Newman 2003

Post on 09-Nov-2015

226 views 0 download

Tags:

description

Thermal Analysis of Artificial Ground Freezong at Mc Arthur River Uranium Mine

Transcript of Newman 2003

  • IntroductionTheMcArthurRiveruraniummineislocatedin theAthabascasandstonere-gioninthenorthernpartoftheprovinceof Saskatchewan,Canada.It is theworld'slargest,high-gradeuraniumde-positwithprovenandprobablereservesofmorethan473millionpoundsU30S.It ismajorityownedandoperatedbytheCamecoCorporation.

    Thispaperpresentsacasestudyoftheengineeringthatwascarriedoutinorderto artificiallyfreezetheunder-groundorebodyattheminepriortoitbeingmined.Fulldetailsof theproject

    AthabascaSandstone

    .~Highpressurewater

    ~

    SandandGravel

    --

    Case Study: Thermal Analysis of ArtificialGround Freezing at the McArthur RiverUranium Mine

    G.P..Newman

    havebeenpreviouslydescribedbyNewmanandMaishman(2000).Theprimaryfocusof thepaperistheappli-cationofanadvancedthermalanalysistoolthatgreatlysimplifiesthefiniteele-mentmodelingrequiredduringthede-signand.monitoringstagesof projectssuchas thatcarriedoutatMcArthurRiver.

    BackgroundAccordingtoNewmanandMaishman(2000),theorebodyitselfislocated550metersto 620 metersundergroundwheretheground-waterpressureisap-

    proximately5500kPa.Duetothepres-enceof ahangingwallfaultstructure,theorebodyis surroundedon threesidesby fairlydry,competentground.Theotherthreesidesarecomprisedofhighlyfracturedsandstonewithsignifi-cantamountsof rubble,flowingsandandclayregions.In ordertominetheore,itwasnecessarytocreateafrozenwallbarrieraroundthethreepoorsidesoftheorebody.Thefrozenwallbarrierwasdesignedtopermitdrainageofwa-terin theoreandconsequentlyreducewaterpressurespriorto mining.Thewallwasalsorequiredtoprovidestruc-

    tural supportofweak,clay/ oreground near tomining cavities.FigureI showsacross-sectionoftheorebodyandneighboringgeol-ogy.

    A mechanicalfreezingsystemiscomprisedof abrinecoolinganddistributionnet-workplusaseriesof brine freezepipesinstalledinthegroundto befrozen. Typicalgroundfreezingapplicationshaveinvolveddrillingfreezeholesfromsurfaceor near

    .........SouthFreezeRow

    DryBasementRock

    640mLevefDeveloDment

    60 GeotechnicalNews, June2003

    Figure1.Cross-sectionoftheorebodyandneighboringgeology(afterNewmanandMaishman,2000)

  • ~-.....

    /1

    Low Pressure Side

    Brine

    72 FreezePipes

    ~reeze Plant-Conceptualfreezing system

    High Pressure Side

    Brine

    530m L.evel

    Figure2. Illustrationof thehighandlowpressurebrinedistributionnetworks(afterNewmanandMaishman,2000)

    surfaceandtheseactivitieshavebeenwelldocumented.Inaddition,thebrinecoolinganddistributionnetworkhastypicallyincludedanammoniacom-pressorwith ammoniato brineheatexchangers.Theprocessof installinga"typical"freezingsystematMcArthurRiverwasmademoredifficultduetothelocationof thefreezepipechamberunderground.

    Thefreezingchamberislocated530metersbelowground,whichmeansthatthebrinepressureswithinthefreezepipesandassociatedbrinedistributionnetworkwouldequal5000kPaif con-necteddirectlytothesurfacerefrigera-tionplant.Thisis notpracticalfromadesignoroperationsperspective.In or-derto minimizethebrinefluidpres-sures, the underground brinedistributionsystemwasisolatedfromthesurfacebrinesystemusingshellandtubebrine-brineheatexchangers.

    TheillustrationinFigure2showstherelativepositionofthe800Tonrefriger-ationcapacityfreezeplantonsurface,the12"ID brinesupplyandreturnlinesinstalledin theshaft,andoneof fourshellandtubeheatexchangersonthe530m level.The low-pressurebrinenetworkon the530m leveloperateswithina 150kPato600kPapressurerangeatflowratesrangingbetween130

    m3/hrand550m3/hr.Thedesignbrinetemperaturewas-40degreesCelsius.

    In orderto determinetheactualgrowthof thefreezewallitwasneces-saryto installthermocouplestringsatseverallocationsaroundthefreezingre-gion.Thethermocoupleswereloweredintoacasedholecontainingafinegroutmix priorto thegroutsetting.Eachstringwascomprisedoftwelvesensorslocatedatfive-meterintervalsdownanygiventemperaturemonitoringhole.Thisenabledthetemperaturedecaytobe monitoredoffsetfromthefreezepipesin varioustypesof ground(seeFigure I for comparisonof groundtypes).Groundtemperatureswerere-cordedeverysecondday.In thiscasestudy,theactualgroundtemperaturescanbeusedtoverifythenewthermalanalysis numerical tool. This isdescribedbelow.

    Thermal Modelingand AnalysisTheTEMP/w two-dimensionalfiniteelement computer program(GEO-SLOPE,2002)hasbeenusedex-tensivelyby manypracticinggroundfreezingconsultantsfordesignofartifi-cialgroundfreezingprojects.Inthepastit wascommonto applythethermalboundaryconditionforafreezepipebyassuminga fixedtemperaturedecayfunctionforearlystagesoffreezingfol-

    GEOSPEC

    lowedby anassumptionthatthepipesurfaceis ascold,ornearlyascoldasthebrinefortheremainderofthefreez-ingperiod.

    Recently,TEMP/w hasbeenmodi-fiedsothattheuseris abletoapplyaconvectiveheattransferanalysisforthepipe-groundinterface(oranyothersur-faceconvectiveheattransferprocess).Theamountof convectiveheattrans-ferredbetweenthe groundandthechilledbrineisdependentonthegroundtemperaturerelativeto thebrinetem-peratureanditsubsequentlydetermineswhatthenewgroundtemperaturewillbe.Basedonthisapproach,thegroundwillcoolatavariablerateandtoamini-mumvaluethatis determinedby thebrineflowparametersandthediffer-ence betweenbrine and groundtemperature.

    Convectiveheattransferis com-prisedof two mechanisms:energytransferduetorandommolecularmo-tion(diffusion)andenergytransferduetothemotionofafluid(advection/con-vection).Inthiscasestudyanalysis,weareconcernedwith convectionheattransferbetweenfluid in motionin apipeandthepipewallwhentheyareatdifferenttemperatures.Technically,theconvectiveheattransferisoccurringbe-tweentheinternalpipewall andthefluidbutitisacceptabletocombinetheconductiveheattransferacrossthesteelpipewallwiththeconvectivecompo-nenttoarriveatacombinedconvectiveheattransfercoefficient.

    Regardlessof thenatureof thecon-vectiveheattransferprocess,theappro-priaterateequationis

    q=h(Ts- Tf)whereqistheunitheatflux (W 1m2);h isthecombinedconvectiveheattransfercoefficient(W/m20C);Tsis thepipe'sexternalsurfacetemperature(0C);andTf is the fluid temperature.In theTEMP/w program,theusermustinputtheoverallheattransfercoefficientaswellasafixedtemperatureortimede-pendenttemperaturefunctionfor thefluid.Thephysicalsizeof thepipecanalsobespecifiedasanoptionif theac-tualpipegeometryisomittedfromthefiniteelementmesh.

    ThedatainTableI summarizesthethermalpropertiesusedin theoriginal

    GeotechnicalNews. June2003 61

  • GEOSPEC

    Temperature Comparison for Different Ground Types

    Measured at 2m offset from freeze row In high grade ore/clay- Predicted Measured at 3.7m offset from freeze row in low grade sandy/clay- PredictedJj. Measured at 3.5m offset from freeze row in barren sandstone

    4 6 8 10 12

    Time (Months)

    Figure 3. Comparison of computedand predicted ground temperaturesfor various rock types(measureddata after Newmanand Maishman, 2000)

    thermalmodelling (NewmanandMaishman,2000)andin thecurrentanalysis.

    It shouldbenotedherethatnoad-

    Theseresultsclearlyshowthatthenewconvectiveheattransferboundarycon-ditionoptioncanbeappliedtoartificialgroundfreezingif oneknowsthebrine

    justmentsto thefreezepipeboundaryconditiontemperaturesweremadeinthemodelwhencalibratingthethermalconductivityof theclay/ oreground.Theactualfreezepipetemperaturewascomputedasaresultof theconvectiveheatbeingremovedbythebrine.

    Figure3 is a comparisonof com-putedandmeasuredgroundtempera-turesfor threeof themainrocktypesandinitialin-situgroundtemperatures.

    62 GeotechnicalNews, June 2003

    fluidtemperatureandfreezepipediam-eter.Theoverallconvectiveheattrans-fercoefficientcanreadilybecomputedbasedonthebrineflowrateandotherhydraulicflowproperties.

    Conclusions

    Artificialgroundfreezingof thehighgradeMcArthurRiveruraniumorede-positwascarriedoutunderextremeconditions.Duetoadvancesinthermal

    finiteelementanalysis,it isnowpossi-bletoaccuratelydetermineheatlossesfromthesoilintothemechanicalfreez-ingsystemwithouthavingtomakeanassumptionabouttheappropriatetem-peratureboundaryconditiontouseintheanalysis.

    ReferencesGeo-Slope,2002.TEMP/w Version5

    UsersManual,Geo-SlopeInterna-tionalLtd.,Calgary,Canada.

    Newman,GregandDerekMaishman.ArtificialGroundFreezingof theMcArthurRiverUraniumOreDe-posit.Proceedings:InternationalConferenceonGroundFreezingandFrostActioninSoils.Belgium.Sep-tember,2000.

    G.P.Newman,P. Eng.,GEO-SLOPEInternationalLtd.,1400,633- 6th.AvenueS\V,Calgary,AlbertaT2P 2Y5,Tel:403-269-2002,Fax: 403-266-4851,http://www.geo-slope.com

    25.0

    20.0

    15.0-0-; 10.0...::s1U 5.0...Q)CoE 0.0Q)I-

    -5.0

    -10.0

    -15.0

    0 2

    Table1.ThermalPropertiesUsed in Analyses

    Conductivity(W/ m0c) BulkVolumetricWaterContent(%)

    SilicifiedSandstone 5.2 10

    Clav/ Ore 1.2 50

    BasementOuartzite 5.6 2

  • IL

    BiTechispleasedtopublisht~:nint: annuallistingof ]PhD Thesesin engineering.- --- - - - --AnkaraUniversityDepartmentof GeologicalEngineering,06100,Tandogan/ Ankara-Turkey

    AyhanKocbayInvestigationof CharacteristicsandAlterationDegreeof BasaltsOut-croppedAround Osmancik-