The unit step response of an LTI system

Post on 06-Jan-2016

25 views 1 download

Tags:

description

The unit step response of an LTI system. Linear constant-coefficient difference equations. +. delay. When n 1,. Causality. Linear constant-coefficient difference equations. +. delay. Determine A by initial condition:. When n = 0 ,. A = 1. - PowerPoint PPT Presentation

Transcript of The unit step response of an LTI system

16.362 Signal and System I • The unit step response of an LTI system

][n ][nh ][ny

][nu ][nh ][ns

k

knhkny ][][][

][

][][][

nh

knkhnyk

n

k

k

kh

knukhns

][

][][][

16.362 Signal and System I

• Linear constant-coefficient difference equations

][]1[2

1][ nxnyny

][]1[2

1][ nnhnh

]1[2

1][ nhnh

][]1[2

1][ nnhnh

When n 1, 2

1

]1[

][

nhnh

n

Anh

2

1][

][2

1][ nuAnh

n

Causality

][n

][nh

][nh

2

1

+

delay

16.362 Signal and System I

• Linear constant-coefficient difference equations

][n

][nh

][nh

2

1

][]1[2

1][ nxnyny +

][]1[2

1][ nnhnh delay

][]1[2

1][ nnhnh

][2

1][ nuAnh

n

Determine A by initial condition:

When n = 0, 1]0[]0[ h

]0[2

1]0[

0

uAh

A = 1

16.362 Signal and System I

• Linear constant-coefficient difference equations

]1[ n ][]1[2

1][ nxnyny

][]1[2

1][ nnhnh

][2

1][ nunh

n

?][ ny

Two ways:

(1) Repeat the procedure

(2) ][][][ nhnxny

]1[2

1

]1[

][]1[][

1

nu

nh

nhnny

n

][nh

][nh

2

1

+

delay

16.362 Signal and System I

• Linear constant-coefficient difference equations

)(t

When t>0,dt

dyty

2

1)( tAety 2)(

Determine A by initial condition:

)()( 2 tuAeth t

Causality

)(2

1

2

1)( tx

dt

dyty

)(2

1

2

1)( t

dt

dyty

)(2

1

2

1)( t

dt

dyty

)(th

)(ty

2

1

+

dt

d

2

1

16.362 Signal and System I • Linear constant-coefficient difference equations

Determine A by initial condition:

)()( 2 tuAeth t

)(2

1)()

2

1()()2(

2

1)( 222 ttAetuAetuAe ttt

A = 1 )()( 2 tueth t

)(t)(

2

1

2

1)( tx

dt

dyty

)(2

1

2

1)( t

dt

dyty

)(th

)(ty

2

1

+

dt

d

2

1

16.362 Signal and System I • Linear constant-coefficient difference equations

)()( 3 tuKetx t

][5

][

)]()[(

)()(

)()()(

23

52

)(23

)(23

tt

t

o

t

t

o

t

t

eeK

deKe

deKe

dtueuKe

dthx

thtxty

)(th

)(ty

2

1

)(2

1

2

1)( tx

dt

dyty +

dt

d

2

1

)()( 2 tueth t

)(][5

)( 23 tueeK

ty tt

16.362 Signal and System I

• Fourier series representation of continuous-time periodical signal)()( Ttxtx for all tPeriodic signal

tjk

kkeatx 0)(

tjke 0

k is an integer

form a complete and orthogonal bases

Complete: no other basis is needed.

Fourier series

Orthogonal:

),(),(2

11

0

2

0

)(

00 0

)(

0

0

)(

0

0

000

mkTmk

detde

dtedtee

mkjT tmkj

T tmkjT tjmtjk

),(1

0

00 mkdteeT

T tjmtjk

Orthogonal:

mk

mkmk

0

1),(Kronecker Delta

16.362 Signal and System I

• Fourier series representation of continuous-time periodical signal)()( Ttxtx for all tPeriodic signal

tjk

kkeatx 0)(

k is an integer

m

kk

T tmkj

kk

T tjmtjk

kk

T tjmtjk

kk

T tjm

a

mka

dteT

a

dteeT

a

dteeaT

dtetxT

)(

1

1

1)(

1

0

)(

0

00

0

00

000

T tjm

m dtetxT

a0

0)(1

16.362 Signal and System I

• Fourier series representation of continuous-time periodical signal)()( Ttxtx for all tPeriodic signal

tjk

kkeatx 0)(

k is an integer T tjm

m dtetxT

a0

0)(1

e.g.

k

Tk

Tk

Tk

jk

ee

T

dteT

dteT

dtetxT

a

TjkTjk

T

TT

tjkT tjk

T tjkk

10

0

10

0

0

0

sinsin2

1

11

)(1

1010

1

01

0

0

T

20

1T

2

T

2

T1TT

T

T

1T

16.362 Signal and System I • Fourier series representation of continuous-time periodical signal

k

Tkak

10sin

1T

2

T

2

T1TT

T

T

1T

T tjk

k dtetxT

a0

0)(1

T

Tdt

Ta

T

T

10

21 1

1

tjk

kkeatx 0)(

0 00

16.362 Signal and System I • The response of system to complex exponentials

)(tx )(ty

Band limited channel

Bandwidth 0100

-2 -1.5 -1 -0.5 0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

1

1.2

1.4

Bandwidth 010

16.362 Signal and System I • Fourier series representation of discrete-time periodical signal

][][ Nnxnx

N

20

for all tPeriodic signal

1

0

0][N

k

njkkeanx

1

0

0][1 N

n

njkk enx

Na

kNk aa

16.362 Signal and System I • Example #1

)sin(][ 0nnx N

20

1

0

0][1 N

n

njkk enx

Na

nNjn

Nj

njnj

ej

ej

j

ee

nnx

22

0

2

1

2

1

2

)sin(][00

ja

2

11 j

a2

11

Nk

njkkeanx 0][

16.362 Signal and System I • Properties of discrete-time Fourier series

(1) Linearity

ka

kb

][][][ nBynAxnz kk BbAa

1

0

0][1 N

n

njkk enx

Na

Nk

njkkeanx 0][

Nk

njkkeanx 0][

Nk

njkkebny 0][

16.362 Signal and System I

Nk

njknjkk

Nk

nnjkk

eea

eannx

000

00 )(0 ][

(2) Time shifting

0njkkea

(3) Time reversal

kNa

Nk

njkk

Nk

njkk

ea

eanx

0

0 )(][

16.362 Signal and System I

)(1

0

0][ njkN

kkeanx

(4) Time scaling

ka

1

0

1

0

1

0

1

0

)(

1

0

1

0

0

0

00][][

N

l

N

k

njklkl

N

l

N

m

nmljml

njmN

mm

njlN

ll

eba

eba

ebeanynx

(5) multiplication

1

0

N

llklba

0

16.362 Signal and System I

Nk

njkkeanx 0][

(6) Conjugation and conjugate symmetry

ka

ka

Real signal

][][ nxnx

kk aa

Even

kk aa

kk aa

][][ nxnx

Real & Even kk aa

njkN

kkeanx 0

1

0

*][*

16.362 Signal and System I

Nk Nmmk

Nk Nm

N

n

nmkjmk

Nm

njmm

N

n Nk

njkk

N

n

N

n

mkNaa

eaa

eaea

nxnxnx

),(

][*][][

*

1

0

)(*

*1

0

1

0

1

0

2

0

00

(7) Parseval’s relation

Nk

k

N

n

anxN

21

0

2][

1

16.362 Signal and System I

k

njkk

j

k

njkk

k

njkk

eae

eaeanxnx

00

00

1

]1[][ )1(

(8) Time difference

kj ae 01

kjk

njk

k

k

n

m

mjkk

n

m k

mjkk

n

m

e

ea

ea

eanx

0

0

0

0

1

][

(9) Running sum

01 jkk

e

a

0k

00 a

16.362 Signal and System I

][1 nx

Example

ka

N = 4

][2 nx

[1, 2, 2, 1]

kb [1, 1, 1, 1]

][][][ 11 nxnxny ?kc

1

0

N

llklk bac

132231000 babababac

233201101 babababac

330211202 babababac

031221303 babababac

16.362 Signal and System I • Fourier series and LTI system

)(tx )(th )(ty

Periodic signalSystem response doesn’t have to be periodic.

Output periodic?

)(

)(

)()( )(

sHe

dehe

dehty

st

sst

ts

stetx )( )(th

dehsH s)()(

16.362 Signal and System I

)()( jHety tjtjetx )( )(th

dehjH j)()(

k

tjkk jkHeaty )()( 0

0 tjk

kkeatx 0)(

)(th

dehjkH jk 0)()( 0

16.362 Signal and System I

)(th)(tx )(ty

Filtering

• Frequency-shaping filters

• Frequency-selective filters

(1) Frequency-shaping filters

dt

tdxty

)()(

)(th

kk ajkb 0

00 )( jkjkH

16.362 Signal and System I

)(th)(tx )(ty

(1) Frequency-shaping filters

dt

tdxty

)()(

)(th

kk ajkb 0

jjH )(

16.362 Signal and System I

)(th)(tx )(ty

(2) Frequency-selective filters

Low-pass

high-pass

band-pass

16.362 Signal and System I

][nynjenx ][ ][nh

Discrete-time

k

kjnj

k

knj

k

ekhe

ekh

knxkhny

][

][

][][][

)(

k

kjekhjH ][)(

][ny

Nk

njkkeanx 0][

][nh

Nk

njkk ejkHany 0)(][ 0

ka

][ny

][nx

][nh )( 0jkH

)( 0jkHak

16.362 Signal and System I

][nx ][nh

Example: averaging

]1[][2

1][ nxnxny

Nk

jknjk

k

Nk

njkk

njkk

eea

eaea

nxnxny

2

1

2

1

]1[][2

1][

0

0

00 )1(

2

1 0jk

kk

eab

)2/cos(

2

1)(

02/

0

0

0

ke

ejkH

jk

jk

16.362 Signal and System I • Continuous-time Fourier transform

)(txAperiodic signal

tjk

kkeatx 0)(

k is an integer

T tjk

k dtetxT

a0

0)(1

)()( Ttxtx Periodic signal

dejXtx tj)(

2

1)(

dtetxjX tj )()(

)'(

)'()(

2

1)(

)(2

1)(

)'(

''

jX

djX

dtedjX

dtedejXdtetx

tj

tjtjtj

kajkX 2)( 0

16.362 Signal and System I • Continuous-time Fourier transform

)(txAperiodic signal

tjk

kkeatx 0)(

k is an integer

T tjk

k dtetxT

a0

0)(1

)()( Ttxtx Periodic signal

2

)( 0jkXak

dejXtx tj)(

2

1)(

dtetxjX tj )()(

16.362 Signal and System I • Examples

)()( tuetx at

ja

dtee

dtetxjX

tjat

tj

1

)()(

0

jajX

1)(

2/1

22

1)(

ajX

a

1tan

dejXtx tj)(

2

1)(

dtetxjX tj )()(

16.362 Signal and System I • Properties of continuous-time Fourier transform

)(tx

(1) Linearity

)(ty

)( jX

)( jY

)()()( tBytAxtz )()()( jBYjAXjZ

dejXtx tj)(

2

1)(

dtetxjX tj )()(

16.362 Signal and System I • Properties of continuous-time Fourier transform

dejXtx tj)(

2

1)(

dtetxjX tj )()(

)( 0ttx

(2) Time shifting

0)( tjejX

(3) Time reversal

')'(

)(

)()('

')(

))((

dtetx

dtetx

dtetxjX

tj

tj

tj

)( tx

)( jX

16.362 Signal and System I • Properties of continuous-time Fourier transform

dejXtx tj)(

2

1)(

dtetxjX tj )()(

)( tx

(4) Time scaling

tdetx

dtetxjX

tj

tj

)(1

)()('

jX

1

16.362 Signal and System I • Properties of continuous-time Fourier transform

dejXtx tj)(

2

1)(

dtetxjX tj )()(

(5) Conjugation and conjugate summary

)(tx

)(

)(

)()('

)(

jX

dtetx

dtetxjX

tj

tj

)(tx Real

)()( txtx )()( jXjX

)()( jXjX

16.362 Signal and System I Example

)()( tuetx t

)()( jXjX

)()( jXjX

jjX

1)(

)( tx even

Even and real)()( jXjX

16.362 Signal and System I Differential

)(tx

dejXtx tj)(

2

1)(

)( jX

dt

tdxtg

)()(

dejXj

dt

tdx tj)(2

1)(

)( jG

)()( jXjjG

16.362 Signal and System I Integral)(tx

j

edjX

jj

ejdjX

dedjddjX

dededjX

dedjX

ddejXdx

tj

tj

t j

t jj

t j

t jt

)()(2

1

1)()(

2

1

)sin()cos()(2

1

)(2

1

)(2

1

)(2

1)(

0

00

0

0

)( jX

tdxtg )()( )( jG

)0()()(

)( Xj

jXjG

16.362 Signal and System I

Example

)(tx )( jX

tdxtg )()( )0()(

)()( X

j

jXjG

dt

tdxtf

)()( )()( jXjjF

)(ty)(tx )(th

)()( tuetx bt 0b

)()( tueth at 0a

)()()( thtxty

jbjX

1)(

jajH

1)(

jbjaab

jbjajY

111

11)(

)(1

)(1

)( tueab

tueab

ty btat

ab

16.362 Signal and System I Example

)(ty)(tx )(th

)()( tuetx at

)()( tueth at

0a

)()()( thtxty

jajX

1)(

jajH

1)(

jad

dj

jajY

1

1)(

2

)(

)(2

)(2

)(2

)(2

)(

tute

djXet

djXjtej

jdXej

dejXd

djty

at

tj

tj

tj

tj

16.362 Signal and System I Example

dejXtx tj)(

2

1)(

dtetxjX tj )()(

21

1)(

jX?)( tx

)1(

1

)1(

1

2

1

)1)(1(

11

1)(

2

jj

jj

jX)(

2

1)(

2

1)( tuetuetx tt

tetx 2

1)(

deetx tjt

21

1

2

1

2

1)(

16.362 Signal and System I Example

dejXtx tj)(

2

1)(

dtetxjX tj )()(

?)( jX21

1)(

ttx

deetx tjt

21

1

2

1

2

1)(

dte

te tj

21

1

2

1

2

1

dte

te tj

21

1

2

1

2

1

16.362 Signal and System I Parseval’s relation

djXjX

djXdjX

djXdjXdte

dtdejXdejX

dttxtxdttx

tj

tjtj

)'()(2

1

)'(')'()(2

1

')'(2

1)(

2

1

')'()(2

1

)()()(

)'(

'

2

djXdttx22)(

2

1)(

16.362 Signal and System I Parseval’s relation for continuous-time Fourier series

k

k

Tadttx

T2

0

2)(

1

djXdttx22)(

2

1)(

Parseval’s relation for continuous-time Fourier transfer

16.362 Signal and System I Example

0.5 1.0-0.5-1.0

2/

?)(2

dttx

)( jX

djXdttx22)(

2

1)(

0|)( xtxdt

dD

16.362 Signal and System I Example

0.5 1.0-0.5-1.0

2/

?)(2

dttx

)( jX

0|)( xtxdt

dD

dejXtx tj)(2

1)(

dejXjtxdt

d tj)()(2

1)(

0

)()(2

1

|)()(2

1|)( 00

djXj

dejXjtxdt

dt

tjt

16.362 Signal and System I Example, P. 4.14

)( jX)(tx

(1) real

(2) )()( 2 tuAetg t)()1()( jXjjG

(3) 2)(2

djX

?)( tx

Solution:

)()( 2 tuAetg t

j

AjG

2

)(

)()1()( jXjjG

)2)(1(

)1(

)()(

jj

A

j

jGjX

16.362 Signal and System I Example, P. 4.14

)( jX)(tx

(1) real

(2) )()( 2 tuAetg t)()1()( jXjjG

(3) 2)(2

djX

?)( tx

Solution:

)2)(1()(

jj

AjX

2)(

2

djX

dA

dA

djX

22

2

22

22

4

1

1

1

3

41)(

16.362 Signal and System I Example, P. 4.14

Solution:

2

2

2

222

tantan1

1

1

1

d

dd

tan

2

2

1

tantan1

1

2

1

2

21

1

2

1

4

1

2

2

2

22

22

d

d

dd

tan

2

16.362 Signal and System I Example, P. 4.14

)( jX)(tx

(3) 2)(2

djX

Solution:

)2)(1()(

jj

AjX

2)(

2

djX

6

4

1

1

1

3)(

2

22

22

A

dA

djX

122 A jeA 12

16.362 Signal and System I Example, P. 4.14

)( jX)(tx

(3) 2)(2

djX

Solution:

)2)(1()(

jj

AjX

jeA 12

)2(

1

)1(

112)(

jjejX j )()(12)( 2 tuetueetx ttj

(1) real

)()(12)( 2 tuetuetx tt

16.362 Signal and System I • Multiplication

dejXtx tj)(

2

1)(

dtetxjX tj )()(

111

212211

)(2211

2211

2211

))(()(2

1

)(2)(2

1)(

2

1

)(2

1)(

2

1

)(2

1)(

2

1

)(2

1)(

2

1

)()()(

21

21

21

djYjX

djYdjX

dtedjYdjX

dteeedjYdjX

dejYdejXdte

dtetytxjZ

tj

tjtjtj

tjtjtj

tj)()()( tytxtz

)()(2

1)(

jYjXjZ

16.362 Signal and System I

Example #1

dejXtx tj)(

2

1)(

dtetxjX tj )()(

)()()( tytxtz )()()( jYjXjZ

ttp 0cos)( )()( 00

)(ts )( jS

ttsty 0cos)()( )( jY

))((2

1))((

2

1

))'(()'()'(2

1

))'(()'(2

1

)()(2

1)(

00

00

jSjS

djS

djSjP

jPjSjY

16.362 Signal and System I

Example #2

dejXtx tj)(

2

1)(

dtetxjX tj )()(

)()()( tytxtz )()()( jYjXjZ

ttp 0cos)( )()( 00

)(ts )( jS

ttsty 0cos)()(

)2(()(2)2((4

1

)()(2

1)(

00

jSjSjS

jPjYjG)()()( tptytg

))((2

1))((

2

1

)()(2

1)(

00

jSjS

jPjSjY

16.362 Signal and System I • Frequency-selective filtering with variable center frequency

x)(tx Low pass filter x

tj ce tj ce

)(ty )(tw)(tf

c

0

1

0

c cc

0 c