Proactive Monte Carlo Analysis in Structural Equation Modeling James H. Steiger Vanderbilt...

Post on 01-Apr-2015

214 views 1 download

Tags:

Transcript of Proactive Monte Carlo Analysis in Structural Equation Modeling James H. Steiger Vanderbilt...

Proactive Monte Carlo Analysis in Structural Equation Modeling

James H. Steiger

Vanderbilt University

Some Unhappy Scenarios

A Confirmatory Factor Analysis– You fit a 3 factor model to 9 variables with N=150– You obtain a Heywood Case

Comparing Two Correlation Matrices– You wish to test whether two population matrices

are equivalent, using ML estimation– You obtain an unexpected rejection

Some Unhappy Scenarios

Fitting a Trait-State Model– You fit the Kenny-Zautra TSE model to 4 waves of panel

data with N=200. You obtain a variance estimate of zero.

Writing a Program Manual– You include an example analysis in your widely distributed

computer manual– The analysis remains in your manuals for more than a

decade– The analysis is fundamentally flawed, and gives incorrect

results

Some Common Elements

Models of covariance or correlation structure Potential problems could have been

identified before data were ever gathered, using “proactive Monte Carlo analysis”

Confirmatory Factor Analysis

Variable Factor 1 Factor 2 Factor 3

VIS_PERC X

CUBES X

LOZENGES X

PAR_COMP X

SEN_COMP X

WRD_MNG X

ADDITION X

CNT_DOT X

ST_CURVE X

Confirmatory Factor Analysis

Variable Factor 1 Factor 2 Factor 3 Unique Var.

VIS_PERC 0.46 0.79

CUBES 0.65 0.58

LOZENGES 0.25 0.94

PAR_COMP 1.00 0.00

SEN_COMP 0.41 0.84

WRD_MNG 0.22 0.95

ADDITION 0.38 0.85

CNT_DOT 1.00 0.00

ST_CURVE 0.30 0.91

Confirmatory Factor Analysis

Variable Factor 1 Factor 2 Factor 3 Unique Var.

VIS_PERC 0.60 0.64

CUBES 0.60 0.64

LOZENGES 0.60 0.64

PAR_COMP 0.60 0.64

SEN_COMP 0.60 0.64

WRD_MNG 0.60 0.64

ADDITION 0.60 0.64

CNT_DOT 0.60 0.64

ST_CURVE 0.60 0.64

Proactive Monte Carlo Analysis

Take the model you anticipate fitting Insert reasonable parameter values Generate a population covariance or correlation

matrix and fit this matrix, to assess identification problems

Examine Monte Carlo performance over a range of sample sizes that you are considering

Assess convergence problems, frequency of improper estimates, Type I Error, accuracy of fit indices

Preliminary investigations may take only a few hours

Confirmatory Factor Analysis

(Speed)-1{.3}->[VIS_PERC] (Speed)-2{.4}->[CUBES] (Speed)-3{.5}->[LOZENGES]

(Verbal)-4{.6}->[PAR_COMP] (Verbal)-5{.3}->[SEN_COMP] (Verbal)-6{.4}->[WRD_MNG]

(Visual)-7{.5}->[ADDITION] (Visual)-8{.6}->[CNT_DOT] (Visual)-9{.3}->[ST_CURVE]

Confirmatory Factor Analysis

Confirmatory Factor Analysis

Confirmatory Factor Analysis

Confirmatory Factor Analysis

(Speed)-1{.53}->[VIS_PERC] (Speed)-2{.54}->[CUBES] (Speed)-3{.55}->[LOZENGES]

(Verbal)-4{.6}->[PAR_COMP] (Verbal)-5{.3}->[SEN_COMP] (Verbal)-6{.4}->[WRD_MNG]

(Visual)-7{.5}->[ADDITION] (Visual)-8{.6}->[CNT_DOT] (Visual)-9{.3}->[ST_CURVE]

Confirmatory Factor Analysis

Confirmatory Factor Analysis

Confirmatory Factor Analysis

Confirmatory Factor Analysis

Variable Factor 1 Factor 2 Factor 3 Unique Var.

VIS_PERC 0.60 0.64

CUBES 0.60 0.64

LOZENGES 0.60 0.64

PAR_COMP 0.60 0.64

SEN_COMP 0.60 0.64

WRD_MNG 0.60 0.64

ADDITION 0.60 0.64

CNT_DOT 0.60 0.64

ST_CURVE 0.60 0.64

Proactive Monte Carlo Analysis

Proactive Monte Carlo Analysis

Proactive Monte Carlo Analysis

Proactive Monte Carlo Analysis

Percentage of Heywood Cases

N Loading .4 Loading .6 Loading .8

75 80% 30% 0%

100 78% 11% 0%

150 62% 3% 0%

300 21% 0% 0%

500 01% 0% 0%

Standard Errors

Standard Errors

Standard Errors

Distribution of Estimates

Es tim ates for Param eter 1, N=72

-0.03740.0490

0.13550.2219

0.30840.3948

0.48130.5677

0.65420.7406

0.82710.9135

1.0000

PAR _1

0

20

40

60

80

100

120

140

No of obs

Standard Errors (N =300)

Standard Errors (N = 300)

Distribution of Estimates

Es tim ates for Param eter 1 (N=300)

0.37540.4154

0.45530.4952

0.53510.5751

0.61500.6549

0.69490.7348

0.77470.8146

0.8546

PAR _1

0

20

40

60

80

100

120

140

No of obs

Correlational Pattern Hypotheses

“Pattern Hypothesis”– A statistical hypothesis that specifies that

parameters or groups of parameters are equal to each other, and/or to specified numerical values

Advantages of Pattern Hypotheses– Only about equality, so they are invariant under

nonlinear monotonic transformations (e.g., Fisher Transform).

Correlational Pattern Hypotheses

Caution! You cannot use the Fisher transform to construct confidence intervals for differences of correlations– For an example of this error, see Glass and

Stanley (1970, p. 311-312).

Comparing Two Correlation Matrices in Two Independent Samples

Jennrich (1970)– Method of Maximum Likelihood (ML)– Method of Generalized Least Squares (GLS)– Example

Two 11x11 matrices Sample sizes of 40 and 89

Comparing Two Correlation Matrices in Two Independent Samples

ML Approach

Minimizes ML discrepancy function Can be programmed with standard SEM

software packages that have multi-sample capability

1 1 2 2; D RD D RD

Comparing Two Correlation Matrices in Two Independent Samples

Generalized Least Squares Approach Minimizes GLS discrepancy function SEM programs will iterate the solution Freeware (Steiger, 2005, in press) will

perform direct analytic solution

Monte Carlo Results – Chi-Square Statistic

Mean S.D.

Observed 75.8 13.2

Expected 66 11.5

Monte Carlo Results – Distribution of p-Values

Comparing Two Correlation Matrices (ML)N 1 = 40, N 2 = 89

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

p Value

0

50

100

150

200

250

300

350

No

of o

bs

Monte Carlo Results – Distribution of Chi-Square Statistics

Observed vs. Expected Frequencies

Observed Expected

-20

0

20

40

60

80

100

120

140

160

180

200

220

Monte Carlo Results (ML) – Empirical vs. Nominal Type I Error Rate

Nominal .010 .050

Empirical .076 .208

Monte Carlo Results (ML)Empirical vs. Nominal Type I Error RateN = 250 per Group

Nominal .010 .050

Empirical .011 .068

Monte Carlo Results – Chi-Square Statistic, N = 250 per Group

Mean S.D.

Observed 67.7 11.6

Expected 66 11.5

Kenny-Zautra TSE Model

T

Y1

1

Y2

2

Y3

3

YJ

J

O2O1 O3 OJ

2 3 J

J

TSE model

Likelihood of Improper Values in the TSE Model

Constraint Interaction

Steiger, J.H. (2002). When constraints interact: A caution about reference variables, identification constraints, and scale dependencies in structural equation modeling. Psychological Methods, 7, 210-227.

Constraint Interaction

3

Respondent'sParental Aspiration

X1

Respondent'sIntelligence

Respondent's Socioeconomic Status

Best Friend'sSocioeconomic Status

Best Friend'sIntelligence

Best Friend'sParental Aspiration

Respondent'sOccupational Aspiration

Respondent'sEducational Aspiration

Best Friend'sEducational Aspiration

Best Friend'sOccupational Aspiration

Respondent'sAmbition

Best Friend'sAmbition

1

1

1

X2

2

3

1,1

1,3

1,4

2,3

2,4

2,5

2,6

2,1 1,2 = 2,1

1

2

1,1 = 1

2,1

3,2

4,2 = 1

X3

X4

X5

X6

Y1

Y2

Y3

Y4

1,2

Constraint Interaction

X1

1

X2

2

1

1 2

Y1 Y2 Y3 Y4

1 2 3 4

21

1,1 = 1 2,1

1,1 2,2

2,1

1,1 2,1

1,1 = 12,1 3,2 = 1

4,2

1,1 2,2 3,3 4,4

1,1 2,2

1,1

Constraint Interaction

X1

1

X2

2

1

1 2

Y1 Y2 Y3 Y4

1 2 3 4

21

1,1 2,1

1,1 2,2

2,1

1,1 2,1

1,1 2,1 3,2 4,2

1,1 2,2 3,3 4,4

1,1 2,2

1

Constraint Interaction

Constraint Interaction – Model without ULI Constraints (Constrained Estimation)

(XI1)-1->[X1] (XI1)-2->[X2] (XI1)-{1}-(XI1)

(DELTA1)-->[X1] (DELTA2)-->[X2]

(DELTA1)-3-(DELTA1) (DELTA2)-4-(DELTA2)

(ETA1)-98->[Y1] (ETA1)-5->[Y2]

(ETA2)-99->[Y3] (ETA2)-6->[Y4]

(EPSILON1)-->[Y1] (EPSILON2)-->[Y2] (EPSILON3)-->[Y3] (EPSILON4)-->[Y4]

(EPSILON1)-7-(EPSILON1) (EPSILON2)-8-(EPSILON2) (EPSILON3)-9-(EPSILON3) (EPSILON4)-10-(EPSILON4)

(ZETA1)-->(ETA1) (ZETA2)-->(ETA2)

(ZETA1)-11-(ZETA1) (ZETA2)-12-(ZETA2)

(XI1)-13->(ETA1) (XI1)-13->(ETA2) (ETA1)-15->(ETA2)

Constraint Interaction

Constraint Interaction

Constraint Interaction – Model With ULI Constraints

(XI1)-->[X1] (XI1)-2->[X2] (XI1)-1-(XI1)

(DELTA1)-->[X1] (DELTA2)-->[X2]

(DELTA1)-3-(DELTA1) (DELTA2)-4-(DELTA2)

(ETA1)-->[Y1] (ETA1)-5->[Y2]

(ETA2)-->[Y3] (ETA2)-6->[Y4]

(EPSILON1)-->[Y1] (EPSILON2)-->[Y2] (EPSILON3)-->[Y3] (EPSILON4)-->[Y4]

(EPSILON1)-7-(EPSILON1) (EPSILON2)-8-(EPSILON2) (EPSILON3)-9-(EPSILON3) (EPSILON4)-10-(EPSILON4)

(ZETA1)-->(ETA1) (ZETA2)-->(ETA2)

(ZETA1)-11-(ZETA1) (ZETA2)-12-(ZETA2)

(XI1)-13->(ETA1) (XI1)-13->(ETA2) (ETA1)-15->(ETA2)

Constraint Interaction – Model With ULI Constraints

Typical Characteristics of Statistical Computing Cycles

Back-loaded – Occur late in the research cycle, after data are

gathered

Reactive– Often occur in support of analytic activities that

are reactions to previous analysis results

Traditional Statistical World-View

Data come first Analyses come second Analyses are well-understood and will work Before the data arrive, there is nothing to

analyze and no reason to start analyzing

Modern Statistical World View

Planning comes first– Power Analysis, Precision Analysis, etc.

Planning may require some substantial computing– Goal is to estimate required sample size

Data analysis must wait for data

Proactive SEM Statistical World View

SEM involves interaction between specific model(s) and data.

– Some models may not “work” with many data sets

Planning involves:– Power Analysis– Precision Analysis– Confirming Identification– Proactive Analysis of Model Performance

Without proper proactive analysis, research can be stopped cold with an “unhappy surprise.”

Barriers

Software– Design– Availability

Education