Round Robin of High-Frequency Test Methods by IPC-D24C...

Post on 15-Sep-2020

3 views 0 download

Transcript of Round Robin of High-Frequency Test Methods by IPC-D24C...

Round Robin of High-Frequency Test Methods by IPC-D24C Task Group (Part 2)

byGlennOliver,JonathanWeldon,etal.DuPont*ThispaperwasoriginallypublishedintheproceedingsofIPCAPEXEXPO,LasVegas,Nevada,February2016.ItwontheBestPaperAwardfortheconference.Editor’snote:Part1ofthispaperwaspublishedonpage26oftheJuly2016issueofThePCBMagazine.

Results ExtractionofɛrfromImpedanceMeasurementsofMicrostripsAsmentionedpreviously,eachcircuitboardmaterialsamplewasbrokenupintosixmicrostriptransmissionlinesofvaryinglengthsandlinewidths.EachlinewasmeasuredwiththeTDRfrombothendsofthemicrostrip.Thedistanceintothestriplinewasidenticalforeachmeasurement.Figure13showsthe12impedancesmeasuredforeachsamplealongwiththelinearregression.Additionally,eachmaterialsmicrostriplinewidthfor50Ohmcharacteristicimpedanceisnotedalongwiththemeasureddielectricthickness.

Figure13:TDRmicrostriptransmissionlineimpedances.Oncethecharacteristicimpedanceandboardparametersweremeasured,thevalueswereenteredmanuallyintothefieldsolversoftwareandtheɛrwascalculated.Table2showsthecalculatednormalɛrforall10materialsamples.Again,thisvalueforɛrdoesnottakeintoaccountfrequencydependence.

Table2:RelativePermittivityviaImpedanceExtractionMethodSampleName

CalculatedNormalRelativePermittivity(ɛr)

SampleName

CalculatedNormalRelativePermittivity(ɛr)

SampleA 2.97 SampleF 3.42SampleB 2.10 SampleG 2.20SampleC 2.87 SampleH 3.08SampleD 3.03 SampleI 1.84SampleE 1.82 SampleJ 2.69

GroupDelayExtractionofɛrfromPhaseofMicrostripsFigure14displaysthesmoothedeffectivedielectricconstant(Keff)versusfrequencyforeachsamplewiththecharacteristicimpedanceclosestto50Ohms.Thecorrespondingphysicalparametersofeachlinearealsonoted.A moving average filter was used in order to smooth the effective dielectric constant and remove anyabnormalities.Notetheaverageeffectivedielectricconstantisnotthesameasɛr.

Figure14:Smoothedeffectivedielectricconstantfromgroupdelay.

Figure15presentsacomparisonofeachsamplescalculatedɛr.Thelinewidthsanddielectricthicknessesofeachsamplepresentedarealsopresented.

Figure15:Averagedeffectivedielectricconstantandcalculatedrelativepermittivitycomparison.

MicrostripDifferentialPhaseLengthɛrFigure16showsɛrascalculated fromthemicrostripdifferentialphase lengthmethod.Measurementsweremadefrom1GHzto110GHz.

Figure16: Relativepermittivityfrommicrostripdifferentialphaselengthmethod. FreeSpaceQuasiOpticalExtractionofɛrFigures17through26presentplotsofɛrforallmaterialsascapturedbythefreespacequasiopticalmethod.Theɛrisshownfrom35GHzto65GHz,butisonlyvalidfrom40GHzto60GHz.Theelongatedellipticalwindowshownovertherealdielectricpermittivity(redtrace)oneachplotisthegatedwindowforeachsample.Thiswindow is also seen in the Cole-Cole plot as indicated with the two black vertical dotted lines along thehorizontalaxis(RealPermittivity).

Figure17: SampleA—relativepermittivityandCole-Coleplot.

Figure18: SampleB—relativepermittivityandCole-Coleplot.

Figure19: SampleC—relativepermittivityandCole-Coleplot.

Figure20: SampleD—relativepermittivityandCole-Coleplot.

Figure21: SampleE—relativepermittivityandCole-Coleplot.

Figure22: SampleF—RelativepermittivityandCole-Coleplot.

Figure23: SampleG—relativepermittivityandCole-Coleplot.

Figure24: SampleH—relativepermittivityandCole-Coleplot.

Figure25: SampleI—relativepermittivityandCole-Coleplot.

Figure26: SampleJ—relativepermittivityandCole-Coleplot. Thevaluesforeachsamplewereaveragedwithinthewindowfrom40GHzto60GHz.Table3presentstheseaverages.

Table3:RelativePermittivityfromFreeSpaceQuasiOpticalMethod

SampleName In-PlaneRelativePermittivity(ɛr)

SampleName In-PlaneRelativePermittivity(ɛr)

SampleA 3.9 SampleF 3.8SampleB 2.0 SampleG 3.1SampleC 3.2 SampleH 3.7SampleD 3.25 SampleI 2.5SampleE 2.35 SampleJ 3.15

PerturbationofResonatorCavitiestoMeasureɛrandtanδTheresultsfromboththerectangularwaveguideresonatorandfreespaceresonantcavitywerecombinedintooneplotinFigure27.Thetwomethodsdonotshowanyobviousdiscontinuitiesandthevaluesforɛrandtanδarestableandwithoutsignificantvariation.Inthesummaryplot,valuesbelow20GHzweremeasuredwiththeclosedrectangularcavitywhilevaluesabove20GHzweremeasuredwiththeopenresonator.

Figure27:Resonantcavitymethodin-planerelativepermittivityandlosstangent.

TheplotsarebrokenoutintablesofɛrinTable4andtanδinTable5.

Table4:RelativePermittivityfromPerturbedResonatorsFrequency

(GHz)Name

3(GHz)Rect.

10(GHz)Rect.

26(GHz)Open

40(GHz)Open

49(GHz)Open

56(GHz)Open

60(GHz)Open

Average

SampleA 3.46 3.46 3.42 3.41 3.41 3.40 3.41 3.42SampleB 2.88 2.87 2.80 2.80 2.79 2.78 2.78 2.81SampleC 3.39 3.39 3.39 3.39 3.38 3.38 3.38 3.39SampleD 3.42 3.43 3.46 3.45 3.44 3.42 3.42 3.43SampleE 2.29 2.29 2.25 2.24 2.23 2.22 2.21 2.25SampleF 3.72 3.72 3.61 3.59 3.56 3.54 3.52 3.61SampleG 2.89 2.89 2.93 2.91 2.89 2.88 2.87 2.89SampleH 3.54 3.53 3.53 3.53 3.52 3.51 3.51 3.52SampleI 2.34 2.34 2.37 2.36 2.36 2.36 2.36 2.35SampleJ 2.95 2.95 2.94 2.93 2.93 2.92 2.92 2.93

Table5:LossTangentfromPerturbedResonatorMethod

Frequency(GHz)

SampleName

3(GHz)Rect.

10(GHz)Rect.

26(GHz)Open

40(GHz)Open

49(GHz)Open

56(GHz)Open

60(GHz)Open

SampleA 0.0022 0.0025 0.0022 0.0023 0.0029 0.0034 0.0028SampleB 0.0034 0.0033 0.0045 0.0048 0.0050 0.0051 0.0038SampleC 0.0021 0.0013 0.0021 0.0024 0.0023 0.0014 0.0020SampleD 0.0023 0.0021 0.0032 0.0036 0.0035 0.0036 0.0031SampleE 0.0008 0.0005 0.0009 0.0014 0.0011 0.0016 0.0008SampleF 0.0008 0.0007 0.0008 0.0011 0.0009 0.0013 0.0015SampleG 0.0011 0.0010 0.0016 0.0018 0.0019 0.0022 0.0014SampleH 0.0021 0.0023 0.0029 0.0032 0.0037 0.0037 0.0022SampleI 0.0012 0.0021 0.0016 0.0023 0.0021 0.0025 0.0023SampleJ 0.0013 0.0012 0.0021 0.0023 0.0025 0.0024 0.0021

SplitPostDielectricResonator(SPDR)toMeasureɛrandtanδTable6presentstheresultsfromtheSPDRmethod.Onlytworesonantfrequencieswereusedinthiscollection.

Table6:RelativePermittivityandLossTangentfromSplitPostDielectricResonator(SPDR)MethodSampleDesignator 10GHz 20GHz

ɛr tanδ ɛr tanδSampleA 3.448 0.0017 3.440 0.0027SampleB 2.789 0.0016 2.787 0.0020SampleC 3.317 0.0018 3.308 0.0025SampleD 3.445 0.0025 3.436 0.0041SampleE 2.260 0.0007 2.254 0.0015SampleF 3.577 0.0008 3.568 0.0020SampleG 2.991 0.0011 2.893 0.0024SampleH 3.424 0.0023 3.402 0.0038SampleI 2.297 0.0014 2.281 0.0019SampleJ 2.894 0.0017 2.883 0.0024

BereskinClampedEmbeddedStriplineResonatortoMeasureɛrandtanδTheBereskinclampedembeddedstriplineresonatormethodresultsarepresentedinFigure28.Themeasuredɛrshowsgoodstabilityandlinearityovertheband.Themeasuredtanδisabitnoisyforsomesamples.

Figure28:RelativepermittivityandlosstangentfromBereskinclampedembeddedstriplineresonatormethod.

Table7showstheaverageɛrandtanδvaluesmeasuredforeverysampleovertheentireband.Table7:RelativePermittivity&LossTangentfromBereskinClampedEmbeddedStriplineResonatorMethod

SampleName ɛr tanδ FrequencyRange(GHz)SampleA 3.08 .0029 1.84–18.42SampleB 2.46 .0024 2.06–18.54SampleC 2.9 .0024 1.90–22.81SampleD 3.28 .0027 1.79–19.58SampleE 2.17 .0009 2.20–21.96SampleF 3.36 .0010 1.76–19.40SampleG 2.76 .0014 1.95–19.45SampleH 3.32 .0021 1.77–21.35SampleI 2.17 .0010 2.20–21.89SampleJ 2.81 .0016 1.93–19.26

ComparisonThesevenmethodsyieldedsomewhatdifferentresults.Thedatawasfirstaveragedandcomparedforeachmethodovereachrespectivefrequencyband.Thisgivesarelativeideaofhowthevariousmethodsperformedversusoneanotherwithregardstotheiroverallagreementonamaterialsɛr.Table8presentstheaverageɛrasmeasuredbyeachmethod.

Table8:AveragedRelativePermittivityComparisonforAllMethods

SampleName

ImpedanceExtraction

GroupDelay

DifferentialPhaseLength

QuasiOptical

PerturbedResonators SPDR Bereskin

Stripline

SampleA 2.97 3.30 3.27 3.9 3.42 3.444 3.08SampleB 2.10 2.44 2.55 2.0 2.81 2.788 2.46SampleC 2.87 2.98 3.13 3.2 3.39 3.313 2.9SampleD 3.03 3.31 3.53 3.25 3.43 3.441 3.28SampleE 1.82 2.19 2.23 2.35 2.25 2.257 2.17SampleF 3.42 3.77 3.63 3.8 3.61 3.573 3.36SampleG 2.20 2.75 2.96 3.1 2.89 2.942 2.76SampleH 3.08 3.49 3.58 3.7 3.52 3.413 3.32SampleI 1.84 2.23 2.27 2.5 2.35 2.289 2.17SampleJ 2.69 3.00 3.06 3.15 2.93 2.889 2.81

Oncethemethodswerecomparedagainstoneanother,theaverageswereweighedagainstthedesignedɛr.Table9showsthepercentagedifferenceinthemeasuredaverageɛrversustheexpectedvalueperthenominalvaluesindatasheets.Thebottomrowshowstheaveragepercentagedifference.

Table9:PercentDifferenceofMeasuredAveragevsDataSheetNormalRelativePermittivity

SampleName

ImpedanceExtraction

GroupDelay

DifferentialPhaseLength

QuasiOptical

PerturbedResonators SPDR Bereskin

Stripline

SampleA 10 0.0 0.9 18 3.6 1.6 6.7SampleB 16 2.4 2.0 20 12 12 1.6SampleC 4.3 0.7 4.3 7.0 13 10 3.3SampleD 25 5.4 0.9 7.1 2.0 1.2 6.3SampleE 17 0.5 1.4 6.8 2.3 2.6 1.4SampleF 5.0 4.7 0.8 5.6 0.3 0.8 6.7SampleG 25 6.5 0.7 5.4 1.7 0.0 6.1SampleH 12 0.3 2.3 5.7 0.6 2.5 5.1SampleI 16 1.4 3.2 14 6.8 4.0 1.4SampleJ 10 0.0 2.0 5.0 2.3 3.7 6.3Average 14 2.2 1.8 9.4 4.5 3.8 4.5

Itisclearfromthetwotablesthiscomparisonisnotideal.TheQuasi-Optical,PerturbedResonators,andSPDRtechniqueshavetheelectricfieldorientedinthesameplaneasthedielectricundertest.TheBereskintechniquehastheelectricfieldorientednormaltotheplaneofthedielectricundertest.Themicrostriptechniqueshavetheelectricfieldorientedalmostnormaltotheplaneofthedielectricundertest,butnotaswellorientedasina stripline structure. Each method also operates over different frequencies. Given the change in ɛr withfrequencythecomparisonshowninTable9isnotdescriptiveenoughtoprovideafullpicture.Tomorefullyevaluateeachmethod,theywerealsoconsideredatafixedvaluenear10GHzsinceɛrvaluesarequotedatthis

frequencyindatasheets.Table10showsthecomparisonofeachmethodat10GHz.Theimpedanceextractiontechniqueisnotincludedsincealongpulse(200ps)wasusedwhichmakestheeffectivefrequencymuchlessthan10GHz.Theperturbedrectangularresonatorwastheoneusedat10GHz,sothisisspecifiedinthedatatable.Theothermethods,sansthequasioptical,allhavefrequencydependentoperationatornear10GHz.

Table10:MeasuredRelativePermittivityat10GHz

SampleName GroupDelay

DifferentialPhaseLength

RectangularResonator SPDR Bereskin

Stripline DataSheet

SampleA 3.25 3.27 3.46 3.448 3.08 3.3SampleB 2.43 2.58 2.87 2.789 2.46 2.5SampleC 2.95 3.12 3.39 3.317 2.90 3.00SampleD 3.28 3.51 3.43 3.445 3.28 3.50SampleE 2.18 2.22 2.29 2.260 2.17 2.20SampleF 3.72 3.62 3.72 3.577 3.36 3.6SampleG 2.71 2.94 2.89 2.991 2.76 2.94SampleH 3.45 3.57 3.53 3.424 3.32 3.50SampleI 2.22 2.25 2.34 2.297 2.17 2.20SampleJ 2.98 3.05 2.95 2.894 2.81 3.00

Oncethemethodswereallcomparedat10GHzapercentdifferencewascalculatedagainstthedatasheet.Table11showsthepercentdifference.Again,thequasiopticalmethodwasnotconsideredinthisevaluation.It became immediately clear from this comparison that differential phase length and groupdelaymethodsprovidedvaluesclosesttothedatasheetvaluesspecified.TheBereskinstriplinemethodgavevaluesquitecloseto the valuesprovided in thedata sheets. Themethodswith theelectric fieldoriented in theplaneof thedielectricweremostdifferentfromthedatasheetvalues.Thisisnotsurprisingsincethedatasheetvaluesaregenerallybasedstripline(normal)permittivityvalues.

Table11:PercentDifferenceofMeasuredversusExpectedRelativePermittivityat10GHzSampleName

GroupDelay

DifferentialPhaseLength

RectangularResonator SPDR Bereskin

StriplineSampleA 1.5 0.9 4.8 4.5 6.7SampleB 2.8 3.2 15 12 1.6SampleC 1.7 4.0 13 11 3.3SampleD 6.3 0.3 2.0 1.6 6.3SampleE 0.9 0.9 4.1 2.7 1.4SampleF 3.3 0.6 3.3 0.6 6.7SampleG 7.8 0.0 1.7 1.7 6.1SampleH 1.4 2.0 0.9 2.2 5.1SampleI 0.9 2.3 6.4 4.4 1.4SampleJ 0.7 1.7 1.7 3.5 6.3Average 2.7 1.6 5.3 4.4 3.9

Table12showsthegroupdelaymethod,differentialphaselengthmethod,andopenresonatorfrom3GHzto40GHz.Thesemethodswerechosenforcomparisonduetotheiroperationoverthisbandasawayofbettercomparingeachmethod.Theresonantmethoddoesnotprovidethesameresolutionwithregardtofrequencyasthetransmissionandreflectionapproaches.Hence,fourfrequencieswerechosenforconsideration,3GHz,10GHz,26GHz,and40GHz.At3GHzand10GHz,theperturbedresonatoristherectangularcavity.At26GHzand40GHz,theperturbedresonatoristheopenresonatorcavity.

Table12:ComparisonofFrequencyDependentMethods3-40GHz

SampleName

GroupDelay DifferentialPhaseLength OpenResonator

3GHz

10GHz

26GHz

40GHz

3GHz

10GHz

26GHz

40GHz

3GHz

10GHz

26GHz

40GHz

SampleA 3.28 3.25 3.27 3.34 3.29 3.27 3.26 3.25 3.46 3.46 3.42 3.41SampleB 2.42 2.43 2.5 2.53 2.55 2.53 2.51 2.51 2.88 2.87 2.80 2.80SampleC 2.97 2.95 3.01 3.04 3.15 3.12 3.09 3.08 3.39 3.39 3.39 3.39SampleD 3.27 3.28 3.35 3.36 3.54 3.51 3.49 3.49 3.42 3.43 3.46 3.45SampleE 2.12 2.18 2.14 2.32 2.23 2.22 2.21 2.21 2.29 2.29 2.25 2.24SampleF 3.72 3.72 3.78 3.91 3.65 3.62 3.60 3.59 3.72 3.72 3.61 3.59SampleG 2.71 2.71 2.79 2.82 2.98 2.94 2.93 2.92 2.89 2.89 2.93 2.91SampleH 3.46 3.45 3.50 3.53 3.61 3.57 3.55 3.54 3.54 3.53 3.53 3.53SampleI 2.21 2.22 2.23 2.31 2.26 2.25 2.24 2.24 2.34 2.34 2.37 2.36SampleJ 2.95 2.98 3.00 3.07 3.08 3.05 3.04 3.03 2.95 2.95 2.94 2.93

Anadditionalbreakdownofmethodsversusfrequencywasaccomplishedfrom40GHzto60GHz.Thequasiopticalmethodwasconsideredagainst thedifferentialphase lengthandopenresonatormethods.Table13presentstheinformationatfourfrequencies,40GHz,50GHz,56GHz,and60GHz.Thiswasdoneduetotheresonantmethodslimitations.

Table13:ComparisonofMethodsfrom40–60GHz

SampleName

QuasiOptical DifferentialPhaseLength OpenResonator

40GHz

50GHz

56GHz

60GHz

40GHz

50GHz

56GHz

60GHz

40GHz

50GHz

56GHz

60GHz

SampleA 3.9 4.0 3.9 4.0 3.25 3.25 3.25 3.24 3.41 3.41 3.40 3.40SampleB 2.0 2.0 2.0 1.9 2.51 2.50 2.50 2.50 2.80 2.79 2.78 2.78SampleC 3.2 3.2 3.1 3.0 3.08 3.07 3.07 3.07 3.39 3.39 3.38 3.38SampleD 3.3 3.4 3.3 3.2 3.49 3.49 3.49 3.49 3.45 3.44 3.42 3.42SampleE 2.5 2.5 2.5 2.4 2.21 2.21 2.21 2.21 2.24 2.23 2.22 2.10SampleF 3.8 3.9 3.8 3.8 3.59 3.59 3.59 3.58 3.59 3.56 3.54 3.52SampleG 3.0 3.1 3.2 3.0 2.92 2.92 2.92 2.91 2.91 2.89 2.88 2.87SampleH 3.8 3.9 3.8 3.9 3.54 3.53 3.53 3.52 3.53 3.52 3.51 3.51SampleI 2.5 2.6 2.6 2.5 2.24 2.24 2.24 2.24 2.36 2.36 2.36 2.36SampleJ 3.2 3.3 3.3 3.1 3.03 3.03 3.03 3.03 2.93 2.93 2.92 2.92

Table14comparespermittivitymeasurementsfromtheBereskinandSPDRmethodsagainsttheperturbedresonator.At10GHz,theperturbedresonatoristherectangularcavity.At26GHz,theperturbedresonatoristheopenresonatorcavity.

Table14:RelativePermittivityforResonantMethods@10GHz&20GHz

SampleName

Rect. Open SPDR BereskinStripline

10GHz 26GHz 10GHz 20GHz 10GHz 20GHz

SampleA 3.46 3.42 3.448 3.440 3.07 3.09SampleB 2.87 2.80 2.789 2.787 2.46 2.47SampleC 3.39 3.39 3.317 3.308 2.89 2.89SampleD 3.43 3.46 3.445 3.436 3.27 3.30SampleE 2.29 2.25 2.260 2.254 2.17 2.17SampleF 3.72 3.61 3.577 3.568 3.36 3.36SampleG 2.89 2.93 2.991 2.893 2.76 2.77SampleH 3.53 3.53 3.424 3.402 3.31 3.33SampleI 2.34 2.37 2.297 2.281 2.17 2.18SampleJ 2.95 2.94 2.894 2.883 2.81 2.82

Mostofthetechniquesdidnotdirectlymeasurelosstangent.Table15summarizesthelosstangentmeas-urementsat10GHz.Ingeneral,theBereskinmethodyieldslosstangentvaluesclosesttothedatasheetvalues.

Table15:ResonantMethodLossTangent@10GHzSampleName RectangularResonator SPDR BereskinStripline DataSheetSampleA 0.0025 0.0017 0.0032 0.0040SampleB 0.0033 0.0016 0.0023 0.0020SampleC 0.0013 0.0018 0.0021 0.0016SampleD 0.0021 0.0025 0.0026 0.0028SampleE 0.0008 0.0007 0.0009 0.0009SampleF 0.0008 0.0008 0.0008 0.0015SampleG 0.0014 0.0011 0.0013 0.0012SampleH 0.0027 0.0023 0.0019 0.0020SampleI 0.0021 0.0014 0.0009 0.0009SampleJ 0.0012 0.0017 0.0014 0.0011

Table16presents the loss tangentvaluesat20GHz.Notethat the lowest frequencyreportedfor theopenresonatorwas26GHz.Theapproximatevaluesreportedwereinterpolatedbasedonthe26GHzopenresonatordataandthe10GHzrectangularcavitydata.

Table16:ResonantMethodLossTangent@20GHzSampleName OpenResonator(approx.) SPDR BereskinStripline DataSheetSampleA 0.0023 0.0027 0.0033 0.0040SampleB 0.0039 0.0020 0.0027 0.0020SampleC 0.0019 0.0025 0.0024 0.0016SampleD 0.0025 0.0041 0.0030 0.0028SampleE 0.0005 0.0015 0.0008 0.0009SampleF 0.0007 0.0020 0.0012 0.0015SampleG 0.0010 0.0024 0.0024 0.0012SampleH 0.0023 0.0038 0.0019 0.0020SampleI 0.0018 0.0019 0.0009 0.0009SampleJ 0.0012 0.0024 0.0016 0.0011

Conclusions Transmissionlinemethodshavethecapabilityofmeasuringrelativepermittivityinarobust,repeatablewayevenatfrequencieshigherthan20GHz.Unfortunately,thereisnostraightforwardtechniquetoextractlosstangentfromthesetransmissionlinemethods.Thisismainlyduetothefactthatthereisnowaytoseparatetheeffectoftheconductorfromtheeffectofthedielectric.Methodsutilizingresonantcavitiesarecapableofprovidingprecisemeasurementsoflosstangent.ThehighertheQofthecavity,themoreprecisethelosstangentcanbemeasured.Unfortunately,thesehigh-Qresonantcavitiesgenerallyrequiremoreexpertiseandthemeasurement ismoretedious.Permittivitymeasurementsusingtheseresonantcavitiesareorientedinthesameplaneasthedielectric,whichisgenerallynothowtheelectricfieldisorientedinmosttransmissionlinestructures.TheBereskinmethodismostsimilartotheincumbentclampedstriplinemethod(IPC2.5.5.5),butthepracticalupperboundoffrequencyforthisstructureisabout20GHz.Thevalueofthisworkisapublicallydisclosedmeasurementsetoncommerciallyavailablelow-lossmaterials.Themethodsperformedwere representativeof commontechniquesused tocomparepermittivityand losstangentsathighfrequencies.Thisworkisnotdesignedtopromoteonemethodoveranother.Itissimplyabasistocomparethelevelofvariationthatcanbeexpectedatfrequenciesabove1GHz.Themainobjectiveofthisworkwasnottojudgeoneofthesemethodsasbeinggoodorbad.Allofthemethodsareusefuldependingonequipmentavailability,timeavailabletotest,thicknessofsamples,andvariousotherfactors.Themainvalueofthisworkistoreportresultsofeachmethodonacommonsetofsamplematerialrepresentativeofwhatwouldbeusedatfrequenciesgreaterthan10GHz.Thisworkcanbeusedasabuilding-blocktobuildacommonunderstandingacrosstheindustryandbetterdevelopstandards.

Acknowledgements Thefollowingcompaniescontributedsamplematerialtosupportthiswork:

• DuPontElectronicsandCommunications• RogersCorporation(RogersAdvancedConnectivitySolutionsandArlonmaterialsets

represented)• TaconicAdvancedDielectricsDivision• PanasonicElectronicMaterials• ParkElectrochemicalCorporation

Thefollowingcompaniescontributedtestsupportanduseofequipmentforthiswork:

• MicrostripTransmissionLineMethods.Extractionfromimpedanceandgroupdelayextraction(DuPont)

• MicrostripTransmissionLineMethods.Differentialphaselength(Rogers)• FreeSpaceTransmissionMethod,Quasi-optical(Isola)• Rectangularcavityandopenresonator(DuPont)• Splitpostdielectricresonator-SPDR(Rogers)• Bereskinresonator(Taconic)

SeanSweeny,astudentatBinghamtonUniversityperformedmuchofthetestingatDuPont.

*Co-Authors:ChudyNwachukwu,Isola;JohnAndresakis,ParkElectrochemical;JohnCoonrod,RogersCorporation;DavidL.Wynants,Sr.,TaconicAdvancedDielectricDivision;DonDeGroot,ConnectedCommunityNetworks.References

1. G.Oliver,“CharacterizationofFlexibleCircuitDielectricsforHighSpeedApplications,”DesignCon2011.SantaClara,CA,2011.

2. IPC-TM-650-2.5.5.5—Stripline Test for Permittivity and Loss Tangent (Dielectric Constant andDissipationFactor)atXBand.

3. ASTM-D-3380—Standard TestMethod for Relative Permittivity (Dielectric Constant) andDissipationFactorofPolymer-BasedMicrowaveCircuitSubstrates1.

4. G.Oliveretal.,“ComprehensiveAnalysisofFlexibleCircuitMaterialsPerformance inFrequencyandTimeDomains,”DesignCon2012.SantaClara,CA,2012.

5. PolarInstruments.SI-9000ImpedanceCalculationTool.6. Bahl,I.,Bhartia,P.,MicrowaveSolidStateCircuitDesign,Wiley,NewYork,1988.7. Group and Phase Delay Measurements with Vector Network Analyzer ZVR, Application Note.

www.rohde-schwarz.com8. D.Pozar,MicrowaveEngineering,2nded,NewYork,Wiley,1998.9. J. Coonrod and G. Oliver, “PracticalMeasurements of Dielectric and Loss of PCBMaterials at High

Frequencies,”DesignCon2014.SantaClara,CA,2014.10. TKInstruments.Quasi-OpticalMeasurementCircuitforAgilent’sVNAs.11. IPC-TM-650-2.5.5.13—RelativePermittivityandLossTangentUsingaSplitCylinderResonator.12. Oliver,Glenn,“ElectricalCharacterizationofFlexibleCircuitMaterialsatHighFrequency,”DesignCon

2010.SantaClara,CA,2010.13. AgilentSplitPostDielectricResonatorsforDielectricmeasurementsofSubstrates,ApplicationNote.14. IPC-TM-650-2.5.5.5.1—StriplineTestforComplexRelativePermittivityofCircuitBoardMaterialsto14

GHz.15. DavidL.Wynants,Sr.,“DKorDielectricConstantorRelativePermittivityorWhatisit,Whyisit

Important,andHowDoesTaconicTestforIt?”16. UnitedStatesPatents5083088&5187443.

iconnect007.com

©2016–BRPublishing,Inc.