Quantum Opacity and Refractivity in HBT Puzzle

Post on 02-Jan-2016

32 views 4 download

description

Quantum Opacity and Refractivity in HBT Puzzle. Jin-Hee Yoon Dept. of Physics, Inha University, Korea John G. Cramer, Gerald A. Miller, M. S. Wu Dept. of Physics, University of Washington, US. Correlations in Phase-Space. Beam direction. Space-time structure of fireball can be studied - PowerPoint PPT Presentation

Transcript of Quantum Opacity and Refractivity in HBT Puzzle

2005. 11. 5 Inha Nuclear Physics Group

Quantum Opacity andQuantum Opacity and

Refractivity in HBT Refractivity in HBT

PuzzlePuzzleJin-Hee Yoon

Dept. of Physics, Inha University, Korea

John G. Cramer, Gerald A. Miller, M. S. WuDept. of Physics, University of Washington, US

11/05/2005 HIM@Pohang

Inha Nuclear Physics Group

Correlations in Phase-Space

Space-time structure of fireball can be studied by HBT interferometry

Correlation function

)()(

),(),(

2112

21221 pp

pppp

PP

PNC

is typically parametrized as

2121

22222221

ppq )/2p(pK

1pp

]exp[),( llssoo qRqRqRC

l

s

o

K

TKBeam direction

11/05/2005 HIM@Pohang

Inha Nuclear Physics Group

Correlations in Phase-Space

Hydrodynamic calculation predicts(D. H. Rischke and M. Gyulassy, Nucl. Phys. A608, 479 (1996); P. F. Kolb and U. Heinz, Quark Gluon Plasma 3, World Scientific, Singapore, 2004)

But, experimental results are

(STAR Collaboration, C. Adler et al., Phys. Rev. Lett. 87, 082301 (2001); PHENIX Collaboration, K. Adcox et al., Phys. Rev. Lett. 88, 192302 (2002); PHENIX Collaboration, A. Enokizono, Nucl. Phys. A715, 595 (2003))

HBT Puzzle

2.1~1/ so RR

10~5.1/ so RR

11/05/2005 HIM@Pohang

Inha Nuclear Physics Group

Correlations in Phase-Space

Experimental Data(Au+Au@200 GeV) shows Dense Medium

OPACITY and Refractive Effects

Our Purpose : Quantum mechanical treatment of Opacity & Refractive effects

which reproduces lso RRR ,,

11/05/2005 HIM@Pohang

Inha Nuclear Physics Group

Correlations in Phase-Space

Theoretically, the observables are expressed by

)/()/(*)exp()(

),( 2222 3

4

0 yxJyxJyiKyd

KxS

),(),(

|),(|),(),(

204

104

20

4

0210

1Kqpp

pxSxdpxSxd

eKxSxdCC

xiq

Subscript 0 means no final state interaction (FSI).

11/05/2005 HIM@Pohang

Inha Nuclear Physics Group

Final State Interaction

FSI replaces

)/(*)/( )'exp()(

)',('),( )(p

)(p 21

222 4

4

04 yxΨyxΨyiK

ydKxSKdKxS

),( ),(

|),( |1)K,q()p,p(

24

14

24

21pxSxdpxSxd

KxSxdCC

xipexΨxJxJ )(* )( )( (-)P

: full scattering outgoing wave function*(-)PΨ

Includes two 4-dimensional integration

11/05/2005 HIM@Pohang

Inha Nuclear Physics Group

Wigner Emission Function

Using the hydrodynamic source parameterization (B. Tomasik and U. W. Heinz, Eur. Phys. J. C4, 327 (1998); U. A. Wiedermann and U. W. Heinz, Phys. Rep. 319, 145 (1999))

With boost-invariant longitudinal dynamics

cos)(sinh)(coshcosh

),(ln2

1

)(1exp),(

)(2)(2

)(exp

)(2

)cosh(),(

)2/(),(),(),(

21

22

1

2

2

2

2

0

20

3

00

bKbMuK

xxzt

ztzt

bT

uKMB

BΖKxS

tTtT

T

b

Kb

Kb

T

T

of potential chemical:

,222 mKM TT

),( bKT

11/05/2005 HIM@Pohang

Inha Nuclear Physics Group

Wigner Emission Function

)(b

: cylindrically symmetric source density

21/)(exp WSWS aRb

)(bt : transverse flow rapidityWS

f R

b

0ln2

1

LK

LK

KE

KEY Since KL=0 for midrapidity data

Parameters : RWS , aWS , 0 , f , T

11/05/2005 HIM@Pohang

Inha Nuclear Physics Group

Full Scattering Wavefunction

Assumption : Matter is cylindrically symmetric with a long axis in a central collision region

2/2/

)()( 2/0

l

ziqxilp eexΨ

qqKP

bx

T1,2

(-)

P

(-)

P 1,21,2

Reduced 2-dimensional Klein-Gordon Eq.

)(*)(*))(( 22 bb (-)p

(-)p pbU

11/05/2005 HIM@Pohang

Inha Nuclear Physics Group

Full Scattering Wavefunction

,1

0 cos))(,(2),()(*m

mm mibpfbpf b(-)

p

Optical Potential )()()( 220 bpwwbU p

0w :real

At p=0, no opacity

Parameters : w0 , w2

Using partial wave expansion,

we can solve K-G Eq. exactly.

11/05/2005 HIM@Pohang

Inha Nuclear Physics Group

Full Scattering Wavefunction

ppf )](Im[4

In Impulse Approximation, central optical potential

00 4 fU

Significant opacity

Using

f : complex forward scattering amplitude

For low energy interaction

0 : central density

-30

-1 1.5fm ,fm 1p mb, 1 2

0 fm 15.0]Im[ U

11/05/2005 HIM@Pohang

Inha Nuclear Physics Group

Correlation Function

Now our Emission Function is

)2/(*)2/(

)(~

'),()2(

1),(

)()(

202

0

b'bb'b

b'b,

21 pp

BbdeZKxS ziqtiq l

with ]exp[)(')(~ 2 b''K'Kb,b'b, TT iBKdB T

Large Source Approximation : b’~1/T~1 fm << RWS

/2b'Kpppp

T

2121bb

b'b

b'b

ie)(*)(

2*

2)()()()(

11/05/2005 HIM@Pohang

Inha Nuclear Physics Group

Correlation Function

2

00

220

2

0

320

22

0

120

22

)*()(0

2

2211

21222222

)(

)()(

)(

)()3(

~

)(

)()3(

)(cos)(sinh

exp)(

)()()())((

||~1),(

-

Kb,

Kb,b b

Kq

T

Tpp

T

ji

KF

KF

KF

KF

KF

KFR

bMT

bKB

Bbfbd

qRqC

l

Tn

tTn

nn

nij

oll

11/05/2005 HIM@Pohang

Inha Nuclear Physics Group

Correlation Function

)(

/)()(2)(

)()()(

/)(4/)(2)(

)(2)(

/1/)(cosh)(

)())(()()(

213

202

2101

10

2

2)(2

i

ntTn

nmnn

m

K

KKf

KKf

KKf

Kf

TbMb

bfBbdKF

b Kb, TKT

Here,

Are Modified Bessel function .

11/05/2005 HIM@Pohang

Inha Nuclear Physics Group

HBT Radii

40/

),(2)(

,

2,

,2,

Tso

so

TsoTso

Kq

q

KqCKR

Then our transverse radii can be calculated by

with

11/05/2005 HIM@Pohang

Inha Nuclear Physics Group

Fitting Parameters

(MeV)0(fm/c)w2w0(fm-2)

(fm/c)aWS(fm)RWS(fm)fT(MeV)

6.1

2.173

025.0

314.1

056.0

782.11

015.0

725.0

067.0

852.2

046.0

137.0

002.0014.0

121.0582.0

i

i

10.0

23.8

032.0

063.1

1.1

2.123

2 /N ~ 7.8

AuGeV AusSTAR@ NN 200

11/05/2005 HIM@Pohang

Inha Nuclear Physics Group

Fitting Parameters Check

Temperature T (173 MeV) ~ Tc (160 MeV)

f=1.31 maximum flow velocity ~ 0.85c

Source Size RWS (11.7 fm) ~ RAu (7.3 fm)+4.4 fm

Expansion time 0 (8.2 fm/c)

average expansion velocity ~ 0.5c

Emission duration (2.9 fm/c) << 0(8.2 fm/c)

Longitudinal length

system’s axial length (17.5 fm)

: large enough for long cilyndrical symmetry

full calculation

no flow

no refraction

no potentialBoltzmann for BE thermal distribution

full calculation

no flow

no refraction

no potentialBoltzmann for BE thermal distribution

Thank you.