Unbehaun - Phasors Tue 1030.ppt - Western Energy … 3 A Phasor is a special type of Vector A vector...

Post on 11-May-2018

219 views 2 download

Transcript of Unbehaun - Phasors Tue 1030.ppt - Western Energy … 3 A Phasor is a special type of Vector A vector...

7/30/2017

1

PHASORS

August 22,2017 

Bill Unbehaun Tacoma Power

Exchanging expertise since 1893

Objectives• What is a phasor?

• Why are phasors important in metering?

• Working with vectors or phasors

• Standard meter service phasor diagrams

• Troubleshooting

7/30/2017

2

Terms and Concepts

• Rotation – the direction around the center

Phasors rotate counter‐clockwise

• Sequence – the order of progressionPhase sequence can be ABC or ACB

Terms and Concepts

• Radians – a method of describing a circleCircumference = π x diameter or 2πr ; if radius = 1, then circumference = 2π (= 3600 )

Angle in degrees = angle in radians * 180 / Pi (or 57.30)

Used in equations for torque and frequency   (ω = angular speed in radians/second )

P = τ ∙ ω;   f = ω/ 2π

7/30/2017

3

A Phasor is a special type of Vector

A vector represents a quantity with magnitude and direction

Handbook for Electricity Metering

• A phasor is a quantity which has magnitude, direction and time relationship.  Phasors are used to represent sinusoidal voltages and currents by plotting on rectangular coordinates.  If the phasors were allowed to rotate about the origin, and a plot made of ordinates against rotation time, the instantaneous sinusoidal wave form would be represented by the phasor.

7/30/2017

4

Sine Wave

M7-7

Three phase sine wave and corresponding phasors –

ideal condition

7/30/2017

5

Three phase sine wave and corresponding phasors –unbalanced 

load

Quantities

• For our purposes the main uses include:

– Voltage

– Current

– Impedance

7/30/2017

6

Lots of other uses

• Navigation: Seattle to Spokane 233 miles at 890

Why Study Phasors?

• A simple visual representation of electrical phenomena

– Visual of what’s happening in the service and in the meter

– Understand necessary concepts for testing and billing 

• A tool for troubleshooting

7/30/2017

7

How do we work with phasors?

• Phasors are vectors in motion; treat them like vectors

• Vectors can be described in 2 ways: polar and rectangular (Cartesian)

• Vectors can be added, subtracted, multiplied and divided

Vector DescriptionRectangular Coordinates:  (1,2)

2

1

(1,2)

M7-1

7/30/2017

8

Vector DescriptionPolar Coordinates: 2.24<63.40

1

2

1

63.40

M7-4,6

Vector Exercise 1

• Draw vectors 2<00 and 3<300  (thin)

• Draw vectors (1,0) and (1.73, 1) (thick)

7/30/2017

9

Vector Exercise 1

• Draw vectors 2<00 and 3<300  (thin)

1

1 200

900

Vector Exercise 1• Draw vectors 2<00 and 3<300  (thin)

• They remain the same vectors regardless of position in space

1

1 200

900

7/30/2017

10

Vector Exercise 1Reference changed – note position of 900

• Draw vectors 2<00 and 3<300  (thin)

1

1 200

900

Vector Exercise 1

• Draw vectors 2<00 and 3<300  (thin)

• Draw vectors (1,0) and (1.73, 1) (thick)

1

1 200

900

7/30/2017

11

Vector Exercise 1

• Draw vectors 2<00 and 3<300  thin

• Draw vectors (1,0) and (1.73, 1) thick

• Describe with both methods

1

1 200

900

Vector Exercise 1• Describe with both methods – the vectors on the X axis are straightforward (1,0) = 1< 00

• 3 < 300 :  3 x cos 300  = 2.6 ;  3 x sin 300 = 1.5

• 3 < 300 = (2.6, 1.5)      

1

1 200

900

1 < 00 (2,0)

(2.6, 1.5)

7/30/2017

12

Vector Exercise 1• Describe with both methods

• (1.73, 1):  1.732  + 12 = 3.99;  √ 3.99 = ~ 2

• 1 / 1.73 = 0.578; tan‐1 0.578 = 300

• (1.73, 1)  = 2 < 300

1

1 200

900

1 < 00 (2,0)

2 < 300

(2.6, 1.5)

Adding (or subtracting) Vectors

• Vectors can be added or subtracted

• Easiest in rectangular coordinates

M7‐3

M7‐17

7/30/2017

13

Vector Exercise 1 extension• Add 1 < 00  + 2 < 00

• 1 < 00  = (1,0); 2 < 00  = (2,0)

• 1 + 2 = 3; 0 + 0 = 0

• 1 < 00  + 2 < 00 = (3,0) = 3 < 00 

1

1 200

900

1 < 00 2 < 00

3

• Add 2 < 00  + 3 < 300

• 2 < 00  = (2,0) ; 3 < 300 = (2.6, 1.5)

• Xs:  2 + 2.6 = 4.6;         Ys:  0 + 1.5 = 1.5

• (4.6, 1.5) ;  4.62 + 1.52 = 23.41;  √ 23.41 = ~4.8

• 1.5 / 4.6 = 0.326; tan‐1 0.326 = 180

• 2 < 00  + 3 < 300  = 4.8 < 180

1

1 200

900

(2,0)

(2.6, 1.5)

4.8 < 180

7/30/2017

14

Vector Exercise 2

2 < 3100 + 10 < 350 = ?

270

0

Vector Exercise 22<310 = (1.29, ‐1.53)    10<35 = (8.19, 5.74)

Add X values Add Y values

1.29 + 8.19 = 9.48       ‐1.53 + 5.74 = 4.21

? = (9.48, 4.21)

4.21 / 9.48 = tan θ = 0.444

Θ = 23.95

Hyp = 9.48 / cos θ = 10.37

? = 10.37<23.95 = 10 < 24

7/30/2017

15

Vector Exercise 2

2<3100 + 10<350 =10<24

270

0

10<24

Proof of 1.73 relationship

• Side = 1; angle at bottom is 1200

• Perpendicular bisector of 120 also bisects red line

• Cos30 x 1 = half of red line = 0.866

• 0.866 x 2 = 1.73 = length of red line

3090

60

120

1

1.73

7/30/2017

16

Proof of 1.73 relationship

• ‐0.5 – 1 = 1.5

• 0.866 – 0 = 0.866

• SQRT(1.52 + 0.8662) = 1.73

• 0.866 / 1.5 = Tan‐1 30

1<0

1<120

(1,0)

(-0.5, 0.866)

Impedance

• To divide polar coordinates, divide magnitudes and subtract angles

V= 120 < 0;   I = 10 < 30;   

Z = V/I:  120/10 = 12;   0 – 30 = ‐30;    Z = 12 < ‐30

7/30/2017

17

What’s the reference?

SCALE

What is the scale? Does the radius of the circle = 1v, 480v, 10a?Mfrs. handle this in different ways, showing the voltages relative to each other and the currents relative to each other, or scaling them to each other in some fashion.

7/30/2017

18

Names

• Vector (and phasors) must be named or labeled properly to be useful

• Voltages are labeled with a V or E and the phase relationship of the potential difference:  Van, ECB, etc.

• Currents are labeled with an I and the phase:  Ia, IB, etc.

Vector Review

• Magnitude and direction

• Rectangular coordinates

• Polar coordinates

• Add – head‐to‐toe

• Reference

• Scale

• Labels

7/30/2017

19

Phasor rotation is counterclockwise

0

45

270

90

180

Phasor rotation is counterclockwisePhase rotation or Phase sequencing

can be ABC or ACB

VA / VA

270

90

180

VB / VC

VC / VB

7/30/2017

20

3 phase ACB rotation

Phasor Review

• Phasors are vectors that rotate

• Represent cyclical phenomona

• In metering, rotation is counterclockwise

• In metering, degree notation is clockwise, with 0 at 3 o’clock

7/30/2017

21

Real Life AdventuresHow does this relate to my meter work?

Powermate Circuit Analyzer

7/30/2017

22

7/30/2017

23

7/30/2017

24

7/30/2017

25

LED Billboard

7/30/2017

26

7/30/2017

27

3 wire delta, 5S or 12S meter

Vab

Vcb

Ia

Ic

AB

C

W = E x I x √3 x cos θ

3 wire delta

Or…W = E x I x cos (α+θ) per element α is the angle at unity between E and IΘ is the pf angle caused by the load.

7/30/2017

28

Angles α and θW = E x I x cos (α + θ)

Vab

Ia theoretical

Ia actual—add α and θ for watts

Angle α is the unity phase relationship = 300 for VAB - Ia

Angle θ caused by customer load

Angles α and θW = E x I x cos (α + θ)

Vab

Angle α is the unity phase relationship 300 for IA in a 3W delta

If θ is leading the theoretical angle, consider it a negative angle when adding

If the theoretical angle is leading, consider angle αto be negative

7/30/2017

29

3 wire delta with 300 lag

Wa = E x I x cos (30+30) (0.5) Wc = E x I x cos (-30+30) (1.0)Wt = E x I x 1.5Wt = E x I x {√3 x cos 30} ({}=1.5)

3 Wire Delta

Several ways to approach this:

System PF = 0.816, so I lags V by 350

Or compare phases:- Ia lags Vab by 640, at unity this would be 300 so Ia lags by 340

- Ic lags Vcb by 50

but it should lead by 300 so Ic lags by 350

7/30/2017

30

Is this a delta?

2P-N service with CTs

7/30/2017

31

Next service type

Meter software example

7/30/2017

32

4W Wye

Ametek JemStar II

7/30/2017

33

4W Wye

Unbalanced 4W Wye

7/30/2017

34

4 Wire Wye Power Calculations per Phase

V     x    I   =  VA     x    PF     = W

• PhA: 123.9 x 3.3 = 408.9 x 0.999 = 408.3

• PhB: 124.0 x 0.1 =  12.4  x 0.438 =     5.4

• PhC: 123.5 x 0.5 =  61.8  x 0.906 =   56.0

• Totals 483.1 469.7

• PF = W / V = .972 or 97.2%

• OR by average:  Iave =1.3, <ave = 30.60

(123.8 x 1.3) x 3 = 482.8 x 0.860 = 415.2

Neutral Current

• Add current vectors

• Ia =3.31<2.83 = (3.31, ‐0.16)

• Ib = 0.11>304.40 = (0.06, 0.09)

• Ic = 0.51>145.36 = (‐0.49, ‐0.29)

• In = 2.88 > ‐180.04 = (2.88, ‐0.36)

• Angle of the neutral will be roughly opposite the largest current—current is flowing away from the meter in the neutral.

M-7 12

7/30/2017

35

Phasors with Neutral (green)

Example from phase angle lab tomorrow

7/30/2017

36

4W Wye

• Ia‐EAN____  Ia‐EBN_____  Ia‐ECN_____

• Ib‐EBN____  Ib‐ECN_____  Ib‐EAN_____

• Ic‐ECN____  Ic‐EAN_____  Ic‐EBN_____

What’s the reference?

7/30/2017

37

LUNCH

4 wire deltaPhasors

7/30/2017

38

4 W Delta Xfrmrs

B N A C

4 W Delta XfrmrsRearranged

N

AB

C

7/30/2017

39

4 W Delta Service Representation

A

C

B

4 W Delta Meter Phasors(3 phase balanced load)

C

AB

7/30/2017

40

4 wire deltaPhasors

4 wire deltaPhasors

7/30/2017

41

4 wire delta, 3 element solid state auto‐detecting meter phasors

4 wire delta, 3 element solid state auto‐detecting meter phasors

7/30/2017

42

4 Wire Delta at UnityPhase to phase V to describe 

service

Van and Vbn are ½  V Φ –Φ

Vcn = Van x √ 3

Example: 240v delta

Van & Vbn = 120v

Vcn = 208v

Angle α for A phase = 300

Angle α for B phase = ‐300

Angle α for C phase = 00

Angle θ is the pf caused by the customer load.

Van

IaIb

Vbn

Vcn

Ic

αα

4 Wire Delta Power Calculations per Phase

• Wa = VAN * Ia * cos(α + θ)  for A phase• Wb = VBN * Ib * cos(α + θ)  for B phase• Wc = VCN * Ic * cos(α + θ)  for C phase• Wt = Wa + Wb + Wc

• Angle α for A is 300, for B is ‐300, for C = 0• VAN and VBN = ½ Ø – Ø voltage, • VCN = VAN * √ 3• Like a wye, angle θ can be different for each phase

and results from the load connected to that phase

7/30/2017

43

The VA Question 

• There are at least 2 methods commonly used to calculate VA, and others as well.

• 1. The traditional method of adding watts from each phase and VARs from each phase, then creating a hypotenuse, VA.  This is basically what the old wh meter / VARh meter installations did, and is called the vectorial method.

The VA Question

• 2.  With microprocessor meters, we can now calculate VA per phase, then add the 3 VA values.  This is called the arithmetic method.  The Handbook considers this to be more “accurate.”  (See VA Metering)

• 3.  One meter mfr. multiplies V x I x 0.93 on all three phases to arrive at VA.

7/30/2017

44

The VA Question

• Your utility has a method built into its rate structure.  It is probably the vectorial method, based on a wh reading and a varh reading.  Your meter may be calculating by another method.  This will only matter if you use the meter’s power or PF calculations for billing.

4 Wire Wye Power Calculations per Phase

V     x    I   =  VA     x    PF     = W var• PhA: 123.9 x 3.3 = 408.9 x 0.999 = 408.3 22.1• PhB: 124.0 x 0.1 =  12.4  x 0.438 =     5.4 11.6• PhC: 123.5 x 0.5 =  61.8  x 0.906 =   56.0 26.1• Arithmetic Totals  483.1 469.7 59.8• Vectoral: 408.3 + 5.4 + 56 = 469.7w

»22.1 + 11.2 + 26.1 = 59.4 var»469.72  + 59.42 = 473.42 va

• Is PF 97.2% or 99.2%  ?

7/30/2017

45

Vectorial vs Arithmetic • How is your meter calculating power factor?

• 97.2% or 99.2%

• What if the difference is at the PF cutoff for var adjustment?

• Which is more accurate?

483.1 va469.7 w

473.4 va

469.7 w

59.9 var

59.9var

4 wire delta, 2 element meterphasor analysis

VAB,

IA-B

VC, IC

7/30/2017

46

4 wire delta, 2 element meter, phasor analysis

VAB,

IA-B

VC, IC

What if IB is not reversed?

VAB,

VC, IC

IA+B

Full torque on C0 torque on AB

7/30/2017

47

4 wire delta with roughly equal 1 phase and 3 phase loads

Phase C is a good indicator of 3p load

Bp 2.34-1.37=0.97Ap 2.95-1.37=1.58

Service has roughly 1.4a of 3p load and 1-1.5a single phase load

7/30/2017

48

Check

• P‐P voltage = 230 x 1.37 x 1.73 = 545w

• A = 115 x 2.95 = 339w

• B = 115 x 2.34 = 269w

• C = 199 x 1.37 = 273w

» Total   881w

»3p       ‐545w

» 336w / 2 = 163 / 115=1.4

3 phase component1 phase component

7/30/2017

49

Varied Load

• This is just a way to understand what’s happening behind the phasors

• Don’t count on reverse analyzing load with any confidence

• There may be phase to phase load buried in there

• Understanding the relationship between the load and the phasors is important

Typical 4 Wire Delta

More load on A and B phases, but significant load on C phase indicating 3 phase loadNotice 3rd harmonic distortion on B phase

7/30/2017

50

4 Wire Delta

Small 3 phase load

Note mfr’s use of phasors to indicate angle but not magnitude

7/30/2017

51

4 Wire Delta

Notice lack of C phase current – A and B phase roughly balanced

4 Wire Delta

Notice lack of C phase current –most of load is on B phase

7/30/2017

52

4 Wire Delta Service

Note distortion of current waveform and smooth voltage waveform

Harmonic Analysis

Lots of 11th and 13th harmonic in current but relatively little voltage distortion

7/30/2017

53

Reactive MeteringElectromechanical

W =Van x Ia x cos θ

VAR = Van x Ia x sin θ or Vra x cos(90‐ θ)

Van

Ia

Vra

θ

Phase shift schematic from Handbook for Electricity Metering

7/30/2017

54

Shifting a Wye: Wiring and Phasors from HEM

Phasor analysis can help verify expected voltage angles and troubleshoot mis-wiring

Shifting a Delta: Wiring and Phasors from HEM

7/30/2017

55

Reactive Metering

VAR measurements are made by integrating the voltage waveform to obtain a 90°phase shift, then each voltage sample is multiplied by the coincident current sample and the product is accumulated to obtain a VARs.

From Landis + Gyr manual

Reactive MeteringElectromechanical

VAR = Van x Ia x sin θ = 0

or VAR = Vra x Ia x cos(90‐ θ) = 0

Ia

Vra

7/30/2017

56

Dk. Blue lags by 90 degrees

Power Factor = 0

Current (orange) lags voltage (blue) by 900 so positive and negative power (light green) cancel out – no real power, all reactive power

7/30/2017

57

Reactive MeteringElectromechanical

W =Van x Ia x cos 10 

VAR = Van x Ia x sin 10 or Vra x Ia x cos(80)

Van

Ia

Vra

Θ = 10

100 lagging current, WH meter

7/30/2017

58

VARH meter sees 800 leading current

TROUBLESHOOTING

How Phasors Can Help Solve Your Problems

7/30/2017

59

Examples of troubleshooting:What’s wrong here?

4W Y with CTs

Van

Vbn

VcnIc

Ia

Ib

One polarity reversed

7/30/2017

60

What’s wrong here?

4W Y with CTs

Van

Vcn

VbnIc

IaIb

What’s wrong here?

4W Y with PTs and CTs

Van

Ic

Ib Ia

Vbn

Vcn

7/30/2017

61

Miswired 4 wire delta with 2 element EM 15S Self‐Contained Meter 

What will the meter

register if C phase

(high leg) is in the

center at the 

socket?

A C B

Miswired 4 wire delta 2 element EM 

C

B A

B

AC

7/30/2017

62

Miswired 4 wire delta 2 element EM 

• Expected ActualVcn

IcVab

Ia-IbVac

Vbn

Ib

Ia-Ic

Power calculations for 15S

• E x I x SQRT3 = 240v x 10a x 1.73 = 4157

• Correct meter 

• “2S” element sees (240v x ½ Ia x 0.866) + (240v x ‐ ½ Ib x 0.866) = 2078va

• “1S” element sees 208v x 10a = 2080va

• 2078 + 2080 = 4158VAt

7/30/2017

63

Miswired 15S meter socket

• “2S” element sees the same as before, just A and C instead of A and B = 2078va

• “1S” element is now B phase with a 300

lag and 120v:  120v x 10a x 0.866 = 1039va

• 2078va + 1039va = 3117

• 3117 / 4157 = 75% registration on balanced 3 Φ load!  Lighting load is ok.

What’s This?

7/30/2017

64

Solar System with 2 inverters to create a 3 phase feed

Here B phase is common – an inverter is connected A-B and another C-B. There is no A-C load / generation, but B current is combined from both sources.

Schematic

BA C

Inverter Inverter

PanelsPanels

7/30/2017

65

• 12S16S

Ib is unmetered in a 12S or 5S meter

Phase B is vector sum of –Ia and ‐Ic

7/30/2017

66

Use of Phasors or Vectors in Related Equipment

Transformer connections

Instrument transformer performance

Relay applications

Power Transformers

7/30/2017

67

Power Transformer Connections

Depending on the winding configuration, the phase angle relationship changes from high side to low.  Normal shift in a delta—wye is +/‐ 300.

This is important for transformer relays.

Instrument Transformers

7/30/2017

68

Vector Analysis of a PT from the Handbook for Electricity Metering

Electromechanical relays

7/30/2017

69

Testing microprocessor relays

Sequence Phasors in Relaying

In relaying, phasors are used to analyze fault current  into positive, negative and zero sequence currents; and there are many other situations where phasors make things clearer.

C B

C

A A

B

A

B   C

7/30/2017

70

Bill Unbehaunwunbehaun@cityoftacoma.org

TI‐36X Scientific Calculator

Polar – Rectangular Conversion

7/30/2017

71

You can do the rectangular-polar conversion on some calculators. Look for the expressions R>P and P>R as second and/or third functions. There should also be an X<>Y key. To convert 1,2 to polar coordinates:1(X<>Y) 2(3rd) (R>P)Display should show 2.2360… which is the magnitude(X<>Y)Display should show 63.4349… which is the angle

Rectangular to Polar

7/30/2017

72

Rectangular to Polar

Rectangular to Polar

7/30/2017

73

Rectangular to Polar

Polar to Rectangular

• Reverse the process:

• Magnitude (2.236) X/Y angle (63.434)

• 2nd  P>R

• Display = 1  X/Y 1.99999

7/30/2017

74

L+G terminology

• VAtd: Time delay (lagging) measurement of Volt‐Amperes. At unity power factor VAtd is equal to watts. 

• VARtd: Time delay (lagging) measurement of Volt‐Amperes reactive.