Restrepo Huete phenocams ACEAS 140311

Post on 13-Jun-2015

697 views 5 download

Tags:

description

Australian Phenology Product Validation: Phenocam Network

Transcript of Restrepo Huete phenocams ACEAS 140311

Australian Phenology Product Validation: Phenocam Network Natalia Restrepo-Coupe and Alfredo Huete University Technology of Sydney AusCover Sydney Phenology Node Kevin Davies, Michael Liddell, Nicolas Weigand, Craig.Macfarlane, John Byrne , Victor Resco de Dios, Matthias Boer, Chelsea Maier, Nicolas Boulain, James Cleverly, Derek Eamus, Georgia Koerber, and Wayne S Meyer

Introduction  Phenology – definition and how it is characterized with the use of RS products (VIs)

 AusCover at the UTS Sydney node:   Phenology product: applications in conservation, aerobiology, LSM inputs   Land Surface Temperature product   Disturbance product

Objective: Validation Phenology Product AusCover UTS Sydney node  Validation of the phenology product  Link between the in-situ measurement and the remote sensing community (this is study is conducted in collaboration with Ozflux tower PIs).

 Site-specific support to the flux tower data collection (symbiosis)  Contribute to the understanding of water and carbon flux seasonal cycles (personal objective)

Objective: Validation Phenology Product AusCover UTS Sydney node

Modified  from  Ma,  X.,  et  al.,  2013.  

Methods: Flux towers

Ma,  X.,  et  al.,  2013.  Spa7al  pa8erns  and  temporal  dynamics  in  savanna  vegeta7on  phenology  across  the  North  Australian  Tropical  Transect.  Remote  Sens.  Environ.  139,  97–115.  doi:10.1016/j.rse.2013.07.030  

Methods: Phenocam Network Phenological Eyes Network

Methods: Phenocams  AusCover Good Practice Guidelines (A technical handbook supporting calibration and validation activities of remotely sensed data products)

 Chapter 8. Phenology Validation   Literature review   Different methods   Phenocams   Our experience   Our approach to instrument set-up, data collection and processing

Methods: Phenocams  Phenocams : •  RGB and spectral cameras •  Orientation, angles, azimuths •  Over- and understory •  Diurnal, daily, and seasonal settings, including frequency of observations

(e.g. 30 minutes) •  Camera settings, integration times, F-stop, etc. •  Use of White/Gray references •  Computation Red/Green (RGB) and NIR/Red ratios (spectral) with and

without use of reference

Our method is designed to support the following working hypothesis…

Working hypothesis  Use of tower mounted phenocam imagery of whole-canopy and tree and understory layer vegetation to trace and evaluate the satellite phenology profile (e.g. both measures should provide a similar start of green-up and peak at same time, etc.).

  Assessment of satellite phenology product accuracies in depicting the timing of seasonal vegetation dynamics, phenophases, and other transitional dates in time and space (cross-site).

  Phenocams have the potential to assess and partition seasonality of the tree layer, grass layer, and whole-canopy.

  Whether the change in signal is attributed to more leaves, greener leaves, younger-leaves, or some combination.

 Although, a mechanistic understanding of phenology drivers is not a direct requirement of validation, it does enable up-scaling of point-based phenology to landscapes.

ALICE SPRINGS

CHOWILLA

ZIG ZAG

GINGIN CUMBERLANDPLAINS

CREDO

SE QUEENSLAND SUPERSITE

Mean annual precipitation (mm/month) Tropical Rainfall Measuring Mission (TRMM) data (NASA, 2013)

DISCOVERY CENTER ROBSON CREEK DAINTREE

Phenocam Network Methods:  Budget  We do not mind replication  We adapt our protocol to the site (Natalia open the protocol)

 http://data.auscover.org.au/xwiki/bin/view/Teams/GoodPracticeHanbook

Phenocam Network Objectives: Site specific

ALICE SPRINGS

CHOWILLA

ZIG ZAG

GINGIN CUMBERLANDPLAINS

CREDO

SE QUEENSLAND SUPERSITE

Special thanks to Dr. M Liddell and N. Weigand

DISCOVERY CENTER ROBSON CREEK DAINTREE

Phenocam Network Objectives: Site specific

ALICE SPRINGS

CHOWILLA

ZIG ZAG

GINGIN CUMBERLANDPLAINS

CREDO

SE QUEENSLAND SUPERSITE

Special thanks to Dr. V Resco de Dios, Matthias Boer and Chelsea Maier

Natalia open document about Cumberland

Phenocam Network Objectives: Site specific

ALICE SPRINGS

CHOWILLA

ZIG ZAG

GINGIN CUMBERLANDPLAINS

CREDO

SE QUEENSLAND SUPERSITE

Special thanks to Prof D. Chittleborough, Prof W. Meyer, Dr. G. Whiteman and T. Luckbe

Phenocam Network Objectives: Site specific

ALICE SPRINGS

CHOWILLA

ZIG ZAG

GINGIN CUMBERLANDPLAINS

CREDO

SE QUEENSLAND SUPERSITE

Special thanks to Dr. J. Cleverly, Dr. N Boulain, R Faux, Dr. N. Grant and Prof Derek Eamus

Alice Springs Mulga, NT Wingscapes

Alice Springs Mulga, NT Campbell Sci cameras

Phenocam Network: Sensor Comparison

Phenocam Network: Camera Calibration

Figure 1. Relationship between camera incoming radiation (x-axis) and the raw output signal (DN) for a Spectralon white panel in 6 bands: Red (centered at wavelengths of 655), Green (555), NIR (857), Blue (460) and wavebands 923 and 728. Camera settings: f-stop 5.6, gain =1 and integration time = 15. Digital number DN for non calibrated images. An incident PAR a light meter (umol m-2 s-1) was used to guide the experiment.

Phenocam Network: Linking RGB indices to physiological response

Red

/Gre

en

2

1.5

1

0.5

Wet Dry Mulga site biological crust (>50% Cyanobacteria) Green/Red response after wetting (1.57 mm).

-2 -1 0 1 2 3 4 Time (hours)

-2 -1 0 1 2 3 4

3

2.5

2

1.5

1

0.5

Red

/Gre

en

Riverbed/Red Gum site biological crust (>50% Moss) Green/Red response after wetting (1.57 mm).

Special thanks to J. Jamieson, Dr N. Boulain, and Dr A. Leight

Wet

Calperum-Chowilla Flux Tower Site 25-Oct-2012 12:00:00 Red/Green

0

0.5

1

1.5

2

Rai

nfal

l(mm

)

0

20

40

04/01 05/01 06/01 07/01 08/01 09/01 10/010.8

1.2

1.6

Red

/Gre

en

Grasses Shrubs Salt Bush Soil Biological Crust Soil

Understory camera

04/01 05/01 06/01 07/01 08/01 09/01 10/01 11/010.8

1.2

1.6R

ed/G

reen

Phe

noca

ms

1

1.3

1.6

Red

/Gre

en M

OD

IS

04/01 05/01 06/01 07/01 08/01 09/01 10/01 11/010.95

1.1

1.25

Red

/Gre

en P

heno

cam

s

1.2

1.4

1.6

Red

/Gre

en M

OD

IS

Calperum-Chowilla (CHO) RGB understory camera MODIS reflectances (Bi-directional Reflectance Distribution Function, BRDF model MCD43A4)

Grasses Shrubs Salt Bush Soil Biological Crust Soil MODIS All image (green) Mean Grass, Shrubs, Salt Bush

1.2 1.3 1.4 1.5 1.61.1

1.15

1.2

1.25

1.3

R/GMODIS

=0.09195 R/Gcam

+1.06p=0.0048 r2=0.24

R/GMODIS

R/G

cam

1.2 1.3 1.4 1.5 1.60.9

1

1.1R/G

MODIS=0.25 R/G

cam green+0.704

p=0.0014 r2=0.3

R/GMODIS

R/G

cam

gre

en

04/01 05/01 06/01 07/01 08/01 09/01 10/01 11/010.8

0.925

1.05

Gre

en/R

ed P

heno

cam

s

0.1

0.2

0.3

EVI M

OD

IS04/01 05/01 06/01 07/01 08/01 09/01 10/01 11/01

0.8

0.925

1.05

Gre

en/R

ed P

heno

cam

s

0.2

0.4

0.6

ND

VI M

OD

ISAll image (green) Mean Grass, Shrubs, Salt Bush MODIS

Calperum-Chowilla (CHO) RGB understory camera MODIS vegetation indices (MOD13) 16-day product linearly resampled to 8-day

0.1 0.15 0.2 0.25 0.31.1

1.15

1.2

1.25

1.3

R/GMODIS

=-0.3744 R/Gcam

+1.26p=0.0011 r2=0.31

EVIMODIS

R/G

cam

0.1 0.15 0.2 0.25 0.30.9

1

1.1R/G

MODIS=-1.403 R/G

cam+1.33

p=0.00062 r2=0.34

EVIMODIS

R/G

cam

gre

en

0.3 0.4 0.5 0.61.1

1.15

1.2

1.25

1.3

R/GMODIS

=-0.0956 R/Gcam green

+1.23p=0.019 r2=0.18

NDVIMODIS

R/G

cam

0.3 0.4 0.5 0.60.9

1

1.1R/G

MODIS=-0.272 R/G

cam green+1.16

p=0.0099 r2=0.21

NDVIMODIS

R/G

cam

gre

en

Dro

p in

act

ivity

Ris

e in

act

ivity

Green/Red (instead of Red/Green)

Calperum-Chowilla Flux Tower Site 06-Mar-2013 10:00:00 Red/Green

0

0.5

1

1.5

2

Rai

nfal

l(mm

)

0

20

04/01 07/01 10/01 01/011.1

1.2

1.3

Red

/Gre

en--- WindowSE--- WindowW--- WindowS

Calperum-Chowilla Flux Tower Site 06-Mar-2013 10:00:00 Red/Green

0

0.5

1

1.5

2

Rai

nfal

l(mm

)

0

20

04/01 07/01 10/01 01/011.1

1.2

1.3

Red

/Gre

en

--- WindowSE--- WindowW--- WindowS

2012 2013

Tower nadir camera

01-Feb-2012 11:00:0001-Feb-2012 11:00:00

01-Feb-2012 11:00:00

Eucalyptus window

Window E Window W

Window S

0.1 0.15 0.2 0.25 0.31.2

1.25

1.3

1.35

1.4

R/GMODIS

=-0.4369 R/Gcam

+1.35p=0.0016 r2=0.21

EVIMODIS

R/G

cam

0.3 0.4 0.5 0.61.2

1.25

1.3

1.35

1.4

R/GMODIS

=-0.1372 R/Gcam green

+1.32p=0.00042 r2=0.25

NDVIMODIS

R/G

cam

1.2 1.3 1.4 1.5 1.61.2

1.25

1.3

1.35

1.4

R/GMODIS

=0.07184 R/Gcam

+1.17p=0.01 r2=0.14

R/GMODIS

R/G

cam

F M A M J J A S O N D J F M1.1

1.3

1.5

Red

/Gre

en P

heno

cam

s

1.2

1.4

1.6

Red

/Gre

en M

OD

IS

F M A M J J A S O N D J F M0.75

0.8

0.85

Gre

en/R

ed P

heno

cam

s

0.1

0.2

0.3

EVI M

OD

IS

F M A M J J A S O N D J F M0.75

0.8

0.85

Gre

en/R

ed P

heno

cam

s

0.2

0.4

0.6

ND

VI M

OD

IS

Window E Window S Window W MODIS

Mean all windows MODIS

Mean all windows MODIS

0.1 0.15 0.2 0.25 0.31

1.05

1.1

1.15

1.2

R/GMODIS

=-0.6335 R/Gcam

+1.21p=1.5e-05 r2=0.36

EVIMODIS

R/G

cam

gre

en

0.3 0.4 0.5 0.61

1.05

1.1

1.15

1.2

R/GMODIS

=-0.1914 R/Gcam green

+1.16p=7.6e-06 r2=0.38

NDVIMODIS

R/G

cam

gre

en

0.1 0.15 0.2 0.25 0.31.2

1.25

1.3

1.35

1.4

R/GMODIS

=-0.4369 R/Gcam

+1.35p=0.0016 r2=0.21

EVIMODIS

R/G

cam

0.3 0.4 0.5 0.61.2

1.25

1.3

1.35

1.4

R/GMODIS

=-0.1372 R/Gcam green

+1.32p=0.00042 r2=0.25

NDVIMODIS

R/G

cam

F M A M J J A S O N D J F M0.85

0.925

1

Gre

en/R

ed P

heno

cam

s

0.1

0.2

0.3

EVI M

OD

IS

F M A M J J A S O N D J F M0.85

0.925

1

Gre

en/R

ed P

heno

cam

s

0.2

0.4

0.6

ND

VI M

OD

IS

Green vegetation window Red/Green

Eucalyptus window MODIS

Green/Red (instead of Red/Green)

1.2 1.3 1.4 1.5 1.61.2

1.25

1.3

1.35

1.4

R/GMODIS

=0.07184 R/Gcam

+1.17p=0.01 r2=0.14

R/GMODIS

R/G

cam

1.2 1.3 1.4 1.5 1.61

1.05

1.1

1.15

1.2

R/GMODIS

=0.1291 R/Gcam green

+0.903p=1.6e-05 r2=0.36

R/GMODIS

R/G

cam

gre

en

F M A M J J A S O N D J F M1.15

1.275

1.4

Red

/Gre

en P

heno

cam

s

1.2

1.4

1.6

Red

/Gre

en M

OD

IS

F M A M J J A S O N D J F M1.03

1.08

1.13

Red

/Gre

en P

heno

cam

s

1.2

1.4

1.6

Red

/Gre

en M

OD

IS

Window E Window S Window W MODIS

Eucalyptus window MODIS

GinGin Flux Tower Site 14-May-2012 16:33:00 Red/Green

0

0.5

1

1.5

2

Rai

nfal

l(mm

)

0

10

20

06/01 07/01 08/01 09/01 10/01 11/010

0.5

1

Red

/Gre

en

--- Banskia01

--- Banskia02--- Schrub--- Litter

--- Soil

Tower nadir camera

0.9 0.95 1 1.05 1.10.7

0.8

0.9

1R/G

MODIS=0.9572 R/G

cam+-0.0733

p=0.00091 r2=0.37

R/GMODIS

R/G

cam

0.9 0.95 1 1.05 1.10.4

0.5

0.6

0.7

0.8R/G

MODIS=2.32 R/G

cam green+-1.64

p=0.0001 r2=0.47

R/GMODIS

R/G

cam

gre

en

All image (green) Mean Banskia01, Banskia01, Shrubs MODIS

Jun Jul Aug Sep Oct Nov0

0.5

1R

ed/G

reen

Phe

noca

ms

0.8

0.95

1.1

Red

/Gre

en M

OD

IS

Jun Jul Aug Sep Oct Nov0.4

0.7

1

Red

/Gre

en P

heno

cam

s

0.9

1

1.1

Red

/Gre

en M

OD

IS

Green/Red (instead of Red/Green)

0.2 0.25 0.30.7

0.8

0.9

1R/G

MODIS=-3.54 R/G

cam+1.78

p=5.9e-05 r2=0.5

EVIMODIS

R/G

cam

0.2 0.25 0.30.4

0.5

0.6

0.7

0.8R/G

MODIS=-6.757 R/G

cam+2.37

p=2e-05 r2=0.54

EVIMODIS

R/G

cam

gre

en

0.4 0.5 0.60.7

0.8

0.9

1R/G

MODIS=-0.645 R/G

cam green+1.24

p=1.3e-05 r2=0.55

NDVIMODIS

R/G

cam

0.4 0.5 0.60.4

0.5

0.6

0.7

0.8R/G

MODIS=-1.507 R/G

cam green+1.51

p=1.6e-05 r2=0.55

NDVIMODIS

R/G

cam

gre

en

Jun Jul Aug Sep Oct Nov1

1.6

2.2

Gre

en/R

ed P

heno

cam

s

0.2

0.25

0.3

EVI M

OD

IS

Jun Jul Aug Sep Oct Nov1

1.6

2.2

Gre

en/R

ed P

heno

cam

s

0.4

0.6

0.8

ND

VI M

OD

ISAll image (green) Mean Banskia01, Banskia01, Shrubs MODIS

2012 2013

Understory camera Low density

Alice Springs Mulga Flux Tower Site 15-Oct-2012 14:00:00 Red/Green

0

0.5

1

1.5

2

Rai

nfal

l(mm

)

0

11

22

S N D J F M A M J J A S O1

1.4

1.8

Red

/Gre

en

--- Grass01

--- Grass02 --- Acacia--- Litter--- Crust

0.1 0.12 0.141.3

1.35

1.4

1.45R/G

MODIS=102.8 R/G

cam+-9.46

p=0.62 r2=0.032

EVIMODIS

R/G

cam

0.1 0.12 0.14

1.3

1.4

1.5R/G

MODIS=191 R/G

cam+-18.8

p=0.66 r2=0.026

EVIMODIS

R/G

cam

gre

en

0.25 0.3 0.351.3

1.35

1.4

1.45R/G

MODIS=10.03 R/G

cam green+-1.08

p=0.15 r2=0.24

NDVIMODIS

R/G

cam

0.25 0.3 0.35

1.3

1.4

1.5

R/GMODIS

=13.89 R/Gcam green

+-2.05

p=0.068 r2=0.36

NDVIMODIS

R/G

cam

gre

en

S12 D12 F13 A13 J13 A13 O130.6

0.7

0.8

Gre

en/R

ed P

heno

cam

s

0.1

0.11

0.12

EVI M

OD

IS

S12 D12 F13 A13 J13 A13 O130.6

0.7

0.8

Gre

en/R

ed P

heno

cam

s

0.2

0.25

0.3

ND

VI M

OD

ISAll image (green) Mean Acacia, Grass01, Grass02 MODIS

1.4 1.5 1.6 1.71.2

1.3

1.4

R/GMODIS

=0.5382 R/Gcam

+0.444p=0.42 r2=0.11

R/GMODIS

R/G

cam

1.4 1.5 1.6 1.71.2

1.3

1.4

1.5

1.6R/G

MODIS=0.6175 R/G

cam green+0.254

p=0.35 r2=0.15

R/GMODIS

R/G

cam

gre

en

S12 D12 F13 A13 J13 A13 O131

1.3

1.6

Red

/Gre

en P

heno

cam

s

0.8

1.3

1.8

Red

/Gre

en M

OD

IS

S12 D12 F13 A13 J13 A13 O131

1.4

1.8

Red

/Gre

en P

heno

cam

s

1.6

1.7

1.8

Red

/Gre

en M

OD

IS

All image (green) Mean Acacia, Grass01, Grass02 MODIS