary hardware and limited time

75

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

A6) CH4 partial oxidation on Pt monolith CFP+µkin

Direct illustration of coupling mKIN to CFD through Multiphysics:

1. Cantera provides , given C at the surface

2. MP→ Matlab → Cantera

Applications quite manageable

76

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

A6) CH4 partial oxidation on Pt monolith CFP+µkin CH4 combustion on Pt Honeycomb with inlet

CH4 (1%) O2 (1%)

T=500°C

Pt

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

A6) CH4 partial oxidation on Pt monolith CFP+µkin CFD (Comsol MP) uses:

• Navier-Stokes eq. for Momentum • Stefan-Maxwell eq. for Species • Convection and Conduction for T gas • Conduction for T solid • Idel Gas Law for density

Detailed surface mechanism* (as BCs, through Cantera, via Matlab interface)

30 steps including: 7 molecular species 11 adsorbed species adsorption/desorption/ surface reaction

(see rsurf.m)

* R. Quiceno, J. Perez-Ramyrez, J. Warnatz, O. Deutschmann. Appl. Catal. A: General (2006)

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

Methane catalytic partial oxidation Detailed chemistry

R. Quiceno, J. Perez-Ramyrez, J. Warnatz, O. Deutschmann , Appl. Catal. A: General (2006)

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

cata

lyst

com

puta

tion

al d

omai

n

z= –10 mm

z=10 mm

z=0

TG CH4 , O2 H2O , CO2 H2 , CO

max

max

max TS

A6) CH4 partial oxidation on Pt monolith CFP+µkin

80

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

Catalyst (1cm)

computational domain (3 cm)

max

2D model Carrier Ar, vIN = 0.25 m/s TIN = 500°C

Gas T

Solid T

Very localized heating 81

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

-10 -5 0 5 100

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

z [mm]

mol

e fra

ctio

n

CO

H2

O2

CH4

CO2

H2O

Upstream flow

Experimental

CATALYST

Impressive axial diffusion (He =carrier) Agreement with experimental exit composition

At TIN=500°C, syngas negligible

A6) CH4 partial oxidation on Pt monolith CFP+µkin

82

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

-0.01 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008 0.01770

780

790

800

810

820

830

z [m]

mea

n ga

s te

mpe

ratu

re [K

]

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

827.2

827.4

827.6

827.8

828

828.2

828.4

828.6

828.8

z [m]

Tem

pera

ture

[K]

Surface T

mean gas T

83

A6) CH4 partial oxidation on Pt monolith CFP+µkin

Upstream heat diffusion (He)

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

A6) CH4 partial oxidation on Pt monolith CFP+µkin

Surface coverages

Besides the first 0.1 mm, the surface is almost free Pt(S) sites CO(S) is the main coverage after O2 is consumed

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.0110

-4

10-3

10-2

10-1

100

z [m]

fract

iona

l cov

erag

es

PT(S)H(S)H2O(S)OH(S)CO(S)C(S)O(S)

Pt(S)

O(S)

ABOVE 1%

84

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

A6) CH4 partial oxidation on Pt monolith CFP+µkin - Conclusions

1. Coupling CFD and detailed chemistry is feasible 2. Surprising effects of interactions

between M/HT and chemistry are spotted

3. Still limited on homogeneous chemistry

85

P. Canu – CRE with µKin CACRE, Åbo Akademi, 2014

A7) H2 oxidation on pure Pt in stagnation flow CFP+µkin

Just demonstration by Multiphysics

86