Today:’Review’forExam’1’...

Post on 30-Apr-2020

3 views 0 download

Transcript of Today:’Review’forExam’1’...

Today:  Review  for  Exam  1  Wednesday:  Chapter  5  

Exam  Informa+on  10/1/14  –  Wednesday  7:30  PM  All  Sec+ons  505-­‐509    à  MPHY  205  (this  room,  30  min  a.er  class  ends)  Dura+on  à  1  hour  15  min    Ø  Please  return  to  the  classroom  20  min  aLer  class  is  dismissed  and  wait  to  be  let  into  the  room.    Ø  Know  your  instructor’s  name  (S+egler)    and  your  sec+on  number  (505  -­‐  509).  Ø  Have  your  TAMU  ID  ready  to  show  when  turning  in  your  exam.  Ø  Calculators  are  allowed,  no  pre-­‐saved  data  on  them,  if  you  are  caught  using  previously  saved  data  

it  will  be  considered  chea=ng  and  dealt  with  accordingly.    Exam  Structure  Ø  5  mul+ple  choice  ques+on  

•  You  do  not  need  to  show  your  work  on  these.    •  There  is  no  par+al  credit.  

Ø  4  long  problems  •  The  problems  will  be  similar  to  homework  problems  of  medium  difficulty.    •  There  will  be  a  mix  of  ‘numeric’  and  ‘symbolic’  problems.  •  Par+al  credit  is  given,  you  must  show  your  work  clearly.  

T.  S+egler                09/29/2014            Texas  A&M  University  

Problem  1  

T.  S+egler                09/29/2014            Texas  A&M  University  

Find  the  magnitude  and  direc+on  of  the  sum  R  of  the  three  vectors  shown  in  the  figure.  R  =  A  +  B  +  C      The  vectors  have  the  following  magnitudes:  A  =  5.0m,  B  =  9.5m,  and  C  =  6.0m.  Express  the  direc+on  of  the  vector  sum  by  specifying  the  angle  it  makes  with  the  posi+ve  x-­‐axis,  with  the  counterclockwise  angles  taken  to  be  posi+ve.      

Problem  2  

T.  S+egler                09/29/2014            Texas  A&M  University  

x(t)  =  t4  –  2t2  +  3  (in  SI  units)  describes  the  posi+on  of  a  par+cle  moving  along  a  line.    (a)  What  is  the  average  velocity  between  0  and  2  s?    (b)  What  is  v(t)  (b)  What  is  the  accelera+on  at  t  =  3  s?        

General math:

log (x/y) = log (x)! log (y)

log (xy) = log (x) + log (y)

log (xn) = n log (x)

lnx " loge x

x = 10(log10 x)

x = e(ln x)

ha

hho

!

"

ha = h cos ! = h sin"

ho = h sin ! = h cos"

h2 = h2a + h2

o tan ! =ho

ha

#A = Axi+Ay j +Az k

#A · #B = AxBx +AyBy +AzBz = AB cos ! = A!B = AB!

#A# #B = (AyBz!AzBy )i+ (AzBx!AxBz)j + (AxBy!AyBx)k

= AB sin ! = A"B = AB"

df

dt= natn#1

If f(t) = atn, then

!

"

"

#

"

"

$

% t2t1

f(t)dt = an+1

&

tn+12 ! tn+1

1

'

ax2 + bx+ c = 0 $ x =!b±

%b2 ! 4ac

2a

"

" + ! = 90!" + ! = 180!

"!

!

"

!

"

!

"

!

"!

" !

Equations of motion:translational rotational

constant (linear/angular) acceleration only:

#r(t) = #r$ + #v$t+12#at

2

#v(t) = #v$ + #at

v2f = v2$ + 2a(r ! r$)

#r(t) = #r$ +12 (#vi + #vf )t

!(t) = !$ + $$t+12%t

2

$(t) = $$ + %t

$2f = $2

$ + 2%(! ! !$)

!(t) = !$ +12 ($i + $f )t

always true:

&#v' = !r2#!r1t2#t1

#v = d!rdt

&#a' = !v2#!v1

t2#t1#a= d!v

dt =d2!rdt2

#r(t) = #r$ +% t0 #v(t) dt

#v(t) = #v$ +% t0 #a(t) dt

&$' = "2#"1t2#t1

$ = d"dt

&%' = #2##1

t2#t1%= d#

dt =d2"dt2

!(t) = !$ +% t0 #$(t) dt

$(t) = $$ +% t0 #%(t) dt

Forces, Energy and Momenta:translational rotational

W = #F ·!#r =%

#F · d#r

P = dWdt = #F · #v

#pcm = m1#v1 +m2#v2 + . . .

= M#vcm#J =

%

#Fdt = !#p(

#Fext = M#acm = d!pcm

dt(

#Fint = 0

Ktrans =12Mv2cm

#& = #r # #F and |#& | = F"r

W = & !! =%

&d!

P = dWdt = #& · #$

#L = I1#$1 + I2#$2 + . . .

= Itot#$

= #r # #p(

#&ext = Itot#% = d!Ldt

(

#&int = 0

Krot =12Itot$

2

— Both translational and rotational —

W = !K = Ktrans,f +Krot,f !Ktrans,i !Krot,i

Etot,f = Etot,i +Wother ( Kf + Uf = Ki + Ui +Wother

U = !)

#F · d#r ; Ugrav = Mgycm ; Uelas =12k(r ! requil)

2

Fx(x) = !dU(x)/dx #F = !#)U = !*

$U$x i+

$U$y j +

$U$z k

+

Circular motion: arad =v2

RT =

2'R

v

s = R! vtan = R$ atan = R%

Relative velocity:#vA/C = #vA/B + #vB/C

#vA/B = !#vB/A

Constants/Conversions:

g = 9.80 m/s2 = 32.15 ft/s2 (on Earth’s surface)

G = 6.674# 10#11 N ·m2/kg2

R% = 6.38# 106 m M% = 5.98# 1024 kgR& = 6.96# 108 m M& = 1.99# 1030 kg

1 km = 0.6214 mi 1 mi = 1.609 km1 ft = 0.3048 m 1 m = 3.281 ft1 hr = 3600 s 1 s = 0.0002778 hr

1 kgms2 = 1 N = 0.2248 lb 1 lb = 4.448 N

1 J = 1 N·m 1 W = 1 J/s1 rev = 360$ = 2' radians 1 hp = 745.7 W

10#9 nano- n10#6 micro- µ10#3 milli- m10#2 centi- c

103 kilo- k106 mega- M109 giga- G

Forces: Newton’s:, #F = m#a, #FB on A = !#FA on B

Hooke’s: #Felas = !k(#r ! #requil)

friction: |#fs| * µs|#n|, |#fk| = µk|#n|

Centre-of-mass:

#rcm =m1#r1 +m2#r2 + . . .+mn#rn

m1 +m2 + . . .+mn

(and similarly for #v and #a)

Gravity:

Fgrav = GM1M2

R212

Ugrav = !GM1M2

R12T =

2'a3/2%GM

Phys 218 — Final Exam Formulae

Problem  3  

T.  S+egler                09/29/2014            Texas  A&M  University  

A  rocket  is  launched  from  rest  on  the  ground  with  an  constant  upward  accelera+on  of  5  m/s2.        6 s  aLer  the  launch  the  rocket’s  engine  shuts  down.    What  is  the  maximum  height  reached  by  the  rocket?    (Neglect  air  resistance.)    

General math:

log (x/y) = log (x)! log (y)

log (xy) = log (x) + log (y)

log (xn) = n log (x)

lnx " loge x

x = 10(log10 x)

x = e(ln x)

ha

hho

!

"

ha = h cos ! = h sin"

ho = h sin ! = h cos"

h2 = h2a + h2

o tan ! =ho

ha

#A = Axi+Ay j +Az k

#A · #B = AxBx +AyBy +AzBz = AB cos ! = A!B = AB!

#A# #B = (AyBz!AzBy )i+ (AzBx!AxBz)j + (AxBy!AyBx)k

= AB sin ! = A"B = AB"

df/dt = natn#1

If f(t) = atn, then

!

"

"

"

#

"

"

"

$

% t2t1

f(t)dt = an+1 (t

n+12 ! tn+1

1 ) (for n $= !1)%

f(t)dt = an+1 t

n+1 + C (for n $= !1)

ax2 + bx+ c = 0 % x =!b±

&b2 ! 4ac

2a

"

" + ! = 90!" + ! = 180!

"!

!

"

!

"

!

"

!

"!

" !

Equations of motion:

constant acceleration only:

#r(t) = #r$ + #v$t+12#at

2

#v(t) = #v$ + #at

v2x = v2x,0 + 2ax(x! x0)(and similarly for y and z)

#r(t) = #r$ +12 (#vi + #vf )t

always true:

'#v( = !r2#!r1t2#t1

#v = d!rdt

'#a( = !v2#!v1

t2#t1#a= d!v

dt =d2!rdt2

#r(t) = #r$ +% t0 #v(t

%) dt%

#v(t) = #v$ +% t0 #a(t

%) dt%

Circular motion: |#arad| =v2

RT =

2$R

v

Relative velocity: #vA/C = #vA/B + #vB/C

#vA/B = !#vB/A

Constants/Conversions:

g = 9.80 m/s2 = 32.15 ft/s2 (on Earth’s surface)

1 km = 0.6214 mi 1 mi = 1.609 km1 ft = 0.3048 m 1 m = 3.281 ft1 hr = 3600 s 1 s = 0.0002778 hr

1 kgms2 = 1 N = 0.2248 lb 1 lb = 4.448 N

10#9 nano- n10#6 micro- µ10#3 milli- m10#2 centi- c

103 kilo- k106 mega- M109 giga- G

Forces: Newton’s:& #F = m#a, #FB on A = !#FA on B

Phys 218 — Exam I Formulae

Problem  4  

T.  S+egler                09/29/2014            Texas  A&M  University  

A  ball  is  dropped  (from  rest)  from  a  window  at  height  h  and  is  seen  to  reach  the  ground  in  a  certain  +me.  The  ball-­‐dropper  then  climbs  to  a  height  2h  but  wants  the  ball  to  reach  the  ground  in  the  original  +me.  Find  the  velocity  v0  that  must  be  given  to  this  ball  to  achieve  the  goal.    

General math:

log (x/y) = log (x)! log (y)

log (xy) = log (x) + log (y)

log (xn) = n log (x)

lnx " loge x

x = 10(log10 x)

x = e(ln x)

ha

hho

!

"

ha = h cos ! = h sin"

ho = h sin ! = h cos"

h2 = h2a + h2

o tan ! =ho

ha

#A = Axi+Ay j +Az k

#A · #B = AxBx +AyBy +AzBz = AB cos ! = A!B = AB!

#A# #B = (AyBz!AzBy )i+ (AzBx!AxBz)j + (AxBy!AyBx)k

= AB sin ! = A"B = AB"

df/dt = natn#1

If f(t) = atn, then

!

"

"

"

#

"

"

"

$

% t2t1

f(t)dt = an+1 (t

n+12 ! tn+1

1 ) (for n $= !1)%

f(t)dt = an+1 t

n+1 + C (for n $= !1)

ax2 + bx+ c = 0 % x =!b±

&b2 ! 4ac

2a

"

" + ! = 90!" + ! = 180!

"!

!

"

!

"

!

"

!

"!

" !

Equations of motion:

constant acceleration only:

#r(t) = #r$ + #v$t+12#at

2

#v(t) = #v$ + #at

v2x = v2x,0 + 2ax(x! x0)(and similarly for y and z)

#r(t) = #r$ +12 (#vi + #vf )t

always true:

'#v( = !r2#!r1t2#t1

#v = d!rdt

'#a( = !v2#!v1

t2#t1#a= d!v

dt =d2!rdt2

#r(t) = #r$ +% t0 #v(t

%) dt%

#v(t) = #v$ +% t0 #a(t

%) dt%

Circular motion: |#arad| =v2

RT =

2$R

v

Relative velocity: #vA/C = #vA/B + #vB/C

#vA/B = !#vB/A

Constants/Conversions:

g = 9.80 m/s2 = 32.15 ft/s2 (on Earth’s surface)

1 km = 0.6214 mi 1 mi = 1.609 km1 ft = 0.3048 m 1 m = 3.281 ft1 hr = 3600 s 1 s = 0.0002778 hr

1 kgms2 = 1 N = 0.2248 lb 1 lb = 4.448 N

10#9 nano- n10#6 micro- µ10#3 milli- m10#2 centi- c

103 kilo- k106 mega- M109 giga- G

Forces: Newton’s:& #F = m#a, #FB on A = !#FA on B

Phys 218 — Exam I Formulae

Problem  5  

T.  S+egler                09/29/2014            Texas  A&M  University  

A  basketball  player  releases  the  ball  from  a  height  h1  at  an  angle  θ  and  ini+al  velocity  v0  in  an  aeempt  to  put  the  ball  into  the  basket  which  is  at  height  h2  and  a  horizontal  distance  d.  Calculate  the  distance  d  if  the  ball  is  to  make  it  into  the  basket.  (find  in  terms  of  h1,  h2,  θ,  and  v0)  General math:

log (x/y) = log (x)! log (y)

log (xy) = log (x) + log (y)

log (xn) = n log (x)

lnx " loge x

x = 10(log10 x)

x = e(ln x)

ha

hho

!

"

ha = h cos ! = h sin"

ho = h sin ! = h cos"

h2 = h2a + h2

o tan ! =ho

ha

#A = Axi+Ay j +Az k

#A · #B = AxBx +AyBy +AzBz = AB cos ! = A!B = AB!

#A# #B = (AyBz!AzBy )i+ (AzBx!AxBz)j + (AxBy!AyBx)k

= AB sin ! = A"B = AB"

df/dt = natn#1

If f(t) = atn, then

!

"

"

"

#

"

"

"

$

% t2t1

f(t)dt = an+1 (t

n+12 ! tn+1

1 ) (for n $= !1)%

f(t)dt = an+1 t

n+1 + C (for n $= !1)

ax2 + bx+ c = 0 % x =!b±

&b2 ! 4ac

2a

"

" + ! = 90!" + ! = 180!

"!

!

"

!

"

!

"

!

"!

" !

Equations of motion:

constant acceleration only:

#r(t) = #r$ + #v$t+12#at

2

#v(t) = #v$ + #at

v2x = v2x,0 + 2ax(x! x0)(and similarly for y and z)

#r(t) = #r$ +12 (#vi + #vf )t

always true:

'#v( = !r2#!r1t2#t1

#v = d!rdt

'#a( = !v2#!v1

t2#t1#a= d!v

dt =d2!rdt2

#r(t) = #r$ +% t0 #v(t

%) dt%

#v(t) = #v$ +% t0 #a(t

%) dt%

Circular motion: |#arad| =v2

RT =

2$R

v

Relative velocity: #vA/C = #vA/B + #vB/C

#vA/B = !#vB/A

Constants/Conversions:

g = 9.80 m/s2 = 32.15 ft/s2 (on Earth’s surface)

1 km = 0.6214 mi 1 mi = 1.609 km1 ft = 0.3048 m 1 m = 3.281 ft1 hr = 3600 s 1 s = 0.0002778 hr

1 kgms2 = 1 N = 0.2248 lb 1 lb = 4.448 N

10#9 nano- n10#6 micro- µ10#3 milli- m10#2 centi- c

103 kilo- k106 mega- M109 giga- G

Forces: Newton’s:& #F = m#a, #FB on A = !#FA on B

Phys 218 — Exam I Formulae

General math:

log (x/y) = log (x)! log (y)

log (xy) = log (x) + log (y)

log (xn) = n log (x)

lnx " loge x

x = 10(log10 x)

x = e(ln x)

ha

hho

!

"

ha = h cos ! = h sin"

ho = h sin ! = h cos"

h2 = h2a + h2

o tan ! =ho

ha

#A = Axi+Ay j +Az k

#A · #B = AxBx +AyBy +AzBz = AB cos ! = A!B = AB!

#A# #B = (AyBz!AzBy )i+ (AzBx!AxBz)j + (AxBy!AyBx)k

= AB sin ! = A"B = AB"

df/dt = natn#1

If f(t) = atn, then

!

"

"

"

#

"

"

"

$

% t2t1

f(t)dt = an+1 (t

n+12 ! tn+1

1 ) (for n $= !1)%

f(t)dt = an+1 t

n+1 + C (for n $= !1)

ax2 + bx+ c = 0 % x =!b±

&b2 ! 4ac

2a

"

" + ! = 90!" + ! = 180!

"!

!

"

!

"

!

"

!

"!

" !

Equations of motion:

constant acceleration only:

#r(t) = #r$ + #v$t+12#at

2

#v(t) = #v$ + #at

v2x = v2x,0 + 2ax(x! x0)(and similarly for y and z)

#r(t) = #r$ +12 (#vi + #vf )t

always true:

'#v( = !r2#!r1t2#t1

#v = d!rdt

'#a( = !v2#!v1

t2#t1#a= d!v

dt =d2!rdt2

#r(t) = #r$ +% t0 #v(t

%) dt%

#v(t) = #v$ +% t0 #a(t

%) dt%

Circular motion: |#arad| =v2

RT =

2$R

v

Relative velocity: #vA/C = #vA/B + #vB/C

#vA/B = !#vB/A

Constants/Conversions:

g = 9.80 m/s2 = 32.15 ft/s2 (on Earth’s surface)

1 km = 0.6214 mi 1 mi = 1.609 km1 ft = 0.3048 m 1 m = 3.281 ft1 hr = 3600 s 1 s = 0.0002778 hr

1 kgms2 = 1 N = 0.2248 lb 1 lb = 4.448 N

10#9 nano- n10#6 micro- µ10#3 milli- m10#2 centi- c

103 kilo- k106 mega- M109 giga- G

Forces: Newton’s:& #F = m#a, #FB on A = !#FA on B

Phys 218 — Exam I Formulae

Problem  6  

T.  S+egler                09/29/2014            Texas  A&M  University  

A  daring  510N  swimmer  dives  off  a  cliff  with  a  running  horizontal  leap,  as  shown.  What  must  her  minimum  speed  just  as  she  leaves  the  top  of  the  cliff,  v0  ,  so  that  she  will  miss  the  ledge  at  the  boeom,  which  is  1.75m  wide  and  9.00m  below  the  top  of  the  cliff.  

General math:

log (x/y) = log (x)! log (y)

log (xy) = log (x) + log (y)

log (xn) = n log (x)

lnx " loge x

x = 10(log10 x)

x = e(ln x)

ha

hho

!

"

ha = h cos ! = h sin"

ho = h sin ! = h cos"

h2 = h2a + h2

o tan ! =ho

ha

#A = Axi+Ay j +Az k

#A · #B = AxBx +AyBy +AzBz = AB cos ! = A!B = AB!

#A# #B = (AyBz!AzBy )i+ (AzBx!AxBz)j + (AxBy!AyBx)k

= AB sin ! = A"B = AB"

df/dt = natn#1

If f(t) = atn, then

!

"

"

"

#

"

"

"

$

% t2t1

f(t)dt = an+1 (t

n+12 ! tn+1

1 ) (for n $= !1)%

f(t)dt = an+1 t

n+1 + C (for n $= !1)

ax2 + bx+ c = 0 % x =!b±

&b2 ! 4ac

2a

"

" + ! = 90!" + ! = 180!

"!

!

"

!

"

!

"

!

"!

" !

Equations of motion:

constant acceleration only:

#r(t) = #r$ + #v$t+12#at

2

#v(t) = #v$ + #at

v2x = v2x,0 + 2ax(x! x0)(and similarly for y and z)

#r(t) = #r$ +12 (#vi + #vf )t

always true:

'#v( = !r2#!r1t2#t1

#v = d!rdt

'#a( = !v2#!v1

t2#t1#a= d!v

dt =d2!rdt2

#r(t) = #r$ +% t0 #v(t

%) dt%

#v(t) = #v$ +% t0 #a(t

%) dt%

Circular motion: |#arad| =v2

RT =

2$R

v

Relative velocity: #vA/C = #vA/B + #vB/C

#vA/B = !#vB/A

Constants/Conversions:

g = 9.80 m/s2 = 32.15 ft/s2 (on Earth’s surface)

1 km = 0.6214 mi 1 mi = 1.609 km1 ft = 0.3048 m 1 m = 3.281 ft1 hr = 3600 s 1 s = 0.0002778 hr

1 kgms2 = 1 N = 0.2248 lb 1 lb = 4.448 N

10#9 nano- n10#6 micro- µ10#3 milli- m10#2 centi- c

103 kilo- k106 mega- M109 giga- G

Forces: Newton’s:& #F = m#a, #FB on A = !#FA on B

Phys 218 — Exam I Formulae

Problem  7  

T.  S+egler                09/29/2014            Texas  A&M  University  

A  jet  plane  comes  in  for  a  downward  dive.  The  boeom  part  of  the  path  is  a  quarter  circle  having  a  radius  of  curvature  of  350  m.  According  to  medical  tests,  pilots  lose  consciousness  at  an  accelera+on  of  5.50  g.  (a)  At  what  speed  (in  m/s)  will  the  pilot  black  out  for  this  dive?  (b)  At  what  speed  (in  mph)  will  the  pilot  black  out  for  this  dive?      

General math:

log (x/y) = log (x)! log (y)

log (xy) = log (x) + log (y)

log (xn) = n log (x)

lnx " loge x

x = 10(log10 x)

x = e(ln x)

ha

hho

!

"

ha = h cos ! = h sin"

ho = h sin ! = h cos"

h2 = h2a + h2

o tan ! =ho

ha

#A = Axi+Ay j +Az k

#A · #B = AxBx +AyBy +AzBz = AB cos ! = A!B = AB!

#A# #B = (AyBz!AzBy )i+ (AzBx!AxBz)j + (AxBy!AyBx)k

= AB sin ! = A"B = AB"

df/dt = natn#1

If f(t) = atn, then

!

"

"

"

#

"

"

"

$

% t2t1

f(t)dt = an+1 (t

n+12 ! tn+1

1 ) (for n $= !1)%

f(t)dt = an+1 t

n+1 + C (for n $= !1)

ax2 + bx+ c = 0 % x =!b±

&b2 ! 4ac

2a

"

" + ! = 90!" + ! = 180!

"!

!

"

!

"

!

"

!

"!

" !

Equations of motion:

constant acceleration only:

#r(t) = #r$ + #v$t+12#at

2

#v(t) = #v$ + #at

v2x = v2x,0 + 2ax(x! x0)(and similarly for y and z)

#r(t) = #r$ +12 (#vi + #vf )t

always true:

'#v( = !r2#!r1t2#t1

#v = d!rdt

'#a( = !v2#!v1

t2#t1#a= d!v

dt =d2!rdt2

#r(t) = #r$ +% t0 #v(t

%) dt%

#v(t) = #v$ +% t0 #a(t

%) dt%

Circular motion: |#arad| =v2

RT =

2$R

v

Relative velocity: #vA/C = #vA/B + #vB/C

#vA/B = !#vB/A

Constants/Conversions:

g = 9.80 m/s2 = 32.15 ft/s2 (on Earth’s surface)

1 km = 0.6214 mi 1 mi = 1.609 km1 ft = 0.3048 m 1 m = 3.281 ft1 hr = 3600 s 1 s = 0.0002778 hr

1 kgms2 = 1 N = 0.2248 lb 1 lb = 4.448 N

10#9 nano- n10#6 micro- µ10#3 milli- m10#2 centi- c

103 kilo- k106 mega- M109 giga- G

Forces: Newton’s:& #F = m#a, #FB on A = !#FA on B

Phys 218 — Exam I Formulae

Problem  8  

T.  S+egler                09/29/2014            Texas  A&M  University  

Passengers  on  a  carnival  ride  move  at  constant  speed  in  a  horizontal  circle  of  radius  14.0  m,  making  a  complete  circle  in  10.0  s.    (a)  What  is  their  accelera+on?    (b)  Draw  the  accelera+on  vector  at  each  point  (A,  B,  C,  D).    (c)  How  would  your  answer  in  (b)  change  if  the  speed  were  not  constant?  (Explain  in  words  and/or  drawing)  

General math:

log (x/y) = log (x)! log (y)

log (xy) = log (x) + log (y)

log (xn) = n log (x)

lnx " loge x

x = 10(log10 x)

x = e(ln x)

ha

hho

!

"

ha = h cos ! = h sin"

ho = h sin ! = h cos"

h2 = h2a + h2

o tan ! =ho

ha

#A = Axi+Ay j +Az k

#A · #B = AxBx +AyBy +AzBz = AB cos ! = A!B = AB!

#A# #B = (AyBz!AzBy )i+ (AzBx!AxBz)j + (AxBy!AyBx)k

= AB sin ! = A"B = AB"

df/dt = natn#1

If f(t) = atn, then

!

"

"

"

#

"

"

"

$

% t2t1

f(t)dt = an+1 (t

n+12 ! tn+1

1 ) (for n $= !1)%

f(t)dt = an+1 t

n+1 + C (for n $= !1)

ax2 + bx+ c = 0 % x =!b±

&b2 ! 4ac

2a

"

" + ! = 90!" + ! = 180!

"!

!

"

!

"

!

"

!

"!

" !

Equations of motion:

constant acceleration only:

#r(t) = #r$ + #v$t+12#at

2

#v(t) = #v$ + #at

v2x = v2x,0 + 2ax(x! x0)(and similarly for y and z)

#r(t) = #r$ +12 (#vi + #vf )t

always true:

'#v( = !r2#!r1t2#t1

#v = d!rdt

'#a( = !v2#!v1

t2#t1#a= d!v

dt =d2!rdt2

#r(t) = #r$ +% t0 #v(t

%) dt%

#v(t) = #v$ +% t0 #a(t

%) dt%

Circular motion: |#arad| =v2

RT =

2$R

v

Relative velocity: #vA/C = #vA/B + #vB/C

#vA/B = !#vB/A

Constants/Conversions:

g = 9.80 m/s2 = 32.15 ft/s2 (on Earth’s surface)

1 km = 0.6214 mi 1 mi = 1.609 km1 ft = 0.3048 m 1 m = 3.281 ft1 hr = 3600 s 1 s = 0.0002778 hr

1 kgms2 = 1 N = 0.2248 lb 1 lb = 4.448 N

10#9 nano- n10#6 micro- µ10#3 milli- m10#2 centi- c

103 kilo- k106 mega- M109 giga- G

Forces: Newton’s:& #F = m#a, #FB on A = !#FA on B

Phys 218 — Exam I Formulae

Problem  8  –  cont.    

T.  S+egler                09/29/2014            Texas  A&M  University  

(b)  Draw  the  accelera+on  vector  at  each  point  (A,  B,  C,  D).    (c)  How  would  your  answer  in  (b)  change  if  the  speed  were  not  constant?  (Explain  in  words  and/or  drawing)  

General math:

log (x/y) = log (x)! log (y)

log (xy) = log (x) + log (y)

log (xn) = n log (x)

lnx " loge x

x = 10(log10 x)

x = e(ln x)

ha

hho

!

"

ha = h cos ! = h sin"

ho = h sin ! = h cos"

h2 = h2a + h2

o tan ! =ho

ha

#A = Axi+Ay j +Az k

#A · #B = AxBx +AyBy +AzBz = AB cos ! = A!B = AB!

#A# #B = (AyBz!AzBy )i+ (AzBx!AxBz)j + (AxBy!AyBx)k

= AB sin ! = A"B = AB"

df/dt = natn#1

If f(t) = atn, then

!

"

"

"

#

"

"

"

$

% t2t1

f(t)dt = an+1 (t

n+12 ! tn+1

1 ) (for n $= !1)%

f(t)dt = an+1 t

n+1 + C (for n $= !1)

ax2 + bx+ c = 0 % x =!b±

&b2 ! 4ac

2a

"

" + ! = 90!" + ! = 180!

"!

!

"

!

"

!

"

!

"!

" !

Equations of motion:

constant acceleration only:

#r(t) = #r$ + #v$t+12#at

2

#v(t) = #v$ + #at

v2x = v2x,0 + 2ax(x! x0)(and similarly for y and z)

#r(t) = #r$ +12 (#vi + #vf )t

always true:

'#v( = !r2#!r1t2#t1

#v = d!rdt

'#a( = !v2#!v1

t2#t1#a= d!v

dt =d2!rdt2

#r(t) = #r$ +% t0 #v(t

%) dt%

#v(t) = #v$ +% t0 #a(t

%) dt%

Circular motion: |#arad| =v2

RT =

2$R

v

Relative velocity: #vA/C = #vA/B + #vB/C

#vA/B = !#vB/A

Constants/Conversions:

g = 9.80 m/s2 = 32.15 ft/s2 (on Earth’s surface)

1 km = 0.6214 mi 1 mi = 1.609 km1 ft = 0.3048 m 1 m = 3.281 ft1 hr = 3600 s 1 s = 0.0002778 hr

1 kgms2 = 1 N = 0.2248 lb 1 lb = 4.448 N

10#9 nano- n10#6 micro- µ10#3 milli- m10#2 centi- c

103 kilo- k106 mega- M109 giga- G

Forces: Newton’s:& #F = m#a, #FB on A = !#FA on B

Phys 218 — Exam I Formulae

Problem  9  

T.  S+egler                09/29/2014            Texas  A&M  University  

A  plane  is  flying  north  at  200  m/s  in  gale-­‐force  winds  of  35.0  m/s  which  are  blowing  in  a  direc+on  30.0°  south  of  east.  How  far  off  course  are  they  in  the  east-­‐west  direc+on  aLer  2.00  hrs?  (P=plane,  A=air,  E=earth)  General math:

log (x/y) = log (x)! log (y)

log (xy) = log (x) + log (y)

log (xn) = n log (x)

lnx " loge x

x = 10(log10 x)

x = e(ln x)

ha

hho

!

"

ha = h cos ! = h sin"

ho = h sin ! = h cos"

h2 = h2a + h2

o tan ! =ho

ha

#A = Axi+Ay j +Az k

#A · #B = AxBx +AyBy +AzBz = AB cos ! = A!B = AB!

#A# #B = (AyBz!AzBy )i+ (AzBx!AxBz)j + (AxBy!AyBx)k

= AB sin ! = A"B = AB"

df

dt= natn#1

If f(t) = atn, then

!

"

"

#

"

"

$

% t2t1

f(t)dt = an+1

&

tn+12 ! tn+1

1

'

ax2 + bx+ c = 0 $ x =!b±

%b2 ! 4ac

2a

"

" + ! = 90!" + ! = 180!

"!

!

"

!

"

!

"

!

"!

" !

Equations of motion:translational rotational

constant (linear/angular) acceleration only:

#r(t) = #r$ + #v$t+12#at

2

#v(t) = #v$ + #at

v2f = v2$ + 2a(r ! r$)

#r(t) = #r$ +12 (#vi + #vf )t

!(t) = !$ + $$t+12%t

2

$(t) = $$ + %t

$2f = $2

$ + 2%(! ! !$)

!(t) = !$ +12 ($i + $f )t

always true:

&#v' = !r2#!r1t2#t1

#v = d!rdt

&#a' = !v2#!v1

t2#t1#a= d!v

dt =d2!rdt2

#r(t) = #r$ +% t0 #v(t) dt

#v(t) = #v$ +% t0 #a(t) dt

&$' = "2#"1t2#t1

$ = d"dt

&%' = #2##1

t2#t1%= d#

dt =d2"dt2

!(t) = !$ +% t0 #$(t) dt

$(t) = $$ +% t0 #%(t) dt

Forces, Energy and Momenta:translational rotational

W = #F ·!#r =%

#F · d#r

P = dWdt = #F · #v

#pcm = m1#v1 +m2#v2 + . . .

= M#vcm#J =

%

#Fdt = !#p(

#Fext = M#acm = d!pcm

dt(

#Fint = 0

Ktrans =12Mv2cm

#& = #r # #F and |#& | = F"r

W = & !! =%

&d!

P = dWdt = #& · #$

#L = I1#$1 + I2#$2 + . . .

= Itot#$

= #r # #p(

#&ext = Itot#% = d!Ldt

(

#&int = 0

Krot =12Itot$

2

— Both translational and rotational —

W = !K = Ktrans,f +Krot,f !Ktrans,i !Krot,i

Etot,f = Etot,i +Wother ( Kf + Uf = Ki + Ui +Wother

U = !)

#F · d#r ; Ugrav = Mgycm ; Uelas =12k(r ! requil)

2

Fx(x) = !dU(x)/dx #F = !#)U = !*

$U$x i+

$U$y j +

$U$z k

+

Circular motion: arad =v2

RT =

2'R

v

s = R! vtan = R$ atan = R%

Relative velocity:#vA/C = #vA/B + #vB/C

#vA/B = !#vB/A

Constants/Conversions:

g = 9.80 m/s2 = 32.15 ft/s2 (on Earth’s surface)

G = 6.674# 10#11 N ·m2/kg2

R% = 6.38# 106 m M% = 5.98# 1024 kgR& = 6.96# 108 m M& = 1.99# 1030 kg

1 km = 0.6214 mi 1 mi = 1.609 km1 ft = 0.3048 m 1 m = 3.281 ft1 hr = 3600 s 1 s = 0.0002778 hr

1 kgms2 = 1 N = 0.2248 lb 1 lb = 4.448 N

1 J = 1 N·m 1 W = 1 J/s1 rev = 360$ = 2' radians 1 hp = 745.7 W

10#9 nano- n10#6 micro- µ10#3 milli- m10#2 centi- c

103 kilo- k106 mega- M109 giga- G

Forces: Newton’s:, #F = m#a, #FB on A = !#FA on B

Hooke’s: #Felas = !k(#r ! #requil)

friction: |#fs| * µs|#n|, |#fk| = µk|#n|

Centre-of-mass:

#rcm =m1#r1 +m2#r2 + . . .+mn#rn

m1 +m2 + . . .+mn

(and similarly for #v and #a)

Gravity:

Fgrav = GM1M2

R212

Ugrav = !GM1M2

R12T =

2'a3/2%GM

Phys 218 — Final Exam Formulae

Problem  10  

T.  S+egler                09/29/2014            Texas  A&M  University  

In  a  triathlon,  a  contestant  swims  from  start  to  finish  in  a  +me  T.  In  order  to  do  so,  the  contestant  has  to  swim  against  the  flow  of  the  river  which  has  a  constant  speed  V  rela+ve  to  ground  as  shown.  What  is  the  x-­‐component  of  the  swimmer’s  velocity,  vx,  with  respect  to  the  water?    

D  

W  

start  

&inish  

V  

water  

x  

swimmer’s  path  

General math:

log (x/y) = log (x)! log (y)

log (xy) = log (x) + log (y)

log (xn) = n log (x)

lnx " loge x

x = 10(log10 x)

x = e(ln x)

ha

hho

!

"

ha = h cos ! = h sin"

ho = h sin ! = h cos"

h2 = h2a + h2

o tan ! =ho

ha

#A = Axi+Ay j +Az k

#A · #B = AxBx +AyBy +AzBz = AB cos ! = A!B = AB!

#A# #B = (AyBz!AzBy )i+ (AzBx!AxBz)j + (AxBy!AyBx)k

= AB sin ! = A"B = AB"

df

dt= natn#1

If f(t) = atn, then

!

"

"

#

"

"

$

% t2t1

f(t)dt = an+1

&

tn+12 ! tn+1

1

'

ax2 + bx+ c = 0 $ x =!b±

%b2 ! 4ac

2a

"

" + ! = 90!" + ! = 180!

"!

!

"

!

"

!

"

!

"!

" !

Equations of motion:translational rotational

constant (linear/angular) acceleration only:

#r(t) = #r$ + #v$t+12#at

2

#v(t) = #v$ + #at

v2f = v2$ + 2a(r ! r$)

#r(t) = #r$ +12 (#vi + #vf )t

!(t) = !$ + $$t+12%t

2

$(t) = $$ + %t

$2f = $2

$ + 2%(! ! !$)

!(t) = !$ +12 ($i + $f )t

always true:

&#v' = !r2#!r1t2#t1

#v = d!rdt

&#a' = !v2#!v1

t2#t1#a= d!v

dt =d2!rdt2

#r(t) = #r$ +% t0 #v(t) dt

#v(t) = #v$ +% t0 #a(t) dt

&$' = "2#"1t2#t1

$ = d"dt

&%' = #2##1

t2#t1%= d#

dt =d2"dt2

!(t) = !$ +% t0 #$(t) dt

$(t) = $$ +% t0 #%(t) dt

Forces, Energy and Momenta:translational rotational

W = #F ·!#r =%

#F · d#r

P = dWdt = #F · #v

#pcm = m1#v1 +m2#v2 + . . .

= M#vcm#J =

%

#Fdt = !#p(

#Fext = M#acm = d!pcm

dt(

#Fint = 0

Ktrans =12Mv2cm

#& = #r # #F and |#& | = F"r

W = & !! =%

&d!

P = dWdt = #& · #$

#L = I1#$1 + I2#$2 + . . .

= Itot#$

= #r # #p(

#&ext = Itot#% = d!Ldt

(

#&int = 0

Krot =12Itot$

2

— Both translational and rotational —

W = !K = Ktrans,f +Krot,f !Ktrans,i !Krot,i

Etot,f = Etot,i +Wother ( Kf + Uf = Ki + Ui +Wother

U = !)

#F · d#r ; Ugrav = Mgycm ; Uelas =12k(r ! requil)

2

Fx(x) = !dU(x)/dx #F = !#)U = !*

$U$x i+

$U$y j +

$U$z k

+

Circular motion: arad =v2

RT =

2'R

v

s = R! vtan = R$ atan = R%

Relative velocity:#vA/C = #vA/B + #vB/C

#vA/B = !#vB/A

Constants/Conversions:

g = 9.80 m/s2 = 32.15 ft/s2 (on Earth’s surface)

G = 6.674# 10#11 N ·m2/kg2

R% = 6.38# 106 m M% = 5.98# 1024 kgR& = 6.96# 108 m M& = 1.99# 1030 kg

1 km = 0.6214 mi 1 mi = 1.609 km1 ft = 0.3048 m 1 m = 3.281 ft1 hr = 3600 s 1 s = 0.0002778 hr

1 kgms2 = 1 N = 0.2248 lb 1 lb = 4.448 N

1 J = 1 N·m 1 W = 1 J/s1 rev = 360$ = 2' radians 1 hp = 745.7 W

10#9 nano- n10#6 micro- µ10#3 milli- m10#2 centi- c

103 kilo- k106 mega- M109 giga- G

Forces: Newton’s:, #F = m#a, #FB on A = !#FA on B

Hooke’s: #Felas = !k(#r ! #requil)

friction: |#fs| * µs|#n|, |#fk| = µk|#n|

Centre-of-mass:

#rcm =m1#r1 +m2#r2 + . . .+mn#rn

m1 +m2 + . . .+mn

(and similarly for #v and #a)

Gravity:

Fgrav = GM1M2

R212

Ugrav = !GM1M2

R12T =

2'a3/2%GM

Phys 218 — Final Exam Formulae

Problem  11  

T.  S+egler                09/29/2014            Texas  A&M  University  

A  rocket  starts  from  rest  and  moves  upward  from  the  surface  of  the  earth.  For  the  first  10.0s  of  its  mo+on,  the  ver+cal  accelera+on  of  the  rocket  is  given  by  ay(t)  =  (2.80  m/s3)t,  where  the  +y-­‐direc+on  is  upward.    (a)  What  is  the  height  of  the  rocket  above  the  surface  of  the  earth  at  t  =  10.0s?  (b)  What  is  the  speed  of  the  rocket  when  it  is  325  m  above  the  surface  of  the  earth?        

General math:

log (x/y) = log (x)! log (y)

log (xy) = log (x) + log (y)

log (xn) = n log (x)

lnx " loge x

x = 10(log10 x)

x = e(ln x)

ha

hho

!

"

ha = h cos ! = h sin"

ho = h sin ! = h cos"

h2 = h2a + h2

o tan ! =ho

ha

#A = Axi+Ay j +Az k

#A · #B = AxBx +AyBy +AzBz = AB cos ! = A!B = AB!

#A# #B = (AyBz!AzBy )i+ (AzBx!AxBz)j + (AxBy!AyBx)k

= AB sin ! = A"B = AB"

df

dt= natn#1

If f(t) = atn, then

!

"

"

#

"

"

$

% t2t1

f(t)dt = an+1

&

tn+12 ! tn+1

1

'

ax2 + bx+ c = 0 $ x =!b±

%b2 ! 4ac

2a

"

" + ! = 90!" + ! = 180!

"!

!

"

!

"

!

"

!

"!

" !

Equations of motion:translational rotational

constant (linear/angular) acceleration only:

#r(t) = #r$ + #v$t+12#at

2

#v(t) = #v$ + #at

v2f = v2$ + 2a(r ! r$)

#r(t) = #r$ +12 (#vi + #vf )t

!(t) = !$ + $$t+12%t

2

$(t) = $$ + %t

$2f = $2

$ + 2%(! ! !$)

!(t) = !$ +12 ($i + $f )t

always true:

&#v' = !r2#!r1t2#t1

#v = d!rdt

&#a' = !v2#!v1

t2#t1#a= d!v

dt =d2!rdt2

#r(t) = #r$ +% t0 #v(t) dt

#v(t) = #v$ +% t0 #a(t) dt

&$' = "2#"1t2#t1

$ = d"dt

&%' = #2##1

t2#t1%= d#

dt =d2"dt2

!(t) = !$ +% t0 #$(t) dt

$(t) = $$ +% t0 #%(t) dt

Forces, Energy and Momenta:translational rotational

W = #F ·!#r =%

#F · d#r

P = dWdt = #F · #v

#pcm = m1#v1 +m2#v2 + . . .

= M#vcm#J =

%

#Fdt = !#p(

#Fext = M#acm = d!pcm

dt(

#Fint = 0

Ktrans =12Mv2cm

#& = #r # #F and |#& | = F"r

W = & !! =%

&d!

P = dWdt = #& · #$

#L = I1#$1 + I2#$2 + . . .

= Itot#$

= #r # #p(

#&ext = Itot#% = d!Ldt

(

#&int = 0

Krot =12Itot$

2

— Both translational and rotational —

W = !K = Ktrans,f +Krot,f !Ktrans,i !Krot,i

Etot,f = Etot,i +Wother ( Kf + Uf = Ki + Ui +Wother

U = !)

#F · d#r ; Ugrav = Mgycm ; Uelas =12k(r ! requil)

2

Fx(x) = !dU(x)/dx #F = !#)U = !*

$U$x i+

$U$y j +

$U$z k

+

Circular motion: arad =v2

RT =

2'R

v

s = R! vtan = R$ atan = R%

Relative velocity:#vA/C = #vA/B + #vB/C

#vA/B = !#vB/A

Constants/Conversions:

g = 9.80 m/s2 = 32.15 ft/s2 (on Earth’s surface)

G = 6.674# 10#11 N ·m2/kg2

R% = 6.38# 106 m M% = 5.98# 1024 kgR& = 6.96# 108 m M& = 1.99# 1030 kg

1 km = 0.6214 mi 1 mi = 1.609 km1 ft = 0.3048 m 1 m = 3.281 ft1 hr = 3600 s 1 s = 0.0002778 hr

1 kgms2 = 1 N = 0.2248 lb 1 lb = 4.448 N

1 J = 1 N·m 1 W = 1 J/s1 rev = 360$ = 2' radians 1 hp = 745.7 W

10#9 nano- n10#6 micro- µ10#3 milli- m10#2 centi- c

103 kilo- k106 mega- M109 giga- G

Forces: Newton’s:, #F = m#a, #FB on A = !#FA on B

Hooke’s: #Felas = !k(#r ! #requil)

friction: |#fs| * µs|#n|, |#fk| = µk|#n|

Centre-of-mass:

#rcm =m1#r1 +m2#r2 + . . .+mn#rn

m1 +m2 + . . .+mn

(and similarly for #v and #a)

Gravity:

Fgrav = GM1M2

R212

Ugrav = !GM1M2

R12T =

2'a3/2%GM

Phys 218 — Final Exam Formulae

Problem  11  -­‐  cont.  

T.  S+egler                09/29/2014            Texas  A&M  University  

General math:

log (x/y) = log (x)! log (y)

log (xy) = log (x) + log (y)

log (xn) = n log (x)

lnx " loge x

x = 10(log10 x)

x = e(ln x)

ha

hho

!

"

ha = h cos ! = h sin"

ho = h sin ! = h cos"

h2 = h2a + h2

o tan ! =ho

ha

#A = Axi+Ay j +Az k

#A · #B = AxBx +AyBy +AzBz = AB cos ! = A!B = AB!

#A# #B = (AyBz!AzBy )i+ (AzBx!AxBz)j + (AxBy!AyBx)k

= AB sin ! = A"B = AB"

df

dt= natn#1

If f(t) = atn, then

!

"

"

#

"

"

$

% t2t1

f(t)dt = an+1

&

tn+12 ! tn+1

1

'

ax2 + bx+ c = 0 $ x =!b±

%b2 ! 4ac

2a

"

" + ! = 90!" + ! = 180!

"!

!

"

!

"

!

"

!

"!

" !

Equations of motion:translational rotational

constant (linear/angular) acceleration only:

#r(t) = #r$ + #v$t+12#at

2

#v(t) = #v$ + #at

v2f = v2$ + 2a(r ! r$)

#r(t) = #r$ +12 (#vi + #vf )t

!(t) = !$ + $$t+12%t

2

$(t) = $$ + %t

$2f = $2

$ + 2%(! ! !$)

!(t) = !$ +12 ($i + $f )t

always true:

&#v' = !r2#!r1t2#t1

#v = d!rdt

&#a' = !v2#!v1

t2#t1#a= d!v

dt =d2!rdt2

#r(t) = #r$ +% t0 #v(t) dt

#v(t) = #v$ +% t0 #a(t) dt

&$' = "2#"1t2#t1

$ = d"dt

&%' = #2##1

t2#t1%= d#

dt =d2"dt2

!(t) = !$ +% t0 #$(t) dt

$(t) = $$ +% t0 #%(t) dt

Forces, Energy and Momenta:translational rotational

W = #F ·!#r =%

#F · d#r

P = dWdt = #F · #v

#pcm = m1#v1 +m2#v2 + . . .

= M#vcm#J =

%

#Fdt = !#p(

#Fext = M#acm = d!pcm

dt(

#Fint = 0

Ktrans =12Mv2cm

#& = #r # #F and |#& | = F"r

W = & !! =%

&d!

P = dWdt = #& · #$

#L = I1#$1 + I2#$2 + . . .

= Itot#$

= #r # #p(

#&ext = Itot#% = d!Ldt

(

#&int = 0

Krot =12Itot$

2

— Both translational and rotational —

W = !K = Ktrans,f +Krot,f !Ktrans,i !Krot,i

Etot,f = Etot,i +Wother ( Kf + Uf = Ki + Ui +Wother

U = !)

#F · d#r ; Ugrav = Mgycm ; Uelas =12k(r ! requil)

2

Fx(x) = !dU(x)/dx #F = !#)U = !*

$U$x i+

$U$y j +

$U$z k

+

Circular motion: arad =v2

RT =

2'R

v

s = R! vtan = R$ atan = R%

Relative velocity:#vA/C = #vA/B + #vB/C

#vA/B = !#vB/A

Constants/Conversions:

g = 9.80 m/s2 = 32.15 ft/s2 (on Earth’s surface)

G = 6.674# 10#11 N ·m2/kg2

R% = 6.38# 106 m M% = 5.98# 1024 kgR& = 6.96# 108 m M& = 1.99# 1030 kg

1 km = 0.6214 mi 1 mi = 1.609 km1 ft = 0.3048 m 1 m = 3.281 ft1 hr = 3600 s 1 s = 0.0002778 hr

1 kgms2 = 1 N = 0.2248 lb 1 lb = 4.448 N

1 J = 1 N·m 1 W = 1 J/s1 rev = 360$ = 2' radians 1 hp = 745.7 W

10#9 nano- n10#6 micro- µ10#3 milli- m10#2 centi- c

103 kilo- k106 mega- M109 giga- G

Forces: Newton’s:, #F = m#a, #FB on A = !#FA on B

Hooke’s: #Felas = !k(#r ! #requil)

friction: |#fs| * µs|#n|, |#fk| = µk|#n|

Centre-of-mass:

#rcm =m1#r1 +m2#r2 + . . .+mn#rn

m1 +m2 + . . .+mn

(and similarly for #v and #a)

Gravity:

Fgrav = GM1M2

R212

Ugrav = !GM1M2

R12T =

2'a3/2%GM

Phys 218 — Final Exam Formulae

(a)  What  is  the  height  of  the  rocket  above  the  surface  of  the  earth  at  t  =  10.0s?  (b)  What  is  the  speed  of  the  rocket  when  it  is  325  m  above  the  surface  of  the  earth?    

Problem  12  

T.  S+egler                09/29/2014            Texas  A&M  University  

The  accelera+on  of  an  object  is  given  by  a(t)  =  2.0  m/s2  +  (.75  m/s3)t  while  moving  in  the  x-­‐direc+on.  If  its  ini+al  posi+on  is  x  =  3.0  m  and  its  ini+al  velocity  is  zero,  find  the  velocity  and  posi+on  when  t  =  2.5  s.  

General math:

log (x/y) = log (x)! log (y)

log (xy) = log (x) + log (y)

log (xn) = n log (x)

lnx " loge x

x = 10(log10 x)

x = e(ln x)

ha

hho

!

"

ha = h cos ! = h sin"

ho = h sin ! = h cos"

h2 = h2a + h2

o tan ! =ho

ha

#A = Axi+Ay j +Az k

#A · #B = AxBx +AyBy +AzBz = AB cos ! = A!B = AB!

#A# #B = (AyBz!AzBy )i+ (AzBx!AxBz)j + (AxBy!AyBx)k

= AB sin ! = A"B = AB"

df

dt= natn#1

If f(t) = atn, then

!

"

"

#

"

"

$

% t2t1

f(t)dt = an+1

&

tn+12 ! tn+1

1

'

ax2 + bx+ c = 0 $ x =!b±

%b2 ! 4ac

2a

"

" + ! = 90!" + ! = 180!

"!

!

"

!

"

!

"

!

"!

" !

Equations of motion:translational rotational

constant (linear/angular) acceleration only:

#r(t) = #r$ + #v$t+12#at

2

#v(t) = #v$ + #at

v2f = v2$ + 2a(r ! r$)

#r(t) = #r$ +12 (#vi + #vf )t

!(t) = !$ + $$t+12%t

2

$(t) = $$ + %t

$2f = $2

$ + 2%(! ! !$)

!(t) = !$ +12 ($i + $f )t

always true:

&#v' = !r2#!r1t2#t1

#v = d!rdt

&#a' = !v2#!v1

t2#t1#a= d!v

dt =d2!rdt2

#r(t) = #r$ +% t0 #v(t) dt

#v(t) = #v$ +% t0 #a(t) dt

&$' = "2#"1t2#t1

$ = d"dt

&%' = #2##1

t2#t1%= d#

dt =d2"dt2

!(t) = !$ +% t0 #$(t) dt

$(t) = $$ +% t0 #%(t) dt

Forces, Energy and Momenta:translational rotational

W = #F ·!#r =%

#F · d#r

P = dWdt = #F · #v

#pcm = m1#v1 +m2#v2 + . . .

= M#vcm#J =

%

#Fdt = !#p(

#Fext = M#acm = d!pcm

dt(

#Fint = 0

Ktrans =12Mv2cm

#& = #r # #F and |#& | = F"r

W = & !! =%

&d!

P = dWdt = #& · #$

#L = I1#$1 + I2#$2 + . . .

= Itot#$

= #r # #p(

#&ext = Itot#% = d!Ldt

(

#&int = 0

Krot =12Itot$

2

— Both translational and rotational —

W = !K = Ktrans,f +Krot,f !Ktrans,i !Krot,i

Etot,f = Etot,i +Wother ( Kf + Uf = Ki + Ui +Wother

U = !)

#F · d#r ; Ugrav = Mgycm ; Uelas =12k(r ! requil)

2

Fx(x) = !dU(x)/dx #F = !#)U = !*

$U$x i+

$U$y j +

$U$z k

+

Circular motion: arad =v2

RT =

2'R

v

s = R! vtan = R$ atan = R%

Relative velocity:#vA/C = #vA/B + #vB/C

#vA/B = !#vB/A

Constants/Conversions:

g = 9.80 m/s2 = 32.15 ft/s2 (on Earth’s surface)

G = 6.674# 10#11 N ·m2/kg2

R% = 6.38# 106 m M% = 5.98# 1024 kgR& = 6.96# 108 m M& = 1.99# 1030 kg

1 km = 0.6214 mi 1 mi = 1.609 km1 ft = 0.3048 m 1 m = 3.281 ft1 hr = 3600 s 1 s = 0.0002778 hr

1 kgms2 = 1 N = 0.2248 lb 1 lb = 4.448 N

1 J = 1 N·m 1 W = 1 J/s1 rev = 360$ = 2' radians 1 hp = 745.7 W

10#9 nano- n10#6 micro- µ10#3 milli- m10#2 centi- c

103 kilo- k106 mega- M109 giga- G

Forces: Newton’s:, #F = m#a, #FB on A = !#FA on B

Hooke’s: #Felas = !k(#r ! #requil)

friction: |#fs| * µs|#n|, |#fk| = µk|#n|

Centre-of-mass:

#rcm =m1#r1 +m2#r2 + . . .+mn#rn

m1 +m2 + . . .+mn

(and similarly for #v and #a)

Gravity:

Fgrav = GM1M2

R212

Ugrav = !GM1M2

R12T =

2'a3/2%GM

Phys 218 — Final Exam Formulae

Problem  12  –  cont.  

T.  S+egler                09/29/2014            Texas  A&M  University  

The  accelera+on  of  an  object  is  given  by  a(t)  =  2.0  m/s2  +  (.75  m/s3)t  while  moving  in  the  x-­‐direc+on.  If  its  ini+al  posi+on  is  x  =  3.0  m  and  its  ini+al  velocity  is  zero,  find  the  velocity  and  posi+on  when  t  =  2.5  s.  

General math:

log (x/y) = log (x)! log (y)

log (xy) = log (x) + log (y)

log (xn) = n log (x)

lnx " loge x

x = 10(log10 x)

x = e(ln x)

ha

hho

!

"

ha = h cos ! = h sin"

ho = h sin ! = h cos"

h2 = h2a + h2

o tan ! =ho

ha

#A = Axi+Ay j +Az k

#A · #B = AxBx +AyBy +AzBz = AB cos ! = A!B = AB!

#A# #B = (AyBz!AzBy )i+ (AzBx!AxBz)j + (AxBy!AyBx)k

= AB sin ! = A"B = AB"

df

dt= natn#1

If f(t) = atn, then

!

"

"

#

"

"

$

% t2t1

f(t)dt = an+1

&

tn+12 ! tn+1

1

'

ax2 + bx+ c = 0 $ x =!b±

%b2 ! 4ac

2a

"

" + ! = 90!" + ! = 180!

"!

!

"

!

"

!

"

!

"!

" !

Equations of motion:translational rotational

constant (linear/angular) acceleration only:

#r(t) = #r$ + #v$t+12#at

2

#v(t) = #v$ + #at

v2f = v2$ + 2a(r ! r$)

#r(t) = #r$ +12 (#vi + #vf )t

!(t) = !$ + $$t+12%t

2

$(t) = $$ + %t

$2f = $2

$ + 2%(! ! !$)

!(t) = !$ +12 ($i + $f )t

always true:

&#v' = !r2#!r1t2#t1

#v = d!rdt

&#a' = !v2#!v1

t2#t1#a= d!v

dt =d2!rdt2

#r(t) = #r$ +% t0 #v(t) dt

#v(t) = #v$ +% t0 #a(t) dt

&$' = "2#"1t2#t1

$ = d"dt

&%' = #2##1

t2#t1%= d#

dt =d2"dt2

!(t) = !$ +% t0 #$(t) dt

$(t) = $$ +% t0 #%(t) dt

Forces, Energy and Momenta:translational rotational

W = #F ·!#r =%

#F · d#r

P = dWdt = #F · #v

#pcm = m1#v1 +m2#v2 + . . .

= M#vcm#J =

%

#Fdt = !#p(

#Fext = M#acm = d!pcm

dt(

#Fint = 0

Ktrans =12Mv2cm

#& = #r # #F and |#& | = F"r

W = & !! =%

&d!

P = dWdt = #& · #$

#L = I1#$1 + I2#$2 + . . .

= Itot#$

= #r # #p(

#&ext = Itot#% = d!Ldt

(

#&int = 0

Krot =12Itot$

2

— Both translational and rotational —

W = !K = Ktrans,f +Krot,f !Ktrans,i !Krot,i

Etot,f = Etot,i +Wother ( Kf + Uf = Ki + Ui +Wother

U = !)

#F · d#r ; Ugrav = Mgycm ; Uelas =12k(r ! requil)

2

Fx(x) = !dU(x)/dx #F = !#)U = !*

$U$x i+

$U$y j +

$U$z k

+

Circular motion: arad =v2

RT =

2'R

v

s = R! vtan = R$ atan = R%

Relative velocity:#vA/C = #vA/B + #vB/C

#vA/B = !#vB/A

Constants/Conversions:

g = 9.80 m/s2 = 32.15 ft/s2 (on Earth’s surface)

G = 6.674# 10#11 N ·m2/kg2

R% = 6.38# 106 m M% = 5.98# 1024 kgR& = 6.96# 108 m M& = 1.99# 1030 kg

1 km = 0.6214 mi 1 mi = 1.609 km1 ft = 0.3048 m 1 m = 3.281 ft1 hr = 3600 s 1 s = 0.0002778 hr

1 kgms2 = 1 N = 0.2248 lb 1 lb = 4.448 N

1 J = 1 N·m 1 W = 1 J/s1 rev = 360$ = 2' radians 1 hp = 745.7 W

10#9 nano- n10#6 micro- µ10#3 milli- m10#2 centi- c

103 kilo- k106 mega- M109 giga- G

Forces: Newton’s:, #F = m#a, #FB on A = !#FA on B

Hooke’s: #Felas = !k(#r ! #requil)

friction: |#fs| * µs|#n|, |#fk| = µk|#n|

Centre-of-mass:

#rcm =m1#r1 +m2#r2 + . . .+mn#rn

m1 +m2 + . . .+mn

(and similarly for #v and #a)

Gravity:

Fgrav = GM1M2

R212

Ugrav = !GM1M2

R12T =

2'a3/2%GM

Phys 218 — Final Exam Formulae