Superalloy Slides

Post on 30-Oct-2014

48 views 0 download

Tags:

Transcript of Superalloy Slides

METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08

SUPERALLOYS

METE 327Fall, 2008

METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08

OUTLINE Historical perspective Applications Compositions Processes Properties

− Creep

METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08

METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08

Applications Gas Turbine Engines

− Blades, vanes, disks, combustors Space Vehicles

− Rocket motors Nuclear Reactors Submarines Petroleum Equipment

METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08

METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08

Compositions Ni, Co and Fe Based Alloys Solid solution strengthening

− Cr, Mo, Al, Nb, Ti and others Precipitation strengthening

− Mostly due to Al and Ti− Ni3(Al,Ti), gamma prime− Lattice mismatch, amount, size and morphology

Carbide phases− M23C6, M6C or MC− M can be Cr, Ti, Mo or W

METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08

METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08

METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08

METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08

METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08

METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08

METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08

METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08

METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08

METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08

Astroloy Microstructure (orig. 15 K X)

METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08

CREEP Deformation at high temperature under

constant load Important property of Superalloys Brief discussion now, more next time

METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08

METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08

METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08

METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08

METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08

METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08

Engineering Design Using Creep (and Stress-Rupture)

The Larson-Miller Parameter:

Stress Rupture Data Plottedaccording to the followingequation:

Where M = log e

and θ = t exp (-Q/RT)

assuming that Q and θ are functions of stress only. t can be atime to rupture or a time to a given creep strain.

Engineering Design Using Creep (and Stress-Rupture)

The Larson-Miller Parameter:

Stress Rupture Data Plottedaccording to the followingequation:

Where M = log e

and θ = t exp (-Q/RT)

assuming that Q and θ are functions of stress only. t can be atime to rupture or a time to a given creep strain.

METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08

METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08

METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08

Assignment Please email me a question about superalloys

before Monday, 17 November jacobsonla@att.net More about creep next time, and Materials

Selection for Design

METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08

METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08