New Journal of Chemistry Knoevenagel reaction under mild ... · Nitrogen enriched polytriazine as...

Post on 05-Apr-2020

1 views 0 download

Transcript of New Journal of Chemistry Knoevenagel reaction under mild ... · Nitrogen enriched polytriazine as...

1

New Journal of Chemistry

Nitrogen enriched polytriazine as metal-free heterogeneous catalyst for the

Knoevenagel reaction under mild conditions

Monika Chaudhary and Paritosh Mohanty*

Functional Materials Laboratory, Department of Chemistry, IIT Roorkee, Uttarakhand-

247667, India

E-mail: pmfcy@iitr.ac.in, paritosh75@gmail.com

Electronic Supplementary Material (ESI) for New Journal of Chemistry.This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

2

N N

N

N N

N NH2

NH2

H2N Cl

Cl

Cl

N

N

N

N N

N

N

N

N

HN NH

HN

HN HN

HNHN

N N

N

N N

NNHNH NHHN

N

N

N

NH

+Melamine Cyanuric Chloride

140 0C, 400W, 30 min

Scheme S1. Reaction scheme for the synthesis of metal-free nitrogen-enriched nanoporous

polytriazine (NENP-1) organocatalyst.

3

Figure S1. TEM image of NENP-1 (inset: SAED pattern of NENP-1).

10 20 30 40 50 60 70

Inte

nsity

(a.u

)

Differaction angle (2)Figure S2. XRD pattern of NENP-1.

4

200 400 600 800

0

20

40

60

80

100

Temperature (°C)

Wei

ght (

%)

0

200

400

600

800

DTG

(g/

min

)

Figure S3. TGA/DTG of NENP-1 in air at a heating rate of 5 °C min-1.

5

4000 3500 3000 2500 2000 1500 1000 500

(c)

(b)

Wavenumber (cm-1)

Tran

smitt

ance

(a.u

)

(a)

Figure S4. FT-IR spectra of (a) Benzylidinemalononitrile, (b) Benzaldehyde, and (c)

Malononitrile.

6

200 180 160 140 120 100 80 60 40 20 0

CN

CN NENP-1Solvent

RT (30 min)+

O CN

CN

Chemical Shift (ppm)

(a)

12 10 8 6 4 2 0

CN

CN NENP-1Solvent

RT (30 min)+

O CN

CN

(b)

Chemical Shift (ppm)

Figure S5. (a) 13C and (b) 1H NMR spectra of benzylidinemalononitrile.

7

Figure S6. (a) GC and (b) MS spectrum of benzylidinemalononitrile.

(b)

(a)

8

CHO

CN

H2C

CN

Solvent

Catalyst 25 °C

NC

CN

Scheme S2. Synthesis of benzylidinemalononitrile from benzaldehyde and malononitrile.

Table S1. Catalytic data of the NENP-1 catalysed model Knoevenagel reaction at various

reaction conditions.

Solvent Volume (mL/mL)

Time (min)

Catalyst amount (wt%)

Yield (%)

THF 1.0/0 30 4.5 37THF/H2O 0.5/0.5 30 4.5 95Methanol 1.0/0 30 4.5 85

Methanol/H2O 0.5/0.5 30 4.5 94Ethanol 1.0/0 30 4.5 87

Ethanol/H2O 0.5/0.5 30 4.5 93H2O 1.0/0 30 4.5 48

Dioxane 1.0/0 30 4.5 41Dioxane/H2O 0.5/0.5 30 4.5 98Dioxane/H2O 0.5/0.5 30 1.9 35Dioxane/H2O 0.5/0.5 90 1.9 46Dioxane/H2O 0.5/0.5 30 8.6 98Dioxane/H2O 0.5/0.5 10 8.6 75Dioxane/H2O 0.5/0.5 02 4.5 45Dioxane/H2O 0.5/0.5 05 4.5 60Dioxane/H2O 0.5/0.5 10 4.5 71

General conditions: Benzaldehyde (1.0 mmol), Malononitrile (1.0 mmol) at 25 °C.

9

0 4 8 12 16

20

40

60

80

100

Yiel

d (%

)

Catalyst loading (wt%)

Figure S7. Effect of catalyst loading on yield (%) of benzyldinemalononitrile.

10

200 180 160 140 120 100 80 60 40 20 0

CN

CN NENP-1Solvent

RT (30 min)+O

MeO

CN

CNMeO

Chemical Shift (ppm)

(a)

10 8 6 4 2 0

CN

CN NENP-1Solvent

RT (30 min)+O

MeO

CN

CNMeO

Chemical Shift (ppm)

(b)

Figure S8. (a) 13C and (b) 1H spectra NMR spectra of 4-methoxy benzylidinemalononitrile.

11

Figure S9. (a) GC and (b) MS spectrum of 4-methoxy benzylidinemalononitrile.

(a)

(b)

12

200 180 160 140 120 100 80 60 40 20 0

CN

CN NENP-1Solvent

RT (30 min)+

O CN

CNBrBr

Chemical Shift (ppm)

(a)

10 8 6 4 2 0

CN

CN NENP-1Solvent

RT (30 min)+

O CN

CNBrBr

Chemical Shift (ppm)

(b)

Figure S10. (a) 13C and (b) 1H NMR spectra of 2-bromobenzylidinemalononitrile.

13

Figure S11. (a) GC and (b) MS spectrum of 2-bromobenzylidinemalononitrile.

(a)

(b)

14

200 180 160 140 120 100 80 60 40 20 0

CN

CN NENP-1Solvent

RT (30 min)+

O

Br

CN

CNBr

Chemical Shift (ppm)

(a)

10 8 6 4 2 0

CN

CN NENP-1Solvent

RT (30 min)+

O

Br

CN

CNBr

Chemical Shift (ppm)

(b)

Figure S12. (a) 13C and (b) 1H NMR spectra of 4-bromobenzylidinemalononitrile.

15

Figure S13. (a) GC (b) MS spectrum of 4-bromobenzylidinemalononitrile.

(a)

(b)

16

Figure S14. (a) GC and (b) MS spectrum of 2-nitrobenzylidinemalononitrile.

(a)

(b)

17

10 8 6 4 2 0

CN

CN NENP-1Solvent

RT (30 min)+

O

NO2

CN

CNNO2

Chemical Shift (ppm)

(a)

200 180 160 140 120 100 80 60 40 20 0

CN

CN NENP-1Solvent

RT (30 min)+

O

NO2

CN

CNNO2

Chemical Shift (ppm)

(b)

Figure S15. (a) 1H and (b) 13C NMR spectra of 2-nitrobenzylidinemalononitrile.

18

Figure S16. (a) GC and (b) MS spectrum of 4-nitrobenzylidinemalononitrile.

(a)

(b)

19

10 8 6 4 2 0

CN

CN NENP-1Solvent

RT (30 min)+

O

O2N

CN

CNO2N

Chemical Shift (ppm)

(a)

200 180 160 140 120 100 80 60 40 20 0

CN

CN NENP-1Solvent

RT (30 min)+

O

O2N

CN

CNO2N

Chemical Shift (ppm)

(b)

Figure S17. (a) 1H and (b) 13C NMR spectra of 4-nitrobenzylidinemalononitrile.

20

10 8 6 4 2 0

CN

CN NENP-1Solvent

RT (30 min)

+OCN

CN

Chemical Shift (ppm)

(a)

200 180 160 140 120 100 80 60 40 20 0

CN

CN NENP-1Solvent

RT (30 min)

+OCN

CN

Chemical Shift (ppm)

(b)

Figure S18. (a) 1H and (b) 13C NMR spectra of α-Napthaldehyde.

21

Figure S19. (a) GC and (b) MS spectrum of α-Napthaldehyde.

(a)

(b)

22

Table S2. Comparison of experimental conditions for the synthesis of metal-free

heterogeneous organocatalysts and their catalytic performance in Knoevenagel reaction.

Organocatalysts Synthesis conditions Catalysis ReferencesSynthesismethod

Temperature(°C)

Time(h)

Temperature (°C)

Time (min)

Yield (%)

MFCMP-1 Oxidative coupling

polymerization

60 72 25 240 99 S1

JUC-Z12 Oxidative cyclo-dehydrogenation

130 72 25 1440 97 S2

BF-COF-1 Schiff base condensation

120 120 25 600 96 S3

MPU Solvothermal synthesis

150 72 50 840 98 S4

MCN Carbonization 550 3 120 12 95 S5

g-C3N4 Thermal condensation

550 8 40 120 98 S6

PANF Thermal condensation

145 6 70 90 97 S7

NENP-1 Microwave-assisted

condensation

140 0.5 25 30 98 Current work

23

References

S1. Y. Zhang, S. A, Y. Zou, X. Luo, Z. Li, H. Xia, X. Liu and Y. Mua, J. Mater. Chem. A, 2014, 2,

13422-13430.

S2. B. Liu, T. Ben, J. Xu, F. Deng and S. Qiu, New J. Chem., 2014, 38, 2292-2299.

S3. Q. Fang, S. Gu, J. Zheng, Z. Zhuang, S. Qiu, and Y. Yan, Angew. Chem. Int. Ed., 2014, 53, 2878 -

2882.

S4. S. K. Dey, N. D. S. Amadeu and C. Janiak, Chem. Commun., 2016, 52, 7834-7837.

S5. M. B. Ansari, H. Jin, M. N. Parvin and S. Park, Catal. Today, 2012, 185, 211-216.

S6. L. Zhang, H. Wang, W. Shen, Z. Qin, J. Wang and W. Fan, J. Catal., 2016, 344, 293-302.

S7. G. Li, J. Xiao and W. Zhang, Green Chem., 2011, 13, 1828-1836.