The Definite Integral - uml.edufaculty.uml.edu/Jennifer_GonzalezZugasti/Calculus II...definite...

Post on 11-Mar-2021

2 views 0 download

Transcript of The Definite Integral - uml.edufaculty.uml.edu/Jennifer_GonzalezZugasti/Calculus II...definite...

The Definite Integral

Part 2

Recall: Definite Integral

If the function 𝑓 π‘₯ is defined on π‘Ž, 𝑏 , then the definite integral of 𝒇 from 𝒂 to 𝒃 is

οΏ½ 𝑓 π‘₯𝑏

π‘Žπ‘‘π‘₯ = lim

𝑃 β†’0�𝑓 π‘π‘˜ βˆ™ βˆ†π‘₯π‘˜

𝑛

π‘˜=1

provided the limit exists.

Theorems 1. If 𝑓 π‘₯ is continuous on π‘Ž, 𝑏 , then 𝑓 π‘₯ is integrable on

π‘Ž, 𝑏 .

2. If 𝑓 π‘₯ has only finitely many points of discontinuity on π‘Ž, 𝑏 and if there is a positive number 𝑀 such that βˆ’π‘€ ≀ 𝑓 π‘₯ ≀ 𝑀 for all π‘₯ in π‘Ž, 𝑏 (that is, 𝑓 π‘₯ is bounded on π‘Ž, 𝑏 ), then 𝑓 π‘₯ is integrable on π‘Ž, 𝑏 .

3. If 𝑓 π‘₯ is continuous and assumes both positive and negative values on π‘Ž, 𝑏 , then

οΏ½ 𝑓 π‘₯𝑏

π‘Žπ‘‘π‘₯ = area above π‘₯βˆ’axis βˆ’ area below π‘₯βˆ’axis

Basic Properties of Integrals a) Zero Width Interval

οΏ½ 𝑓 π‘₯π‘Ž

π‘Žπ‘‘π‘₯ = 0

b) Constant Multiple

οΏ½ π‘˜ βˆ™ 𝑓 π‘₯𝑏

π‘Žπ‘‘π‘₯ = π‘˜οΏ½ 𝑓 π‘₯

𝑏

π‘Žπ‘‘π‘₯

c) Sum/Difference

οΏ½ 𝑓 π‘₯ Β± 𝑔 π‘₯𝑏

π‘Žπ‘‘π‘₯ = οΏ½ 𝑓 π‘₯

𝑏

π‘Žπ‘‘π‘₯ Β± οΏ½ 𝑔 π‘₯

𝑏

π‘Žπ‘‘π‘₯

d) Additivity

οΏ½ 𝑓 π‘₯𝑏

π‘Žπ‘‘π‘₯ + οΏ½ 𝑓 π‘₯

𝑐

𝑏𝑑π‘₯ = οΏ½ 𝑓 π‘₯

𝑐

π‘Žπ‘‘π‘₯

Basic Properties of Integrals (continued)

e) Max-Min Inequality: If 𝑓 π‘₯ has maximum value max 𝑓 and minimum value min 𝑓 on π‘Ž, 𝑏 , then

min 𝑓 βˆ™ 𝑏 βˆ’ π‘Ž ≀ οΏ½ 𝑓 π‘₯𝑏

π‘Žπ‘‘π‘₯ ≀ max 𝑓 βˆ™ 𝑏 βˆ’ π‘Ž

f) Domination

– 𝑓 π‘₯ β‰₯ 𝑔 π‘₯ on π‘Ž, 𝑏 ⟹ ∫ 𝑓 π‘₯π‘π‘Ž 𝑑π‘₯ β‰₯ ∫ 𝑔 π‘₯𝑏

π‘Ž 𝑑π‘₯

– 𝑓 π‘₯ β‰₯ 0 on π‘Ž, 𝑏 ⟹ ∫ 𝑓 π‘₯π‘π‘Ž 𝑑π‘₯ β‰₯ 0

g) Order

οΏ½ 𝑓 π‘₯π‘Ž

𝑏𝑑π‘₯ = βˆ’οΏ½ 𝑓 π‘₯

𝑏

π‘Žπ‘‘π‘₯

Basic Definite Integrals

β€’ ∫ π‘₯π‘π‘Ž 𝑑π‘₯ = 𝑏2

2βˆ’ π‘Ž2

2, π‘Ž < 𝑏

β€’ ∫ π‘π‘π‘Ž 𝑑π‘₯ = 𝑐 𝑏 βˆ’ π‘Ž , 𝑐 any constant

β€’ ∫ π‘₯2π‘π‘Ž 𝑑π‘₯ = 𝑏3

3βˆ’ π‘Ž3

3, π‘Ž < 𝑏

Example 1

Evaluate:

a) ∫ 347 𝑑π‘₯

b) ∫ 7π‘₯150 𝑑π‘₯

c) ∫ 3π‘₯ + 114 𝑑π‘₯

d) ∫ 5π‘₯221 2⁄ 𝑑π‘₯

Example 1 (continued)

Solution (a):

οΏ½ 34

7𝑑π‘₯

= βˆ’οΏ½ 37

4𝑑π‘₯

= βˆ’ 3 7 βˆ’ 4 = βˆ’9

Example 1 (continued)

Solution (b):

οΏ½ 7π‘₯15

0𝑑π‘₯

= 7οΏ½ π‘₯15

0𝑑π‘₯

= 7152

2βˆ’

02

2=

15752

Example 1 (continued) Solution (c):

οΏ½ 3π‘₯ + 11

4𝑑π‘₯

= βˆ’οΏ½ 3π‘₯ + 14

1𝑑π‘₯

= βˆ’ οΏ½ 3π‘₯4

1𝑑π‘₯ + οΏ½ 1

4

1𝑑π‘₯

= βˆ’ 3οΏ½ π‘₯4

1𝑑π‘₯ + οΏ½ 1

4

1𝑑π‘₯

= βˆ’ 342

2 βˆ’12

2 + 1 4 βˆ’ 1 = βˆ’512

Example 1 (continued)

Solution (d):

οΏ½ 5π‘₯22

1 2⁄𝑑π‘₯

= 5οΏ½ π‘₯22

1 2⁄𝑑π‘₯

= 523

3βˆ’

12οΏ½

3

3=

1058

Average Value of a Continuous Function

If 𝑓 π‘₯ is integrable on π‘Ž, 𝑏 , then its average value on 𝒂,𝒃 , also called its mean, is

av 𝑓 =1

𝑏 βˆ’ π‘ŽοΏ½ 𝑓 π‘₯𝑏

π‘Žπ‘‘π‘₯

Example 2

Graph 𝑓 π‘₯ = βˆ’π‘₯2 and find its average value over βˆ’1,4 .

Solution:

av 𝑓 =1

𝑏 βˆ’ π‘ŽοΏ½ 𝑓 π‘₯𝑏

π‘Žπ‘‘π‘₯

We have: 𝑓 π‘₯ = βˆ’π‘₯2 π‘Ž, 𝑏 = βˆ’1,4

Example 2 (continued)

av 𝑓 =1

𝑏 βˆ’ π‘ŽοΏ½ 𝑓 π‘₯𝑏

π‘Žπ‘‘π‘₯

=1

4 βˆ’ βˆ’1οΏ½ βˆ’π‘₯24

βˆ’1𝑑π‘₯

= βˆ’15οΏ½ π‘₯24

βˆ’1𝑑π‘₯

= βˆ’15

43

3βˆ’

βˆ’1 3

3

= βˆ’133

Eureka!

The exclamation 'Eureka!' is famously attributed to the ancient Greek scholar Archimedes. He reportedly proclaimed "Eureka!" when he stepped into a bath and noticed that the water level roseβ€”he suddenly understood that the volume of water displaced must be equal to the volume of the part of his body he had submerged. He then realized that the volume of irregular objects could be measured with precision, a previously intractable problem. He is said to have been so eager to share his discovery that he leapt out of his bathtub and ran through the streets of Syracuse naked.