Round Robin of High-Frequency Test Methods by IPC-D24C...

14
Round Robin of High-Frequency Test Methods by IPC-D24C Task Group (Part 2) by Glenn Oliver, Jonathan Weldon, et al. DuPont* This paper was originally published in the proceedings of IPC APEX EXPO, Las Vegas, Nevada, February 2016. It won the Best Paper Award for the conference. Editor’s note: Part 1 of this paper was published on page 26 of the July 2016 issue of The PCB Magazine. Results Extraction of ɛ r from Impedance Measurements of Microstrips As mentioned previously, each circuit board material sample was broken up into six microstrip transmission lines of varying lengths and line widths. Each line was measured with the TDR from both ends of the microstrip. The distance into the strip line was identical for each measurement. Figure 13 shows the 12 impedances measured for each sample along with the linear regression. Additionally, each materials microstrip line width for 50 Ohm characteristic impedance is noted along with the measured dielectric thickness.

Transcript of Round Robin of High-Frequency Test Methods by IPC-D24C...

Page 1: Round Robin of High-Frequency Test Methods by IPC-D24C ...magazines007.com/pdf/PCB007-IPC-D242CTaskGrp_Article_2.pdf · Impedance Extraction Group Delay Differential Phase Length

Round Robin of High-Frequency Test Methods by IPC-D24C Task Group (Part 2)

byGlennOliver,JonathanWeldon,etal.DuPont*ThispaperwasoriginallypublishedintheproceedingsofIPCAPEXEXPO,LasVegas,Nevada,February2016.ItwontheBestPaperAwardfortheconference.Editor’snote:Part1ofthispaperwaspublishedonpage26oftheJuly2016issueofThePCBMagazine.

Results ExtractionofɛrfromImpedanceMeasurementsofMicrostripsAsmentionedpreviously,eachcircuitboardmaterialsamplewasbrokenupintosixmicrostriptransmissionlinesofvaryinglengthsandlinewidths.EachlinewasmeasuredwiththeTDRfrombothendsofthemicrostrip.Thedistanceintothestriplinewasidenticalforeachmeasurement.Figure13showsthe12impedancesmeasuredforeachsamplealongwiththelinearregression.Additionally,eachmaterialsmicrostriplinewidthfor50Ohmcharacteristicimpedanceisnotedalongwiththemeasureddielectricthickness.

Page 2: Round Robin of High-Frequency Test Methods by IPC-D24C ...magazines007.com/pdf/PCB007-IPC-D242CTaskGrp_Article_2.pdf · Impedance Extraction Group Delay Differential Phase Length

Figure13:TDRmicrostriptransmissionlineimpedances.Oncethecharacteristicimpedanceandboardparametersweremeasured,thevalueswereenteredmanuallyintothefieldsolversoftwareandtheɛrwascalculated.Table2showsthecalculatednormalɛrforall10materialsamples.Again,thisvalueforɛrdoesnottakeintoaccountfrequencydependence.

Table2:RelativePermittivityviaImpedanceExtractionMethodSampleName

CalculatedNormalRelativePermittivity(ɛr)

SampleName

CalculatedNormalRelativePermittivity(ɛr)

SampleA 2.97 SampleF 3.42SampleB 2.10 SampleG 2.20SampleC 2.87 SampleH 3.08SampleD 3.03 SampleI 1.84SampleE 1.82 SampleJ 2.69

GroupDelayExtractionofɛrfromPhaseofMicrostripsFigure14displaysthesmoothedeffectivedielectricconstant(Keff)versusfrequencyforeachsamplewiththecharacteristicimpedanceclosestto50Ohms.Thecorrespondingphysicalparametersofeachlinearealsonoted.A moving average filter was used in order to smooth the effective dielectric constant and remove anyabnormalities.Notetheaverageeffectivedielectricconstantisnotthesameasɛr.

Page 3: Round Robin of High-Frequency Test Methods by IPC-D24C ...magazines007.com/pdf/PCB007-IPC-D242CTaskGrp_Article_2.pdf · Impedance Extraction Group Delay Differential Phase Length

Figure14:Smoothedeffectivedielectricconstantfromgroupdelay.

Figure15presentsacomparisonofeachsamplescalculatedɛr.Thelinewidthsanddielectricthicknessesofeachsamplepresentedarealsopresented.

Figure15:Averagedeffectivedielectricconstantandcalculatedrelativepermittivitycomparison.

MicrostripDifferentialPhaseLengthɛrFigure16showsɛrascalculated fromthemicrostripdifferentialphase lengthmethod.Measurementsweremadefrom1GHzto110GHz.

Page 4: Round Robin of High-Frequency Test Methods by IPC-D24C ...magazines007.com/pdf/PCB007-IPC-D242CTaskGrp_Article_2.pdf · Impedance Extraction Group Delay Differential Phase Length

Figure16: Relativepermittivityfrommicrostripdifferentialphaselengthmethod. FreeSpaceQuasiOpticalExtractionofɛrFigures17through26presentplotsofɛrforallmaterialsascapturedbythefreespacequasiopticalmethod.Theɛrisshownfrom35GHzto65GHz,butisonlyvalidfrom40GHzto60GHz.Theelongatedellipticalwindowshownovertherealdielectricpermittivity(redtrace)oneachplotisthegatedwindowforeachsample.Thiswindow is also seen in the Cole-Cole plot as indicated with the two black vertical dotted lines along thehorizontalaxis(RealPermittivity).

Figure17: SampleA—relativepermittivityandCole-Coleplot.

Figure18: SampleB—relativepermittivityandCole-Coleplot.

Page 5: Round Robin of High-Frequency Test Methods by IPC-D24C ...magazines007.com/pdf/PCB007-IPC-D242CTaskGrp_Article_2.pdf · Impedance Extraction Group Delay Differential Phase Length

Figure19: SampleC—relativepermittivityandCole-Coleplot.

Figure20: SampleD—relativepermittivityandCole-Coleplot.

Figure21: SampleE—relativepermittivityandCole-Coleplot.

Figure22: SampleF—RelativepermittivityandCole-Coleplot.

Figure23: SampleG—relativepermittivityandCole-Coleplot.

Page 6: Round Robin of High-Frequency Test Methods by IPC-D24C ...magazines007.com/pdf/PCB007-IPC-D242CTaskGrp_Article_2.pdf · Impedance Extraction Group Delay Differential Phase Length

Figure24: SampleH—relativepermittivityandCole-Coleplot.

Figure25: SampleI—relativepermittivityandCole-Coleplot.

Figure26: SampleJ—relativepermittivityandCole-Coleplot. Thevaluesforeachsamplewereaveragedwithinthewindowfrom40GHzto60GHz.Table3presentstheseaverages.

Table3:RelativePermittivityfromFreeSpaceQuasiOpticalMethod

SampleName In-PlaneRelativePermittivity(ɛr)

SampleName In-PlaneRelativePermittivity(ɛr)

SampleA 3.9 SampleF 3.8SampleB 2.0 SampleG 3.1SampleC 3.2 SampleH 3.7SampleD 3.25 SampleI 2.5SampleE 2.35 SampleJ 3.15

PerturbationofResonatorCavitiestoMeasureɛrandtanδTheresultsfromboththerectangularwaveguideresonatorandfreespaceresonantcavitywerecombinedintooneplotinFigure27.Thetwomethodsdonotshowanyobviousdiscontinuitiesandthevaluesforɛrandtanδarestableandwithoutsignificantvariation.Inthesummaryplot,valuesbelow20GHzweremeasuredwiththeclosedrectangularcavitywhilevaluesabove20GHzweremeasuredwiththeopenresonator.

Page 7: Round Robin of High-Frequency Test Methods by IPC-D24C ...magazines007.com/pdf/PCB007-IPC-D242CTaskGrp_Article_2.pdf · Impedance Extraction Group Delay Differential Phase Length

Figure27:Resonantcavitymethodin-planerelativepermittivityandlosstangent.

TheplotsarebrokenoutintablesofɛrinTable4andtanδinTable5.

Table4:RelativePermittivityfromPerturbedResonatorsFrequency

(GHz)Name

3(GHz)Rect.

10(GHz)Rect.

26(GHz)Open

40(GHz)Open

49(GHz)Open

56(GHz)Open

60(GHz)Open

Average

SampleA 3.46 3.46 3.42 3.41 3.41 3.40 3.41 3.42SampleB 2.88 2.87 2.80 2.80 2.79 2.78 2.78 2.81SampleC 3.39 3.39 3.39 3.39 3.38 3.38 3.38 3.39SampleD 3.42 3.43 3.46 3.45 3.44 3.42 3.42 3.43SampleE 2.29 2.29 2.25 2.24 2.23 2.22 2.21 2.25SampleF 3.72 3.72 3.61 3.59 3.56 3.54 3.52 3.61SampleG 2.89 2.89 2.93 2.91 2.89 2.88 2.87 2.89SampleH 3.54 3.53 3.53 3.53 3.52 3.51 3.51 3.52SampleI 2.34 2.34 2.37 2.36 2.36 2.36 2.36 2.35SampleJ 2.95 2.95 2.94 2.93 2.93 2.92 2.92 2.93

Table5:LossTangentfromPerturbedResonatorMethod

Frequency(GHz)

SampleName

3(GHz)Rect.

10(GHz)Rect.

26(GHz)Open

40(GHz)Open

49(GHz)Open

56(GHz)Open

60(GHz)Open

SampleA 0.0022 0.0025 0.0022 0.0023 0.0029 0.0034 0.0028SampleB 0.0034 0.0033 0.0045 0.0048 0.0050 0.0051 0.0038SampleC 0.0021 0.0013 0.0021 0.0024 0.0023 0.0014 0.0020SampleD 0.0023 0.0021 0.0032 0.0036 0.0035 0.0036 0.0031SampleE 0.0008 0.0005 0.0009 0.0014 0.0011 0.0016 0.0008SampleF 0.0008 0.0007 0.0008 0.0011 0.0009 0.0013 0.0015SampleG 0.0011 0.0010 0.0016 0.0018 0.0019 0.0022 0.0014SampleH 0.0021 0.0023 0.0029 0.0032 0.0037 0.0037 0.0022SampleI 0.0012 0.0021 0.0016 0.0023 0.0021 0.0025 0.0023SampleJ 0.0013 0.0012 0.0021 0.0023 0.0025 0.0024 0.0021

Page 8: Round Robin of High-Frequency Test Methods by IPC-D24C ...magazines007.com/pdf/PCB007-IPC-D242CTaskGrp_Article_2.pdf · Impedance Extraction Group Delay Differential Phase Length

SplitPostDielectricResonator(SPDR)toMeasureɛrandtanδTable6presentstheresultsfromtheSPDRmethod.Onlytworesonantfrequencieswereusedinthiscollection.

Table6:RelativePermittivityandLossTangentfromSplitPostDielectricResonator(SPDR)MethodSampleDesignator 10GHz 20GHz

ɛr tanδ ɛr tanδSampleA 3.448 0.0017 3.440 0.0027SampleB 2.789 0.0016 2.787 0.0020SampleC 3.317 0.0018 3.308 0.0025SampleD 3.445 0.0025 3.436 0.0041SampleE 2.260 0.0007 2.254 0.0015SampleF 3.577 0.0008 3.568 0.0020SampleG 2.991 0.0011 2.893 0.0024SampleH 3.424 0.0023 3.402 0.0038SampleI 2.297 0.0014 2.281 0.0019SampleJ 2.894 0.0017 2.883 0.0024

BereskinClampedEmbeddedStriplineResonatortoMeasureɛrandtanδTheBereskinclampedembeddedstriplineresonatormethodresultsarepresentedinFigure28.Themeasuredɛrshowsgoodstabilityandlinearityovertheband.Themeasuredtanδisabitnoisyforsomesamples.

Figure28:RelativepermittivityandlosstangentfromBereskinclampedembeddedstriplineresonatormethod.

Table7showstheaverageɛrandtanδvaluesmeasuredforeverysampleovertheentireband.Table7:RelativePermittivity&LossTangentfromBereskinClampedEmbeddedStriplineResonatorMethod

SampleName ɛr tanδ FrequencyRange(GHz)SampleA 3.08 .0029 1.84–18.42SampleB 2.46 .0024 2.06–18.54SampleC 2.9 .0024 1.90–22.81SampleD 3.28 .0027 1.79–19.58SampleE 2.17 .0009 2.20–21.96SampleF 3.36 .0010 1.76–19.40SampleG 2.76 .0014 1.95–19.45SampleH 3.32 .0021 1.77–21.35SampleI 2.17 .0010 2.20–21.89SampleJ 2.81 .0016 1.93–19.26

Page 9: Round Robin of High-Frequency Test Methods by IPC-D24C ...magazines007.com/pdf/PCB007-IPC-D242CTaskGrp_Article_2.pdf · Impedance Extraction Group Delay Differential Phase Length

ComparisonThesevenmethodsyieldedsomewhatdifferentresults.Thedatawasfirstaveragedandcomparedforeachmethodovereachrespectivefrequencyband.Thisgivesarelativeideaofhowthevariousmethodsperformedversusoneanotherwithregardstotheiroverallagreementonamaterialsɛr.Table8presentstheaverageɛrasmeasuredbyeachmethod.

Table8:AveragedRelativePermittivityComparisonforAllMethods

SampleName

ImpedanceExtraction

GroupDelay

DifferentialPhaseLength

QuasiOptical

PerturbedResonators SPDR Bereskin

Stripline

SampleA 2.97 3.30 3.27 3.9 3.42 3.444 3.08SampleB 2.10 2.44 2.55 2.0 2.81 2.788 2.46SampleC 2.87 2.98 3.13 3.2 3.39 3.313 2.9SampleD 3.03 3.31 3.53 3.25 3.43 3.441 3.28SampleE 1.82 2.19 2.23 2.35 2.25 2.257 2.17SampleF 3.42 3.77 3.63 3.8 3.61 3.573 3.36SampleG 2.20 2.75 2.96 3.1 2.89 2.942 2.76SampleH 3.08 3.49 3.58 3.7 3.52 3.413 3.32SampleI 1.84 2.23 2.27 2.5 2.35 2.289 2.17SampleJ 2.69 3.00 3.06 3.15 2.93 2.889 2.81

Oncethemethodswerecomparedagainstoneanother,theaverageswereweighedagainstthedesignedɛr.Table9showsthepercentagedifferenceinthemeasuredaverageɛrversustheexpectedvalueperthenominalvaluesindatasheets.Thebottomrowshowstheaveragepercentagedifference.

Table9:PercentDifferenceofMeasuredAveragevsDataSheetNormalRelativePermittivity

SampleName

ImpedanceExtraction

GroupDelay

DifferentialPhaseLength

QuasiOptical

PerturbedResonators SPDR Bereskin

Stripline

SampleA 10 0.0 0.9 18 3.6 1.6 6.7SampleB 16 2.4 2.0 20 12 12 1.6SampleC 4.3 0.7 4.3 7.0 13 10 3.3SampleD 25 5.4 0.9 7.1 2.0 1.2 6.3SampleE 17 0.5 1.4 6.8 2.3 2.6 1.4SampleF 5.0 4.7 0.8 5.6 0.3 0.8 6.7SampleG 25 6.5 0.7 5.4 1.7 0.0 6.1SampleH 12 0.3 2.3 5.7 0.6 2.5 5.1SampleI 16 1.4 3.2 14 6.8 4.0 1.4SampleJ 10 0.0 2.0 5.0 2.3 3.7 6.3Average 14 2.2 1.8 9.4 4.5 3.8 4.5

Itisclearfromthetwotablesthiscomparisonisnotideal.TheQuasi-Optical,PerturbedResonators,andSPDRtechniqueshavetheelectricfieldorientedinthesameplaneasthedielectricundertest.TheBereskintechniquehastheelectricfieldorientednormaltotheplaneofthedielectricundertest.Themicrostriptechniqueshavetheelectricfieldorientedalmostnormaltotheplaneofthedielectricundertest,butnotaswellorientedasina stripline structure. Each method also operates over different frequencies. Given the change in ɛr withfrequencythecomparisonshowninTable9isnotdescriptiveenoughtoprovideafullpicture.Tomorefullyevaluateeachmethod,theywerealsoconsideredatafixedvaluenear10GHzsinceɛrvaluesarequotedatthis

Page 10: Round Robin of High-Frequency Test Methods by IPC-D24C ...magazines007.com/pdf/PCB007-IPC-D242CTaskGrp_Article_2.pdf · Impedance Extraction Group Delay Differential Phase Length

frequencyindatasheets.Table10showsthecomparisonofeachmethodat10GHz.Theimpedanceextractiontechniqueisnotincludedsincealongpulse(200ps)wasusedwhichmakestheeffectivefrequencymuchlessthan10GHz.Theperturbedrectangularresonatorwastheoneusedat10GHz,sothisisspecifiedinthedatatable.Theothermethods,sansthequasioptical,allhavefrequencydependentoperationatornear10GHz.

Table10:MeasuredRelativePermittivityat10GHz

SampleName GroupDelay

DifferentialPhaseLength

RectangularResonator SPDR Bereskin

Stripline DataSheet

SampleA 3.25 3.27 3.46 3.448 3.08 3.3SampleB 2.43 2.58 2.87 2.789 2.46 2.5SampleC 2.95 3.12 3.39 3.317 2.90 3.00SampleD 3.28 3.51 3.43 3.445 3.28 3.50SampleE 2.18 2.22 2.29 2.260 2.17 2.20SampleF 3.72 3.62 3.72 3.577 3.36 3.6SampleG 2.71 2.94 2.89 2.991 2.76 2.94SampleH 3.45 3.57 3.53 3.424 3.32 3.50SampleI 2.22 2.25 2.34 2.297 2.17 2.20SampleJ 2.98 3.05 2.95 2.894 2.81 3.00

Oncethemethodswereallcomparedat10GHzapercentdifferencewascalculatedagainstthedatasheet.Table11showsthepercentdifference.Again,thequasiopticalmethodwasnotconsideredinthisevaluation.It became immediately clear from this comparison that differential phase length and groupdelaymethodsprovidedvaluesclosesttothedatasheetvaluesspecified.TheBereskinstriplinemethodgavevaluesquitecloseto the valuesprovided in thedata sheets. Themethodswith theelectric fieldoriented in theplaneof thedielectricweremostdifferentfromthedatasheetvalues.Thisisnotsurprisingsincethedatasheetvaluesaregenerallybasedstripline(normal)permittivityvalues.

Table11:PercentDifferenceofMeasuredversusExpectedRelativePermittivityat10GHzSampleName

GroupDelay

DifferentialPhaseLength

RectangularResonator SPDR Bereskin

StriplineSampleA 1.5 0.9 4.8 4.5 6.7SampleB 2.8 3.2 15 12 1.6SampleC 1.7 4.0 13 11 3.3SampleD 6.3 0.3 2.0 1.6 6.3SampleE 0.9 0.9 4.1 2.7 1.4SampleF 3.3 0.6 3.3 0.6 6.7SampleG 7.8 0.0 1.7 1.7 6.1SampleH 1.4 2.0 0.9 2.2 5.1SampleI 0.9 2.3 6.4 4.4 1.4SampleJ 0.7 1.7 1.7 3.5 6.3Average 2.7 1.6 5.3 4.4 3.9

Page 11: Round Robin of High-Frequency Test Methods by IPC-D24C ...magazines007.com/pdf/PCB007-IPC-D242CTaskGrp_Article_2.pdf · Impedance Extraction Group Delay Differential Phase Length

Table12showsthegroupdelaymethod,differentialphaselengthmethod,andopenresonatorfrom3GHzto40GHz.Thesemethodswerechosenforcomparisonduetotheiroperationoverthisbandasawayofbettercomparingeachmethod.Theresonantmethoddoesnotprovidethesameresolutionwithregardtofrequencyasthetransmissionandreflectionapproaches.Hence,fourfrequencieswerechosenforconsideration,3GHz,10GHz,26GHz,and40GHz.At3GHzand10GHz,theperturbedresonatoristherectangularcavity.At26GHzand40GHz,theperturbedresonatoristheopenresonatorcavity.

Table12:ComparisonofFrequencyDependentMethods3-40GHz

SampleName

GroupDelay DifferentialPhaseLength OpenResonator

3GHz

10GHz

26GHz

40GHz

3GHz

10GHz

26GHz

40GHz

3GHz

10GHz

26GHz

40GHz

SampleA 3.28 3.25 3.27 3.34 3.29 3.27 3.26 3.25 3.46 3.46 3.42 3.41SampleB 2.42 2.43 2.5 2.53 2.55 2.53 2.51 2.51 2.88 2.87 2.80 2.80SampleC 2.97 2.95 3.01 3.04 3.15 3.12 3.09 3.08 3.39 3.39 3.39 3.39SampleD 3.27 3.28 3.35 3.36 3.54 3.51 3.49 3.49 3.42 3.43 3.46 3.45SampleE 2.12 2.18 2.14 2.32 2.23 2.22 2.21 2.21 2.29 2.29 2.25 2.24SampleF 3.72 3.72 3.78 3.91 3.65 3.62 3.60 3.59 3.72 3.72 3.61 3.59SampleG 2.71 2.71 2.79 2.82 2.98 2.94 2.93 2.92 2.89 2.89 2.93 2.91SampleH 3.46 3.45 3.50 3.53 3.61 3.57 3.55 3.54 3.54 3.53 3.53 3.53SampleI 2.21 2.22 2.23 2.31 2.26 2.25 2.24 2.24 2.34 2.34 2.37 2.36SampleJ 2.95 2.98 3.00 3.07 3.08 3.05 3.04 3.03 2.95 2.95 2.94 2.93

Anadditionalbreakdownofmethodsversusfrequencywasaccomplishedfrom40GHzto60GHz.Thequasiopticalmethodwasconsideredagainst thedifferentialphase lengthandopenresonatormethods.Table13presentstheinformationatfourfrequencies,40GHz,50GHz,56GHz,and60GHz.Thiswasdoneduetotheresonantmethodslimitations.

Table13:ComparisonofMethodsfrom40–60GHz

SampleName

QuasiOptical DifferentialPhaseLength OpenResonator

40GHz

50GHz

56GHz

60GHz

40GHz

50GHz

56GHz

60GHz

40GHz

50GHz

56GHz

60GHz

SampleA 3.9 4.0 3.9 4.0 3.25 3.25 3.25 3.24 3.41 3.41 3.40 3.40SampleB 2.0 2.0 2.0 1.9 2.51 2.50 2.50 2.50 2.80 2.79 2.78 2.78SampleC 3.2 3.2 3.1 3.0 3.08 3.07 3.07 3.07 3.39 3.39 3.38 3.38SampleD 3.3 3.4 3.3 3.2 3.49 3.49 3.49 3.49 3.45 3.44 3.42 3.42SampleE 2.5 2.5 2.5 2.4 2.21 2.21 2.21 2.21 2.24 2.23 2.22 2.10SampleF 3.8 3.9 3.8 3.8 3.59 3.59 3.59 3.58 3.59 3.56 3.54 3.52SampleG 3.0 3.1 3.2 3.0 2.92 2.92 2.92 2.91 2.91 2.89 2.88 2.87SampleH 3.8 3.9 3.8 3.9 3.54 3.53 3.53 3.52 3.53 3.52 3.51 3.51SampleI 2.5 2.6 2.6 2.5 2.24 2.24 2.24 2.24 2.36 2.36 2.36 2.36SampleJ 3.2 3.3 3.3 3.1 3.03 3.03 3.03 3.03 2.93 2.93 2.92 2.92

Table14comparespermittivitymeasurementsfromtheBereskinandSPDRmethodsagainsttheperturbedresonator.At10GHz,theperturbedresonatoristherectangularcavity.At26GHz,theperturbedresonatoristheopenresonatorcavity.

Page 12: Round Robin of High-Frequency Test Methods by IPC-D24C ...magazines007.com/pdf/PCB007-IPC-D242CTaskGrp_Article_2.pdf · Impedance Extraction Group Delay Differential Phase Length

Table14:RelativePermittivityforResonantMethods@10GHz&20GHz

SampleName

Rect. Open SPDR BereskinStripline

10GHz 26GHz 10GHz 20GHz 10GHz 20GHz

SampleA 3.46 3.42 3.448 3.440 3.07 3.09SampleB 2.87 2.80 2.789 2.787 2.46 2.47SampleC 3.39 3.39 3.317 3.308 2.89 2.89SampleD 3.43 3.46 3.445 3.436 3.27 3.30SampleE 2.29 2.25 2.260 2.254 2.17 2.17SampleF 3.72 3.61 3.577 3.568 3.36 3.36SampleG 2.89 2.93 2.991 2.893 2.76 2.77SampleH 3.53 3.53 3.424 3.402 3.31 3.33SampleI 2.34 2.37 2.297 2.281 2.17 2.18SampleJ 2.95 2.94 2.894 2.883 2.81 2.82

Mostofthetechniquesdidnotdirectlymeasurelosstangent.Table15summarizesthelosstangentmeas-urementsat10GHz.Ingeneral,theBereskinmethodyieldslosstangentvaluesclosesttothedatasheetvalues.

Table15:ResonantMethodLossTangent@10GHzSampleName RectangularResonator SPDR BereskinStripline DataSheetSampleA 0.0025 0.0017 0.0032 0.0040SampleB 0.0033 0.0016 0.0023 0.0020SampleC 0.0013 0.0018 0.0021 0.0016SampleD 0.0021 0.0025 0.0026 0.0028SampleE 0.0008 0.0007 0.0009 0.0009SampleF 0.0008 0.0008 0.0008 0.0015SampleG 0.0014 0.0011 0.0013 0.0012SampleH 0.0027 0.0023 0.0019 0.0020SampleI 0.0021 0.0014 0.0009 0.0009SampleJ 0.0012 0.0017 0.0014 0.0011

Table16presents the loss tangentvaluesat20GHz.Notethat the lowest frequencyreportedfor theopenresonatorwas26GHz.Theapproximatevaluesreportedwereinterpolatedbasedonthe26GHzopenresonatordataandthe10GHzrectangularcavitydata.

Table16:ResonantMethodLossTangent@20GHzSampleName OpenResonator(approx.) SPDR BereskinStripline DataSheetSampleA 0.0023 0.0027 0.0033 0.0040SampleB 0.0039 0.0020 0.0027 0.0020SampleC 0.0019 0.0025 0.0024 0.0016SampleD 0.0025 0.0041 0.0030 0.0028SampleE 0.0005 0.0015 0.0008 0.0009SampleF 0.0007 0.0020 0.0012 0.0015SampleG 0.0010 0.0024 0.0024 0.0012SampleH 0.0023 0.0038 0.0019 0.0020SampleI 0.0018 0.0019 0.0009 0.0009SampleJ 0.0012 0.0024 0.0016 0.0011

Page 13: Round Robin of High-Frequency Test Methods by IPC-D24C ...magazines007.com/pdf/PCB007-IPC-D242CTaskGrp_Article_2.pdf · Impedance Extraction Group Delay Differential Phase Length

Conclusions Transmissionlinemethodshavethecapabilityofmeasuringrelativepermittivityinarobust,repeatablewayevenatfrequencieshigherthan20GHz.Unfortunately,thereisnostraightforwardtechniquetoextractlosstangentfromthesetransmissionlinemethods.Thisismainlyduetothefactthatthereisnowaytoseparatetheeffectoftheconductorfromtheeffectofthedielectric.Methodsutilizingresonantcavitiesarecapableofprovidingprecisemeasurementsoflosstangent.ThehighertheQofthecavity,themoreprecisethelosstangentcanbemeasured.Unfortunately,thesehigh-Qresonantcavitiesgenerallyrequiremoreexpertiseandthemeasurement ismoretedious.Permittivitymeasurementsusingtheseresonantcavitiesareorientedinthesameplaneasthedielectric,whichisgenerallynothowtheelectricfieldisorientedinmosttransmissionlinestructures.TheBereskinmethodismostsimilartotheincumbentclampedstriplinemethod(IPC2.5.5.5),butthepracticalupperboundoffrequencyforthisstructureisabout20GHz.Thevalueofthisworkisapublicallydisclosedmeasurementsetoncommerciallyavailablelow-lossmaterials.Themethodsperformedwere representativeof commontechniquesused tocomparepermittivityand losstangentsathighfrequencies.Thisworkisnotdesignedtopromoteonemethodoveranother.Itissimplyabasistocomparethelevelofvariationthatcanbeexpectedatfrequenciesabove1GHz.Themainobjectiveofthisworkwasnottojudgeoneofthesemethodsasbeinggoodorbad.Allofthemethodsareusefuldependingonequipmentavailability,timeavailabletotest,thicknessofsamples,andvariousotherfactors.Themainvalueofthisworkistoreportresultsofeachmethodonacommonsetofsamplematerialrepresentativeofwhatwouldbeusedatfrequenciesgreaterthan10GHz.Thisworkcanbeusedasabuilding-blocktobuildacommonunderstandingacrosstheindustryandbetterdevelopstandards.

Acknowledgements Thefollowingcompaniescontributedsamplematerialtosupportthiswork:

• DuPontElectronicsandCommunications• RogersCorporation(RogersAdvancedConnectivitySolutionsandArlonmaterialsets

represented)• TaconicAdvancedDielectricsDivision• PanasonicElectronicMaterials• ParkElectrochemicalCorporation

Thefollowingcompaniescontributedtestsupportanduseofequipmentforthiswork:

• MicrostripTransmissionLineMethods.Extractionfromimpedanceandgroupdelayextraction(DuPont)

• MicrostripTransmissionLineMethods.Differentialphaselength(Rogers)• FreeSpaceTransmissionMethod,Quasi-optical(Isola)• Rectangularcavityandopenresonator(DuPont)• Splitpostdielectricresonator-SPDR(Rogers)• Bereskinresonator(Taconic)

SeanSweeny,astudentatBinghamtonUniversityperformedmuchofthetestingatDuPont.

Page 14: Round Robin of High-Frequency Test Methods by IPC-D24C ...magazines007.com/pdf/PCB007-IPC-D242CTaskGrp_Article_2.pdf · Impedance Extraction Group Delay Differential Phase Length

*Co-Authors:ChudyNwachukwu,Isola;JohnAndresakis,ParkElectrochemical;JohnCoonrod,RogersCorporation;DavidL.Wynants,Sr.,TaconicAdvancedDielectricDivision;DonDeGroot,ConnectedCommunityNetworks.References

1. G.Oliver,“CharacterizationofFlexibleCircuitDielectricsforHighSpeedApplications,”DesignCon2011.SantaClara,CA,2011.

2. IPC-TM-650-2.5.5.5—Stripline Test for Permittivity and Loss Tangent (Dielectric Constant andDissipationFactor)atXBand.

3. ASTM-D-3380—Standard TestMethod for Relative Permittivity (Dielectric Constant) andDissipationFactorofPolymer-BasedMicrowaveCircuitSubstrates1.

4. G.Oliveretal.,“ComprehensiveAnalysisofFlexibleCircuitMaterialsPerformance inFrequencyandTimeDomains,”DesignCon2012.SantaClara,CA,2012.

5. PolarInstruments.SI-9000ImpedanceCalculationTool.6. Bahl,I.,Bhartia,P.,MicrowaveSolidStateCircuitDesign,Wiley,NewYork,1988.7. Group and Phase Delay Measurements with Vector Network Analyzer ZVR, Application Note.

www.rohde-schwarz.com8. D.Pozar,MicrowaveEngineering,2nded,NewYork,Wiley,1998.9. J. Coonrod and G. Oliver, “PracticalMeasurements of Dielectric and Loss of PCBMaterials at High

Frequencies,”DesignCon2014.SantaClara,CA,2014.10. TKInstruments.Quasi-OpticalMeasurementCircuitforAgilent’sVNAs.11. IPC-TM-650-2.5.5.13—RelativePermittivityandLossTangentUsingaSplitCylinderResonator.12. Oliver,Glenn,“ElectricalCharacterizationofFlexibleCircuitMaterialsatHighFrequency,”DesignCon

2010.SantaClara,CA,2010.13. AgilentSplitPostDielectricResonatorsforDielectricmeasurementsofSubstrates,ApplicationNote.14. IPC-TM-650-2.5.5.5.1—StriplineTestforComplexRelativePermittivityofCircuitBoardMaterialsto14

GHz.15. DavidL.Wynants,Sr.,“DKorDielectricConstantorRelativePermittivityorWhatisit,Whyisit

Important,andHowDoesTaconicTestforIt?”16. UnitedStatesPatents5083088&5187443.

iconnect007.com

©2016–BRPublishing,Inc.