Returns-to-Scale u A single technology can ‘locally’ exhibit different returns-to-scale.

Post on 31-Jan-2016

213 views 0 download

Transcript of Returns-to-Scale u A single technology can ‘locally’ exhibit different returns-to-scale.

Returns-to-Scale

A single technology can ‘locally’ exhibit different returns-to-scale.

Returns-to-Scale

y = f(x)

xInput Level

Output Level

One input, one output

Decreasingreturns-to-scale

Increasingreturns-to-scale

Technical Rate-of-Substitution

At what rate can a firm substitute one input for another without changing its output level?

Technical Rate-of-Substitution

x2

x1

y

x2'

x1'

Technical Rate-of-Substitution

x2

x1

y

The slope is the rate at which input 2 must be given up as input 1’s level is increased so as not to change the output level. The slope of an isoquant is its technical rate-of-substitution.x2

'

x1'

Technical Rate-of-Substitution

How is a technical rate-of-substitution computed?

Technical Rate-of-Substitution

How is a technical rate-of-substitution computed?

The production function is A small change (dx1, dx2) in the input

bundle causes a change to the output level of

y f x x ( , ).1 2

dyyx

dxy

xdx

1

12

2 .

Technical Rate-of-Substitutiondy

yx

dxy

xdx

1

12

2 .

But dy = 0 since there is to be no changeto the output level, so the changes dx1

and dx2 to the input levels must satisfy

01

12

2

yx

dxy

xdx .

Technical Rate-of-Substitution

01

12

2

yx

dxy

xdx

rearranges to

yx

dxyx

dx2

21

1

so dxdx

y xy x

2

1

1

2

//

.

Technical Rate-of-Substitutiondxdx

y xy x

2

1

1

2

//

is the rate at which input 2 must be givenup as input 1 increases so as to keepthe output level constant. It is the slopeof the isoquant.

Technical Rate-of-Substitution; A Cobb-Douglas Example

y f x x x xa b ( , )1 2 1 2

so

yx

ax xa b

11

12

y

xbx xa b

21 2

1 .and

The technical rate-of-substitution is

dxdx

y xy x

ax x

bx x

axbx

a b

a b2

1

1

2

11

2

1 21

2

1

//

.

x2

x1

Technical Rate-of-Substitution; A Cobb-Douglas Example

TRSaxbx

xx

xx

2

1

2

1

2

1

1 32 3 2

( / )( / )

y x x a and b 11/3

22 3 1

323

/ ;

x2

x1

Technical Rate-of-Substitution; A Cobb-Douglas Example

TRSaxbx

xx

xx

2

1

2

1

2

1

1 32 3 2

( / )( / )

y x x a and b 11/3

22 3 1

323

/ ;

8

4

TRSxx

2

128

2 41

x2

x1

Technical Rate-of-Substitution; A Cobb-Douglas Example

TRSaxbx

xx

xx

2

1

2

1

2

1

1 32 3 2

( / )( / )

y x x a and b 11/3

22 3 1

323

/ ;

6

12

TRSxx

2

126

2 1214

Costo a corto plazo

Costo total (C(y)) es el costo de todos los recursos productivos usados por la empresa.

Costo fijo total (F) es el costo de todos los insumos fijos de la empresa.

Son los pagos que la empresa debe hacer en el corto plazo sin importar su nivel de producción.

Costo a corto plazo

Costo variable total (CV(Y)) es el costo de todos los insumos variables de la empresa.

Costos que varían a medida que la producción cambia.

Fixed, Variable & Total Cost Functions

c(y) is the total cost of all inputs, fixed and variable, when producing y output units. c(y) is the firm’s total cost function;

c y F c yv( ) ( ).

Curvas del costo totalCosto Costo fijo variable Costo total total total

Trabajo Producción (CF) (CV) (CT) (trabajadores (camisas

por día) por día) ($ por día)

a 0 0

b 1 4

c 2 10

d 3 13

e 4 15

f 5 16

Curvas del costo totalCosto Costo fijo variable Costo total total total

Trabajo Producción (CF) (CV) (CT) (trabajadores (camisas

por día) por día) ($ por día)

a 0 0 25

b 1 4 25

c 2 10 25

d 3 13 25

e 4 15 25

f 5 16 25

Curvas del costo totalCosto Costo fijo variable Costo total total total

Trabajo Producción (CF) (CV) (CT) (trabajadores (camisas

por día) por día) ($ por día)

a 0 0 25 0

b 1 4 25 25

c 2 10 25 50

d 3 13 25 75

e 4 15 25 100

f 5 16 25 125

Curvas del costo totalCosto Costo fijo variable Costo total total total

Trabajo Producción (CF) (CV) (CT) (trabajadores (camisas

por día) por día) ($ por día)

a 0 0 25 0 25

b 1 4 25 25 50

c 2 10 25 50 75

d 3 13 25 75 100

e 4 15 25 100 125

f 5 16 25 125 150

C(y)

CV(y)

Curvas del costo total

0 5 10 15Producción (camisas por día)

50

100

150

Cos

to (

$ po

r dí

a)

CF

C(y) = F + CV(y)

Av. Fixed, Av. Variable & Av. Total Cost Curves

The firm’s total cost function is

For y > 0, the firm’s average total cost function is

c y F c yv( ) ( ).

AC yFy

c yy

AFC y AVC y

v( )( )

( ) ( ).

Av. Fixed, Av. Variable & Av. Total Cost Curves

What does an average fixed cost curve look like?

AFC(y) is a rectangular hyperbola so its graph looks like ...

AFC yFy

( )

$/output unit

AFC(y)

y0

AFC(y) 0 as y

$/output unit

AVC(y)

y0

$/output unit

AFC(y)

AVC(y)

y0

$/output unit

AFC(y)

AVC(y)

ATC(y)

y0

AC(y) = AFC(y) + AVC(y)

$/output unit

AFC(y)

AVC(y)

ATC(y)

y0

AFC(y) = AC(y) - AVC(y)

AFC

Marginal Cost Function

Marginal cost is the rate-of-change of variable production cost as the output level changes. That is,

MC yc y

yv( )

( ).

Marginal Cost Function

The firm’s total cost function is

and the fixed cost F does not change with the output level y, so

MC is the slope of both the variable cost and the total cost functions.

c y F c yv( ) ( )

MC yc y

yc y

yv( )

( ) ( ).

Marginal and Variable Cost Functions

MC(y)

y0 y

$/output unit

Marginal & Average Cost Functions

How is marginal cost related to average variable cost?

Marginal & Average Cost Functions

Since

AVC yc y

yv( )

( ),

.)()()(

2y

ycyyMC

y

yAVC v

Marginal & Average Cost Functions

Since AVC yc y

yv( )

( ),

.)()()(

2y

ycyyMC

y

yAVC v

Therefore,

AVC yy

( )

0 y MC y c yv

( ) ( ).as

$/output unit

y

AVC(y)

MC(y)

$/output unit

y

AVC(y)

MC(y)

MC y AVC yAVC y

y( ) ( )

( )

0

$/output unit

y

AVC(y)

MC(y)

MC y AVC yAVC y

y( ) ( )

( )

0

$/output unit

y

AVC(y)

MC(y)

MC y AVC yAVC y

y( ) ( )

( )

0

$/output unit

y

AVC(y)

MC(y)

MC y AVC yAVC y

y( ) ( )

( )

0

The short-run MC curve intersectsthe short-run AVC curve frombelow at the AVC curve’s minimum.

Marginal & Average Cost Functions

Similarly, sinceATC y

c yy

( )( )

,

ATC yy

y MC y c y

y

( ) ( ) ( ).

12

Marginal & Average Cost Functions

Similarly, since ATC yc y

y( )

( ),

ATC yy

y MC y c y

y

( ) ( ) ( ).

12

Therefore,

ATC yy

( )

0 y MC y c y

( ) ( ).as

$/output unit

y

MC(y)

ATC(y)

MC y ATC y( ) ( )

as

ATC y

y( )

0

Marginal & Average Cost Functions

The short-run MC curve intersects the short-run AVC curve from below at the AVC curve’s minimum.

And, similarly, the short-run MC curve intersects the short-run ATC curve from below at the ATC curve’s minimum.

$/output unit

y

AVC(y)

MC(y)

ATC(y)

La función de producción

1 4 10 13 15 2 10 15 18 21 3 13 18 22 24 4 15 20 24 26 5 16 21 25 27

Máquinas de coser (número) 1 2 3 4

Producción (camisas por día)

Trabajo Planta 1 Planta 2 Planta 3 Planta 4

La curva del costo promedio a largo plazo

La curva de costo total promedio a largo plazo se deriva de las curvas del costo promedio a corto plazo.

El segmento de las curvas del costo promedio (de corto plazo) a lo largo del cual el costo promedio es el más bajo, forman la curva del costo promedio a largo plazo.

Costo a corto plazo de cuatro plantas diferentes

Curva del costo promedio a largo plazo

Rendimientos a escala Los rendimientos a escala:

son los incrementos en la producción resultantes de incrementar todos los factores de la producción en el mismo porcentaje.

Tres posibilidades:

1. Rendimientos constantes a escala

2. Rendimientos crecientes a escala

3. Rendimientos decrecientes a escala

Rendimientos a escala

Rendimientos constantes a escala

Condiciones tecnológicas en las que un determinado incremento porcentual en todos los factores de producción de la empresa, da como resultado un incremento porcentual igual en la producción

Rendimientos a escala

Rendimientos crecientes a escala

Condiciones tecnológicas en las que un determinado incremento porcentual en todos los factores de producción de la empresa, da como resultado un incremento porcentual mayor en la producción

Rendimientos a escala

Rendimientos decrecientes a escala

Condiciones tecnológicas en las que un determinado incremento porcentual en todos los factores de producción de la empresa, da como resultado un incremento porcentual menor en la producción

Concepto aplicable: Economías y Deseconomías de escala

La invasión de los Multicinemas Hace una década la mayoría de los cines tenían una sola

sala y ofrecía solo una película y pocos productos en las tiendas concesionadas.

Mega cinemas (Eje. Cinemex, Metrópoli) tienen 16 o más sales ofrecen una gran variedad de películas y golosinas. Hay café express, acomodadores de autos.

Sin embargo también hay preocupación de que en esta industria se presenten deseconomías de escala. Por ejemplo, El colapso de Tandy Corp´s Incredible Universe, la cadena de artículos “gigantes” que cerró este año. Con más de 16 salas. Ver Kevin Helliker, “los multinacionales invaden el panorama del cine”, The Wall Street Journal, 13 de mayo de 1997, p. B1.

Para el caso de México, véase el número de expansión de Agosto 07, 2002 Año XXXIII . Núm. 846

Escala eficiente mínima

La escala eficiente mínima de una empresa

Es el menor nivel de producción en la que el costo promedio a largo plazo alcanza su nivel más bajo.

Ejercicios en linea

Ejercio 1:Visite Moviefone (

http://www.movieefone.com/). O bién Cinemex (

http://www.cinemex.com.mx/) Explique la forma en que los cines reflejan tanto las economías como las deseconomías de escala.

Ejercicios en linea Ejercio 2:

Visite Cintra (http://www.cintra.com.mx/) La empresa en línea ofrece información

sobre la economía de las aerolíneas y su estructura de costos.

Resuma los principales componentes de los costos de las aerolíneas