Signal & Systems -...

Post on 18-Oct-2020

5 views 0 download

Transcript of Signal & Systems -...

Kim, J. Y.

IC & DSP

Research

Group

Signal & Systems

Chonnam National University

Dept. of Electronics Engineering

IC&DSP Research Group

Kim, Jin Young

Kim, J. Y.

IC & DSP

Research

Group

3. Fourier Representations

for Signals and Linear Time-

Invariant Systems

Kim, J. Y.

IC & DSP

Research

Group

3.1 Introductions

Represent a signal as a weighted

superposition of complex sinusoids.

The study of signals and systems using

sinusoidal representation is termed

Fourier analysis after Joseph Fourier

(1768-1830) for his contributions to the

theory of representing functions as

weighted superposition of sinusoids.

Kim, J. Y.

IC & DSP

Research

Group

3.2 Complex Sinusoids and

Frequency Response of LTI Systems

Frequency response : the response of an

LTI system to a sinusoidal input

h(t)

A

-A

A|H(j)|

-A|H(j)|

( ) j tx t e

( ) ( ) j tx t H j e

Kim, J. Y.

IC & DSP

Research

Group

Complex Sinusoids and LTI

Systems 1

A complex sinusoid input to a LTI system

generates an output equal to the

sinusoidal input multiplied by the system

frequency response

[ ] ( ) , ( ) [ ]j j n j j k

k

y n H e e where H e h k e

( ) ( ) , ( ) ( )j t jy t H j e where H j h e d

Kim, J. Y.

IC & DSP

Research

Group

Complex Sinusoids and LTI

Systems 2

Eigenfunction and eigenvalue of a system

H (t)

[n]

(t)

[n]

H

H nj

e njj

eeH

)(

j te ( ) j tH j e

1 1

( ) ( ) ( )k k

M Mi t i t

k k k

k k

x t a e y t a H j e

Signal decomposition Convolution is not necessary!

Kim, J. Y.

IC & DSP

Research

Group

3.3 Fourier Representation for

Four Classes of Signals

Time Periodic Nonperiodic

Continuous Fourier Series

Fourier

Transform

Discrete

Discrete-Time

Fourier Series

Discrete-Time

Fourier

Transform

Kim, J. Y.

IC & DSP

Research

Group

A function in the

functional space

Othogonal basis functions

of the functional space

Saw tooth wave

1

cosnx

sinnx

Coordinate system

ak=<x(t), coskx>

bk=<x(t), sinkx>

*,k m k m

T

dt

….

Kim, J. Y.

IC & DSP

Research

Group

http://www.nst.ing.tu-

bs.de/schaukasten/fourier/en_idx.html#DIRI

With sound!!

Kim, J. Y.

IC & DSP

Research

Group

Orthogonality of Complex

Sinusoids 1

The orthogonality of complex sinusoids plays a

key role in Fourier representations.

Orthogonal if their inner product is zero.

Orthogonality of periodic signals

- Discrete time signal

- Continuous time signal

)(],[][ ,

*

, mkInnI mkm

Nn

kmk

*

, ,, ( )k m k m k m

T

I dt I k m

Kim, J. Y.

IC & DSP

Research

Group

Walsh function is not a eigen

function of LTI system

Kim, J. Y.

IC & DSP

Research

Group

Kim, J. Y.

IC & DSP

Research

Group

Orthogonality of Complex

Sinusoids 2

Complex sinusoid with frequency k0

- Discrete time case

- Continuous time case

0

0

1( ) 2

,

0

,,

10,,

1

Nj k m n jk n

k m

n jk

N k mN k m

I e ek mk m

e

0

0

( )

, ( )

0

0 0

,,

10,,

( )

TTj k m t

k m j k m t

T k mT k m

I e dtk me k m

j k m

Kim, J. Y.

IC & DSP

Research

Group

3.4 Discrete-Time Periodic

Singals : Discrete-Time

Fourier Series

Kim, J. Y.

IC & DSP

Research

Group

N Complex Sinusoids in N-

periodic Functional Space

0 0 0 0

0 0 0

( )

2

2

j kn j k N n j kn j Nn

j Nnj kn j kn j knj nN

e e e e

e e e e e

0

0

1( ) 2

,

0

,,

10,,

1

Nj k m n jk n

k m

n jk

N k mN k m

I e ek mk m

e

Kim, J. Y.

IC & DSP

Research

Group

The DTFS Representation

The DTFS representation for x[n] is given

by

where x[n] has fundamental period N and

0=2/N.

0

0

[ ] [ ]

1[ ] [ ]

jk n

k N

jk n

n N

x n X k e

X k x n eN

0;

[ ] [ ]DTFS

x n X k

e(jΩ0ln)

e(jΩ0kn)

….

e(jΩ0mn) x(n)=x(n+N)

Kim, J. Y.

IC & DSP

Research

Group

The DTFS Representation

X[k] is N periodic in k

0

0 0

0

0

( )

2

1[ ] [ ]

1[ ]

( )

1[ ] [ ]

j k N n

k N

jk n jN n

k N

jN n j n

jk n

k N

X N k x n eN

x n e eN

e e

x n e X kN

Kim, J. Y.

IC & DSP

Research

Group

Examples 3.3, pp205

x[n]=cos(/3n+) (0=2/6)

/ 2, 1

[ ] / 2, 1

0, 2 3

j

j

e k

X k e k

k

3 3

3 3

3

3

2

[ ]2

1 1

2 2

[ ]

j n j n

j n j nj j

j kn

k

e ex n

e e e e

X k e

Kim, J. Y.

IC & DSP

Research

Group

Examples 3.6 (1)

DTFS for the N periodic square wave

M -M

N

0

0 0

0 0

0

2

0

(2 1)

1[ ] 1

11

1, 0, , 2

1

Mjk n

n M

Mjk M jk n

n

jk M jk M

jk

X k eN

e eN

e ek N N

N e

Kim, J. Y.

IC & DSP

Research

Group

0 0

0 0

0 0

0 0

(2 1) / 2 (2 1)

/ 2

(2 1) / 2 (2 1) / 2

/ 2 / 2

0

0

1 1[ ]

1

1

sin( (2 1) / 2)1

sin( / 2)

sin( (2 1))1

, 0, , 2

sin( )

jk M jk M

jk jk

jk M jk M

jk jk

e eX k

N e e

e e

N e e

k M

N k

k MN k N N

Nk

N

sin( (2 1))1

, 0, , 2

sin( )[ ]

2 1, , 0, , 2

k MN k N N

NkX k

N

Mk N N

N

Kim, J. Y.

IC & DSP

Research

Group

Examples 3.6 (3)

See figure 3.12(pp. 211)

(a) M=4

(b) M=12

The DTFS coefficients have even symmetry, X[k]=X[-k], and we my rewrite the DTFS as a series involving harmonically related cosines.

Kim, J. Y.

IC & DSP

Research

Group

Examples 3.6 (4) :

Harmonically Related Cosines

0

0 0

0

0 0

/ 2

/ 2 1

/ 2 1

1

( / 2)

0

/ 2 1

1

/ 2 1

0

1

[ ] [ ]

[0] ( [ ] [ ] )

[ / 2]

( [ ] [ ] and 2 )

[0] 2 [ ]( ) [ / 2]2

[0] 2 [ ]cos( ) [ / 2]cos( )

Njk n

k N

Njm n jm n

m

j N n

jm n jm nNj n

m

N

m

x n X k e

X X m e X m e

X N e

X m X m N

e eX X m X N e

X X m m n X N n

/ 2

0

0

[ ], 0, / 2[ ]

2 [ ], 1,2,..., / 2 1

[ ] [ ]cos( )N

k

X k k NB k

X k k N

x n B k k n

Kim, J. Y.

IC & DSP

Research

Group

Examples 3.7

Define a partial sum approximation to x[n]

as

where JN/2. N=50 and M=12

J=1,3,5,23, and 25.

(sol)

0

0

[ ], 0, / 2[ ]

2 [ ], 1,2,..., / 2 1

ˆ [ ] [ ]cos( )J

J

k

X k k NB k

X k k N

x n B k k n

Kim, J. Y.

IC & DSP

Research

Group

Kim, J. Y.

IC & DSP

Research

Group

Example 3.8 Numerical analysis of

the ECG

Electrocardiogram

waveform

- normal

- ventricular complexes

Kim, J. Y.

IC & DSP

Research

Group

3.5 Continuous-Time Periodic

Signals : The Fourier Series

Kim, J. Y.

IC & DSP

Research

Group

0

0

( )

, ( )

0

0 0

,,

10,,

( )

TTj k m t

k m j k m t

T k mT k m

I e dtk me k m

j k m

Infinite Complex Sinusoids in

T-periodic Functional Space

0 0 if j kt j mt

e e k m

Kim, J. Y.

IC & DSP

Research

Group

The FS Representation

Fourier Series

0

0

( ) [ ]

1[ ] ( )

jk t

k

jk t

T

x t X k e

X k x t e dtT

0;

( ) [ ]FS

x t X k

e(jω0lt)

e(jω0kt)

….

e(jω0mt)

x(t)=x(t+T)

Kim, J. Y.

IC & DSP

Research

Group

The FS Representation

Truncated approximation

Under what conditions does the infinite

series actually converge to x(t)?

0

0ˆ( ) [ ] , 2 /

Jjk t

k J

x t A k e where T

T

dttxT

2|)(|

1

Kim, J. Y.

IC & DSP

Research

Group

Demo Program

FourierSeries

http://users.ece.gatech.edu/mcclella/matlabGUIs/

Kim, J. Y.

IC & DSP

Research

Group

Example 3.9 Direct Calculation of FS

Coef.

Examples 1

2 42

0

1 1[ ]

2 4 2

t jk t eX k e e dt

jk

※만약 k가 크면, 크기는 k에 반비례

위상은 분모가 허수로 보이므로 π/2(90도)

Kim, J. Y.

IC & DSP

Research

Group

Figure 3.17 (p. 217)

Magnitude and phase spectra for Example 3.9.

Kim, J. Y.

IC & DSP

Research

Group

Examples 2

(Example3.11) by inspection

(sol) ( ) 3cos2 4

x t t

/ 4 ( / 2) / 4 ( / 2)

0

/ 4

/ 4

( ) 3cos2 4

3 3( / 2)

2 2

(3/ 2) , 1

[ ] (3 / 2) , 1

0, otherwise

j j t j j t

j

j

x t t

e e e e

e k

X k e k

Kim, J. Y.

IC & DSP

Research

Group

Figure 3.18 (p. 219)

Magnitude and phase spectra for Example 3.11.

Kim, J. Y.

IC & DSP

Research

Group

Examples 2

(Example3.13) a square wave

0

0

/ 2

/ 2

0

0

1[ ] ( )

1( )

2sin( ), 0

2, 0

s

s

T

jk t

T

T

jk t

T

s

X k x t e dtT

x t e dtT

k Tsk

Tk

Tk

T

※X(k)는 k에

관한 우함수

Kim, J. Y.

IC & DSP

Research

Group

Figure 3.22a&b (p. 222)

The FS coefficients, X[k], –50 k 50, for three square

waves. (see Fig. 3.21.) (a) Ts/T = 1/4 . (b) Ts/T = 1/16.

(c) Ts/T = 1/64.

Kim, J. Y.

IC & DSP

Research

Group

Sinc Function

sin( )sinc( )

uu

u

Kim, J. Y.

IC & DSP

Research

Group

0

0 0

0 0

1

1

0

1

( ) [ ]

[0] ( [ ] [ ] )

[0] 2 [ ]( )2

[0] 2 [ ]cos( )

jk t

k

jm t jm t

m

jm t jm t

m

m

x t X k e

X X m e X m e

e eX X m

X X m m t

0

0

[0], 0[ ]

2 [ ], 0

[ ] [ ]cos( )k

X kB k

X k k

x n B k k t

Kim, J. Y.

IC & DSP

Research

Group

Examples 4

(Example3.14) Partial sum approximation

( 1) / 2

0

0

1/ 2, 0

[ ] 2( 1) /( ),

0,

ˆ [ ] [ ]cos( )

k

J

J

k

k

B k k k odd

k even

x t B k k t

Kim, J. Y.

IC & DSP

Research

Group

Figure 3.25 Individual terms (left panel) in the FS expansion of a square wave and the corresponding partial-sum approximations J(t) (right panel). The square wave has period T = 1 and Ts/T = ¼ . The J = 0 term is 0(t) = ½ and is not shown.

(a) J = 1. (b) J = 3. (c) J = 7. (d) J = 29. (e) J = 99.

x

Kim, J. Y.

IC & DSP

Research

Group

Example 5

(Example3.15) 0 / 1/ 4, 1 , 0.1T T T s RC s

Kim, J. Y.

IC & DSP

Research

Group

0 0

0( ) [ ] ( ) ( ) [ ]

1/( )

1/

jk t jk t

k k

x t X k e y t H jk X k e

RCH j

j RC

0

2

100

100

10 sin( / 2)[ ]

2 10

[ ] 1/

( ) [ ]jk t

k

kY k

j k k

Y k k

y t Y k e

The FS coefficients Y[k], –25

k 25, (a) Magnitude

spectrum. (b) Phase

spectrum. c) One period of

the input signal x(t) dashed

line) and output signal y(t)

(solid line). The output

signal y(t) is computed from

the partial-sum

approximation

Kim, J. Y.

IC & DSP

Research

Group

3.6 Discrete-Time Nonperiodic

Signals : The Discrete-Time

Fourier Transform

Kim, J. Y.

IC & DSP

Research

Group

Derivation 1

Develop the DTFT from the DTFS by

describing a non-periodic signal as the

limit of a periodic signal whose period N,

approaches infinity.

Approximate x[n] with periodic signal.

1) [ ] [ ],

2) [ 2 1] [ ] : periodic DT Fourier series

3) [ ] lim [ ]M

x n x n M n M

x n M x n

x n x n

Kim, J. Y.

IC & DSP

Research

Group

Derivation 2 0

0

[ ] [ ]

1[ ] [ ]

2 1

Mjk n

k M

Mjk n

k M

x n X k e

X k x n eM

0

continuous function of frequency ( )

( ) [ ]

[ ] ( ) /(2 1)

j

Mj j n

k M

jk

X e

X e x n e

X k X e M

0 0

0 0

0

0

1[ ] ( )

2 1

using the relation 2 /(2 1)

1[ ] ( )

2

Mjk jk n

k M

Mjk jk n

k M

x n X e eM

M

x n X e e

-M M

-M M

x(n)

~x(n)

Kim, J. Y.

IC & DSP

Research

Group

Derivation 3

0 0

0

0

0

[ ] is the limiting value of [ ] as

1[ ] lim ( )

2

1 lim ( ) Rieman Integral

2

1[ ] ( )

2

Mjk jk n

Mk M

Mj j n

kMk M

j j n

x n x n M

x n X e e

X e e

x n X e e d

-π π

( )j j nX e e

….

0

2

2 1M

0

2

2 1k k k

M

Kim, J. Y.

IC & DSP

Research

Group

The DTFT is expressed as

DTFT Representation 1

1[ ] ( )

2

( ) [ ] inner product ( ),

j j n

j j n j n

n

x n X e e d

X e x n e x n e

[ ] [ ]DTFT

jx n X e

Kim, J. Y.

IC & DSP

Research

Group

DTFT Representation 2

If x[n] is absolutely summable, that is,

then the sum of DTFT converges uniformly a continuous function of .

If x[t] is not absolutely summable, but does have finite energy that is,

then it can be shown that sum of DTFT converges in a mean-square error sense

| [ ] |n

n

x n

2| [ ] |n

n

x n

Kim, J. Y.

IC & DSP

Research

Group

Examples 1

Example3.17 x[n]=nu[n]

0

0

( ) [ ]

( )

1,| | 1

1

j n j n

n

n j n

n

j n

n

j

X e u n e

e

e

e

2 2 2 1/ 2

1( )

((1 cos ) sin )

sinarg{ ( )} arctan

1 cos

j

j

X e

X e

Kim, J. Y.

IC & DSP

Research

Group

Figure 3.29 (p.232)

The DTFT of an exponential signal x[n] = ()nu[n]. (a) Magnitude

spectrum for = 0.5. (b) Phase spectrum for = 0.5. (c) Magnitude

spectrum for = 0.9. (d) Phase spectrum for = 0.9.

Kim, J. Y.

IC & DSP

Research

Group

Examples 2

Example3.18 : Rectangular pulse

(sol)

1,| |[ ]

0,| |

n Mx n

n M

2 2( )

0 0

(2 1)

( ) 1 1

1, 0, 2 , 4 ,...

1

2 1, 0, 2 , 4 ,..

sin( (2 1) / 2)

sin( / 2)

M M Mj j n j m M j M j m

n M m m

j Mj M

j

X e e e e e

ee

e

M

M

Kim, J. Y.

IC & DSP

Research

Group

Figure 3.30 (p. 233)

Example 3.18. (a) Rectangular pulse in the time domain. (b)

DTFT in the frequency domain.

Kim, J. Y.

IC & DSP

Research

Group

Example 3

Inverse DTFT

1[ ]

2

1sin( )

W

j n

W

x n e d

Wnn

Kim, J. Y.

IC & DSP

Research

Group

Examples 4

Example3.20 : impulse x[n]=[n]

(sol)

[ ] 1DTFT

n

( ) [ ] 1j j n

n

X e n e

※임펄스 응답의 의미??

Kim, J. Y.

IC & DSP

Research

Group

Examples 5

Example3.21 : Find the inverse DTFT of

(sol)

( ) ( ),jX e

1 1[ ] ( )

2 2

j nx n e d

1( )

2

DTFT

Kim, J. Y.

IC & DSP

Research

Group

Examples 6

Example 3.22 : Moving-average system

1

1

1

/ 2

1[ ] [ ] [ 1]

2

1 1[ ] [ ] [ 1]

2 2

1 1

2 2

cos2

j j

j

y n x n x n

h n n n

H e e

e

2

2

2

/ 2

1[ ] [ ] [ 1]

2

1 1[ ] [ ] [ 1]

2 2

1 1

2 2

sin2

j j

j

y n x n x n

h n n n

H e e

je

Kim, J. Y.

IC & DSP

Research

Group

Examples 7

Multipath communication channel

[ ] [ ] [ 1]

1j j

y n x n ax n

H e ae

Magnitude response of the system in Example 3.23 describing

multipath propagation. (a) Echo coefficient a = 0.5ej/3. (b)

Echo coefficient a = 0.9ej2/3.

Kim, J. Y.

IC & DSP

Research

Group

Figure 3.38 (p. 241)

Magnitude response of the inverse system for multipath

propagation in Example 3.23. (a) Echo coefficient a =

0.5ej/3. (b) Echo coefficient a = 0.9ej/3

Kim, J. Y.

IC & DSP

Research

Group

Multi-path model

Kim, J. Y.

IC & DSP

Research

Group

Kim, J. Y.

IC & DSP

Research

Group

3.7 Continuous-Time Nonperiodic Singals : The Fourier Transform

Kim, J. Y.

IC & DSP

Research

Group

FT Representation 1

The FT is expressed as

1( ) ( )

2

( ) ( )

j t

j t

x t X j e d

X j x t e dt

( ) [ ]FT

x t X j

Kim, J. Y.

IC & DSP

Research

Group

0

0

0

0

0

0

00

0 0

( ) ( ),

( 2 ) ( )

1[ ] ( )

2

( ) [ ]

( ) ( )

1[ ] ( )

2

1( ) ( )

2

2 1

2 2 2

1( ) ( )

2

( )

Tjk t

T

jk t

k

Tj t

T

jk t

k

jk t

k

x t x t T t T

x t T x t

X k x t e dtT

x t X k e

X j x t e dt

X k X jkT

x t X jk eT

T T

x t X jk e

x t

1( )

2

( ) ( )

j t

j t

X j e d

X j x t e dt

-T T

-T T

x(t)

~x(t)

Kim, J. Y.

IC & DSP

Research

Group

FT Representation 2

About convergence - Square integrable

: MSE between x(t) and x’(t), where

*Zero MSE does not imply pointwise convergence

2| ( ) |x t dt

1'( ) ( )

2

j tx t X j e d

Kim, J. Y.

IC & DSP

Research

Group

FT Representation 3

- Dirichlet condition

o Absolute integrable

o A finite number of local maxima, minma, and discontinuities in any finite interval o The size of each discontinuity is finite

Pointwise convergence at all values of t except those corresponding to discontinuities.

| ( ) |x t dt

Kim, J. Y.

IC & DSP

Research

Group

Examples 1

Example 3.24 x(t)=e-atu(t)

(sol)

0

, 0, FT dose not converge for a 0ate dt a

( )

0

( )

0

For a 0

) ( )

1 1

at j t a j t

a j t

X(jω e u t e d e d

ea j a j

Kim, J. Y.

IC & DSP

Research

Group

Figure 3.39 (p.

243)

Example 3.24. (a)

Real time-domain

exponential signal.

(b) Magnitude

spectrum.

(c) Phase spectrum.

Kim, J. Y.

IC & DSP

Research

Group

Examples 2

Example 3.25

(sol)

1,[ ]

0,| |

T t Tx n

t T

) ( )

1 2sin( )

T

j t j t

T

T

j t

T

X(jω x t e d e d

e Tj

Kim, J. Y.

IC & DSP

Research

Group

Normalized sinc function

Unnormalized sinc function

Kim, J. Y.

IC & DSP

Research

Group

Examples 3

Example 3.26

1,)

0,| |

1( ) sin( )

( )

W WX(jω

W

x t Wtt

W Wtx t sinc

t

Kim, J. Y.

IC & DSP

Research

Group

Example 4

Example 3.27

Example 3.28

( ) 1FT

t

( ) 1FT

t

1 2 ( )FT

Kim, J. Y.

IC & DSP

Research

Group

Example : Spread spectrum

Kim, J. Y.

IC & DSP

Research

Group

Kim, J. Y.

IC & DSP

Research

Group

Kim, J. Y.

IC & DSP

Research

Group

3.8 Properties of Fourier

Representation

Periodicity properties

Linearity Symmetry properties Time-shift properties Scaling properties Differentiation and integration Convolution and modulation properties Parseval relationships Duality Time-bandwidth product

Kim, J. Y.

IC & DSP

Research

Group

Time. Periodic Nonperiodic

Co

ntin

uo

us

(t)

Fourier Series Fourier Transform

No

np

eriod

ic

Discrete

[n]

Discrete-Time Fourier

Series

Discrete-Time Fourier

Transform

Perio

dic

Discrete

[k]

Continuous

1[ ] ( )

2

( ) ( )

j t

j t

x t X j e d

X j x t e dt

0

0

0

( ) [ ]

1[ ] ( )

2( ) has period ,

jk t

k

jk t

T

x t X k e

X k x t e dtT

x t TT

0

0

0

[ ] [ ]

1[ ] [ ]

[ ] and [ ] have period

2

jk n

k N

jk n

n N

x n X k e

X k x n eN

x n X k N

N

1[ ] ( )

2

( ) [ ]

( ) has period 2

j j n

j j n

n

j

x n X e e d

X e x n e

X e

( , )

( , )k

( , )k

Kim, J. Y.

IC & DSP

Research

Group

Periodicity Properties

Time-Domain Properties Frequency-Domain

Properties Properties Continuous Nonperiodic Discrete Periodic Periodic Discrete Nonperiodic Continuous

Kim, J. Y.

IC & DSP

Research

Group

3.9 Linearity and Symmetric

Properties

All the four Fourier representations: linear

operator

Symmetric properties : real and Imaginary

signals, even and odd signals

Kim, J. Y.

IC & DSP

Research

Group

0

0

;

;

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) [ ] [ ]

[ ] [ ] [ ] ( ) [ ] [ ]

[ ] [ ] [ ] ( ) [ ] [ ]

FT

FS

DTFTj j j

DTFS

z t ax t by t Z j aX j bY j

z t ax t by t Z j aX k bY k

z n ax n by n Z e aX e bY e

z n ax n by n Z j aX k bY k

Linearity 1

Kim, J. Y.

IC & DSP

Research

Group

Linearity 2

Example3.30 : Find the FS coefficients of z(t)

3 1( ) ( ) ( )

2 2z t x t y t

2

( ) [ ] (1/( ))sin( / 4)x t X k k k

2

( ) [ ] (1/( ))sin( / 2)y t Y k k k

3 1[ ] [ ] [ ]

2 2Z k X k Y k

Kim, J. Y.

IC & DSP

Research

Group

Symmetry Properties - Real

and Imaginary Signals

x(t) is real , table3.4

x(t) is imaginary, table3.5

*

*

* ( )

( ) ( )

( ) ( )

( )

j t

j t j t

X j x t e dt

x t e dt x t e dt

X j

*

*

* ( )

( ) ( )

( ) ( )

( )

j t

j t j t

X j x t e dt

x t e dt x t e dt

X j

Kim, J. Y.

IC & DSP

Research

Group

Symmetry Properties – Even and

Odd Signals

x(t) is real and even

x(t) is real and odd

( ) is realX j

( ) is imaginaryX j

* *( ) ( ) ( )

( ) ( )

( )

Im[ ( )] 0

j t j t

j

X j x t e dt x t e dt

x e d t

X j

X j

Kim, J. Y.

IC & DSP

Research

Group

Symmetry Properties – Table

Kim, J. Y.

IC & DSP

Research

Group

3.10 Convolution Property

T *

Convolution Multiplication

Analyze the input-output behavior of a linear

system in the frequency domain by multiplying

transforms instead of convolving time signals!

[ ] [ ]* [ ]DTFT

j j jy n x n h n Y e X e H e

Kim, J. Y.

IC & DSP

Research

Group

Nonperiodic Convolution

( )

( )

( )

( )

( )

1( ) ( )

2

1( ) ( ) ( )

2

1( ) ( )

2

1( ) ( )

2

1( ) ( )

2

1( ) ( )

2

j t

j t

j t

j t

j t

j j t

x t X j e d

y t h X j e d d

h X j e d d

h X j e d d

h X j e d d

h e d X j e

1( ) ( ) ( )

2

j t

d

y t H j X j e d

( ) ( )* ( )

( ) ( )

y t h t x t

h x t d

[ ] [ ]* [ ]DTFT

j j jy n x n h n Y e X e H e

( ) ( )* ( ) ( ) ( ) ( )FT

y t h t x t Y j X j H j

Kim, J. Y.

IC & DSP

Research

Group

Example 3.31 : A convolution

problem in the frequency domain

y(t)=x(t)*h(t) ( ) (1/( ))sin( )

( ) (1/( ))sin(2 )

x t t t

h t t t

1,( ) ( )

0,

FT

x t X j

1, 2( ) ( )

0, 2

FT

h t H j

1,( ) ( ) (1/( ))sin( )

0,Y j y t t t

Kim, J. Y.

IC & DSP

Research

Group

Example 3.32 : Inverse FT

Find x(t)

2

2

4( ) ( ) sin ( )

FT

x t X j

( ) ( ) ( )

2( ) sin( )

( ) ( )* ( )

X j Z j Z j

Z j

x t z t z t

Kim, J. Y.

IC & DSP

Research

Group

Filtering

Filtering : multiplication that occurs in the

frequency-domain representation

A system performs filtering on the signal by

presenting a different response to components

of the input that are at different frequencies.

The term, filtering, implies that some frequency

components of the input are eliminated while

others are passed by the system unchanged

Kim, J. Y.

IC & DSP

Research

Group

Frequency response of ideal continuous- (left panel)

and discrete-time (right panel) filters. (a) Low-pass

characteristic. (b) High-pass characteristic. (c)

Band-pass characteristic

Kim, J. Y.

IC & DSP

Research

Group

Example 3.3 RC Circuit : filtering

/( )1( ) ( )

1( )

1

t RC

C

C

h t e u tRC

H jj RC

Kim, J. Y.

IC & DSP

Research

Group

System Identification

If the spectrum in nonzero at all frequencies,

the frequency response of a system be

determined from the knowledge of the input

and output spectra.

( )( )

( )

( )( )

( )

jj

j

Y jH j

X j

Y eH e

X e

H y(t) x(t) 2( ) ( )tx t e u t

1( )

2

1( )

1

X jj

Y jj

1( ) 1

1

( ) ( ) ( )t

H jj

h t t e u t

( ) ( )ty t e u t

Example 3.4

Kim, J. Y.

IC & DSP

Research

Group

Inverse System : Recover the input

of the system from the output

1( ) ( ) ( )

( )

invX j H Y j Y jH j

H y(t) x(t) Hinv x(t)

[ ] [ ] [ 1],| | 1y n x n ax n a

1, 0

[ ] , 1

0,

n

h n a n

ohterwise

( ) 1

1( )

1

j j

inv j

j

H e ae

H eae

Example 3.5 : equalization

[ ] ( ) [ ]inv nh n a u n

Kim, J. Y.

IC & DSP

Research

Group

Convolution of Periodic Signals

Periodic convolution and (DT)FS

representations

0

2;

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) [ ] [ ] [ ]

T

FST

y t x t z t x z t d

y t x t z t Y k TX k Z k

1

0

2;

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

N

k

DTFSN

y n x n z n x k z n k

y n x n z n Y k NX k Z k

Kim, J. Y.

IC & DSP

Research

Group

Example3.36 : Convolution of Two

Periodic Signals

Periodic convolution of two signals

( ) 2cos(2 ) sin(4 )z t t t

1, 1

1/(2 ), 2[ ]

1/(2 ), 2

0,

2sin( / 2)[ ]

2

k

j kz k

j k

otherwise

kX k

k

1, 1[ ]

0,

( ) (2 / )cos(2 )

ky k

otherwise

y t t

Kim, J. Y.

IC & DSP

Research

Group

3.11 Differentiation and

Integration Properties

Integration circuit

Differentiation

circuit

Kim, J. Y.

IC & DSP

Research

Group

Differentiation in Time 1

Differentiation of (non)periodic signal in time

1( ) ( )

2

1( ) ( )

2

j t

j t

x t X j e d

dx t X j j e d

dt

( ) ( )FTd

x t j X jdt

0:

0( ) [ ]FSd

x t jk X kdt

0

0

0

( ) [ ]

( ) [ ]

jk t

k

jk t

k

x t X k e

dx t X k jk e

dt

nonperiodic periodic

Kim, J. Y.

IC & DSP

Research

Group

Differentiation in Time 2

Example3.37 : verify the following result.

(sol)

( ( ))FT

atd je u t

dt a j

( ( )) ( ) ( )

( ) ( )

at at at

at

de u t ae u t e t

dt

ae u t t

( ( )) 1FT

atd a je u t

dt a j a j

Kim, J. Y.

IC & DSP

Research

Group

Differentiation in Frequency 1

( ) ( )

( ) ( )

j t

j t

X j x t e dt

dX j jtx t e dt

d

( ) ( )FT d

jtx t X jd

( ) [ ]j j n

n

X e x n e

[ ] ( )FT

jdjnx n X e

d

nonperiodic periodic

Differentiation of (non)periodic signal in

frequency

( ) [ ]j j n

n

dX e jnx n e

d

Kim, J. Y.

IC & DSP

Research

Group

Differentiation in Frequency 2

Exampe 3.40 ; FT of a Gaussian Pulse

pp.275-276

2 2/ 2 / 2(1/ 2 )FT

te e

2 / 2( ) (1/ 2 ) tg t e

???

Kim, J. Y.

IC & DSP

Research

Group

2

2

2

/ 2

/ 2

/ 2

( ) (1/ 2 ) ( )

( ) ( )

( ) ( )

1( ) ( )

( ) ( )

( )

( 0) 1

( )

tdg t e tg t

dt

dg t j G j

dt

tg t j G j

dtg t G j

j d

dG j G j

d

G j ce

G j

G j e

Differentiation in time domain

Differentiation in frequency domain

( ) 1g t dt

Kim, J. Y.

IC & DSP

Research

Group

Integration 1

Integration (smooth signal in time) : FT,

( ) ( ) , ( ) ( )

1( ) ( )( 0)

1( ) ( ) ( )

td

y t x d y t x tdt

Y j X jj

Y j X j cj

1( ) ( ) ( 0) ( )

t FT

x d X j X jj

Kim, J. Y.

IC & DSP

Research

Group

Integration 2

Step function as the sum of a constant and a signum

function : pp.278

( ) ( )

( ) 1

1( ) ( ) ( )

t

FT

FT

u t d

u t U jj

sgn( ) 2 ( )

( ) 2

2, 0

( )

0, 0

dt t

dt

j S j

jS j

1/ 2 ( )

1[ ] ( )

2

j tx t X j e d

Kim, J. Y.

IC & DSP

Research

Group

Integration 3 : Proof

Integration is the convolution with

unit step function

Kim, J. Y.

IC & DSP

Research

Group

3.12 Time- and Frequency-Shift

Properties

The effect of time and frequency shifts on the

Fourier representation

Kim, J. Y.

IC & DSP

Research

Group

Time-Shift Properties 1

z(t)=x(t-t0) : time shifted version of x(t)

0

0

0

0

( )

0

( ) ( ) ( )

( ) ( )

( )

( ) ( )

j t j t

j t

j t j

j t

Z j z t e dt x t t e dt

x e d t t

e x e d

Z j e X j

Kim, J. Y.

IC & DSP

Research

Group

Time-Shift Properties 2

Time-shift properties of Fourier representation

0

0

0 0

0

0

0 0

0

;

0

0

;

0

( ) ( )

( ) [ ]

[ ] ( )

[ ] [ ]

FTj t

FSjk t

DTFTj n j

DTFSjk n

x t t e X j

x t t e X k

x n n e X e

x n n e X k

Kim, J. Y.

IC & DSP

Research

Group

Time-Shift Properties 3

Example3.41

0

0

2( ) sin( )

2( ) sin( )j T

X j T

Z j e T

Kim, J. Y.

IC & DSP

Research

Group

Frequency response of a system by

a difference equation

Discrete time system case

0 0

0 0

0

0

[ ] [ ]

( [ ] )

N M

k k

k k

DTFTjk j

N Mk k

j j j j

k k

k k

Mk

jj k

j k

Nj kj

k

k

a y n k b x n k

z n k e Z e

a e Y e b e X e

b eY e

H eX e

a e

Kim, J. Y.

IC & DSP

Research

Group

Frequency-Shift Properties 1

Z(j)=X(j(-))

( )

1( ) ( )

2

1( ( ))

2

( )

1( )

2

1( )

2

( )

j t

j t

j t

j t j t

j t

z t Z j e d

X j e d

X j e d

e X j e d

e x t

Kim, J. Y.

IC & DSP

Research

Group

Frequency-Shift Properties 2

Frequency-shift properties of Fourier

representation

0

0 0

0

0 0

;

0

( )

;

0

( ) ( ( ))

( ) [ ]

[ ] ( )

[ ] [ ]

FTj t

FSjk t

DTFTj n j

DTFSjk n

e x t X j

e x t X k k

e x n X e

e x n X k k

Kim, J. Y.

IC & DSP

Research

Group

Frequency-Shift Properties 3

Example3.42

(sol)

10 ,| |( )

0,

j te tz t

otherwise

10

10

1,| |( ) , ( ) ( )

0,

2( ) ( ) sin( )

( ) ( ( 10))

2( ) sin(( 10) )

10

j t

FT

FTj t

FT

tx t z t e x t

otherwise

x t X j

e x t X j

z t

Kim, J. Y.

IC & DSP

Research

Group

Find the FT of the signal

(sol)

Example 3.43 Using multiple

properties to find an FT

3( ) ( ( ))*( ( 2))t tdx t e u t e u t

dt

22 ( 2) 2

( ) ( )* ( ) ( ) ( )

1( ) ( )

3

( ) ( 2)1

FT

FTat

jFTt

dx t w t v t j W j V j

dt

w t e u tj

ev t e e u t e

j

Kim, J. Y.

IC & DSP

Research

Group

3.13 Finding Inverse Fourier Transforms by Using Partial-Fraction Expansions

Partial fraction expansion of rational

function : ???

Kim, J. Y.

IC & DSP

Research

Group

Inverse Fourier Transform

1 0

1

1 1 0

0

( ) ( ) ( )( )

( ) ( ) ( ) ( )

( )( )

( )

M

M

N N

N

M Nk

k

k

b j b j b B jX j

j a j a j a A j

B jf j

A j

IFTs are obtained from

the pair δ(t) ↔1 and the

differentiation property

1

1

( )( )

( ) ( )k

Nk

k k

FT

Nd t

k

k

CX j

j d

x t C e u t

X(jω) expressed of polynomial in jω

Kim, J. Y.

IC & DSP

Research

Group

Inverse Discrete-Time Fourier

Transform

1 0

( 1)

1 1 0

1

1

( )( )

( )

1

( ) ( ) [ ]

j M j jj M

j N j N j j

N

Nk

jk k

FT

Nn

k k

k

b e b e b B eX e

e a e a e a A e

C

d e

x t C d u n

X(ejΩ) expressed of polynomial in ejΩ

Kim, J. Y.

IC & DSP

Research

Group

Example 3.40 : MEMS

Accelerometer : impulse response

Find the impulse response

2 2

1( )

( ) 25,000( ) (10,000)

1/15,000 1/15,000

20,000 5,000

H jj j

j j

5,000 20,000( ) (1/15,000)( ) ( )t th t e e u t

MEMS accelerometer

(Analog Device)

Kim, J. Y.

IC & DSP

Research

Group

3.14 Multiplication Property

Fourier representation of a product of time-

domain signals : non-periodic, continuous

time 1

( ) ( )2

1( ) ( )

2

j t

j t

x t X j e d

z t X j e d

( )

2

1( ) ( ) ( )

(2 )

( )

1 1( ) ( ( ))

2 2

j t

j t

y t X j Z j e d d

X j Z j d e d

1( ) ( ) ( ) ( )* ( )

2

FT

y t x t z t X j Z j

Kim, J. Y.

IC & DSP

Research

Group

Multiplication Property 2

( )

2

1[ ] [ ] [ ] ( ) ( ) ( )

2

,

( ) ( ) ( ) ( )

DTFTj j j

j j j j

y n x n z n Y e X e Z e

where

X e Z e X e Z e d

Fourier representation of a product of time-

domain signals : non-periodic, discrete time

Periodic convolution

Kim, J. Y.

IC & DSP

Research

Group

Windowing

Windowing=Truncating w(t)

x(t)

y(t)

( ) ( ) ( )

1( ) ( ) ( )* ( )

2

,

2( ) sin( )

FT

y t x t w t

y t Y j X j W j

where

W j T

Kim, J. Y.

IC & DSP

Research

Group

The Eeffect of Windowing

Kim, J. Y.

IC & DSP

Research

Group

Example 3.46 : Truncating the

Impulse Response

Ideal lowpass filter

IDTFT

DTFT

Ideal lowpass filter

H(ej)

Ideal lowpass filter

h(n) :sinc function

Truncate ILF h[n]

ht(n)

Truncate ILF

Ht(ej)

truncate

Kim, J. Y.

IC & DSP

Research

Group

The effect of truncating the impulse

response of a discrete time system

Kim, J. Y.

IC & DSP

Research

Group

3.15 Scaling Property

Effect of scaling the time variable :

Fourier transform z(t)=x(at)

Kim, J. Y.

IC & DSP

Research

Group

Scaling Properties 1

FT : z(t)=x(at)

( / )

( ) ( )

( )

( )

1( ) ( ) ( , 0)

1( )

| |

j t

j t

j a

Z j z t e dt

x at e dt

at

sign a x e d aa

X ja a

( ) ( ) (1/ | |) ( / )FT

z t x at a X j a

Kim, J. Y.

IC & DSP

Research

Group

Scaling Properties 2

The FT scaling property. The figure assumes that

0 < a < 1.

Kim, J. Y.

IC & DSP

Research

Group

Scaling Properties 3

Example 3.49 : Using multiple properties to

find an inverse FT

2

( )1 ( / 3)

jd eX j j

d j

2( ) ( / 3)

1, ( ) ( ) ( )

1

j

IFTt

dX j j e S j

d

where S j s t e u tj

3

3

2

3( 2)

3( 2)

( ) ( / 3)

( ) 3 (3 )

3 (3 )

3 ( )

( ) ( )

( ) ( 2)

3 ( 2)

( ) ( )

( ) ( )

3 ( 2)

t

t

j

t

t

Y j S j

y t s t

e u t

e u t

W j e Y j

w t y t

e u t

dX j j W j

d

x t tw t

te u t

Kim, J. Y.

IC & DSP

Research

Group

Scaling Properties 4

FS : Continuous periodic signal x(t) with period

Tx(at) is also periodic with period T/a

0

/

[ ] ( ) [ ]jka t

T a

aZ k z t e dt X k

T

0;

( ) ( ) [ ] [ ], 0FS a

x at z t Z k X k a

( ( )) ( ) ( )T

x a t x at T x ata

Kim, J. Y.

IC & DSP

Research

Group

3.16 Parseval Relationships

Energy or power in the time-domain representation of

a signal = energy or power in frequency-domain

representation

2| ( ) |xE x t dt

* *1( ) ( )

2

j tx t X j e d

*

*

*

1( ) ( )

2

1 1( ) ( )

2 2

1( ) ( )

2

j t

x

j t

E x t X j e d dt

X j x t e dt d

X j X j d

2 21| ( ) | | ( ) |

2xE x t dt X j d

Kim, J. Y.

IC & DSP

Research

Group

Representaion Parseval Relation

FT

FS

DTFT

DTFS

Parseval Relationships 2

PR for the 4 Fourier Representation

2 21| ( ) | | ( ) |

2x t dt X j d

2 21| ( ) | | [ ] |

kT

x t dt X kT

2 2

2

1| [ ] | | ( ) |

2

j

n

x n X e d

2 21| [ ] | | [ ] |

n N k N

x n X kN

Kim, J. Y.

IC & DSP

Research

Group

Parseval Relationships 3

Example3.50

(sol) By Parseval’s relations

2

2 2

sin ( )

n

Wn

n

2sin( )[ ] , | [ ] |

n

Wnx n x n

n

2

2

1| ( ) |

2

jX e d

1,| |[ ] ( )

0, | |

DTFTj

Wx n X e

W

11

2

W

W

Wd

Kim, J. Y.

IC & DSP

Research

Group

3.17 Time-Bandwidth Product

An inverse relationship between the

time and frequency extent of a signal

0 00

0

1,| |( ) ( ) 2 sin

0,| |

FTt T Tx t X j T c

t T

Kim, J. Y.

IC & DSP

Research

Group

Uncertainty principle

Effect duration and bandwidth

(cf)

Uncertainty principle

1/ 2 1/ 2

2 2 2 2

2 2

| ( ) | | ( ) |

,

| ( ) | | ( ) |

d W

t x t dt X j d

T B

x t dt X j d

1

2d WT B

2 2

: random variable

( ) : probability density function

( ) 0

( ) ( ) : variance

x

p x

E x

E x x p x dx

Kim, J. Y.

IC & DSP

Research

Group

3.18 Duality

Duality of rectangular pulses and sinc functions.

Kim, J. Y.

IC & DSP

Research

Group

Duality 2

Duality : interchangeability property

1( ) ( )

2

2 ( ) ( )

( , )

2 ( ) ( )

j t

j t

j t

x t X j e d

x t X j e d

t t

x X jt e dt

( ) ( )

( ) 2 ( )

FT

FT

f t F j

F jt f

Kim, J. Y.

IC & DSP

Research

Group

Duality 3

The FT duality property.

Kim, J. Y.

IC & DSP

Research

Group

Duality 4

Example 3.52 : find the FT of

(solution)

1( )

1x t

jt

1( ) ( ) ( )

1

1( )

1

( ) 2 ( ) implies that

( ) 2 ( ) 2 ( )

FTt

FT

f t e u t F jj

F jtjt

F jt f

X j f e u