Multi Phases

Post on 10-Apr-2018

218 views 0 download

Transcript of Multi Phases

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 1/57

 

Multiphase ChemicalMultiphase Chemical

Reactor EngineeringReactor EngineeringQuak Foo Lee

Ph.D. Candidate

Chemical and BiologicalEngineering

 The University of British Columbia

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 2/57

 

Different Types of Different Types of 

ReactorReactor

Fluidized Bed Reactor 

Trickle Column Reactor Slurry Bubble Column Reactor Batch Reactor 

Fixed Bed Reactor 

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 3/57

 

Fixed Bed RectorFixed Bed Rector

Fixed Bed Reactor that converts sulfur in diesel fuel to H2S

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 4/57

 

Fluidized Bed ReactorFluidized Bed Reactor

Fluidized Bed Reactor using H2SO4 as a catalyst to bond butanes

and iso-butanes to make high octane gas

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 5/57

 

Batch ReactorBatch Reactor

Stirring Apparatus

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 6/57

 

Straight ThroughStraight Through

Transport ReactorTransport Reactor

Riser 

Standpipe

Settling

Hopper 

The reactor is 3.5 m in diameter and 38 m tall.

Sasol/Sastech PT Limited

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 7/57 

Slurry Phase DistillateSlurry Phase Distillate

ReactorReactor

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 8/57

 

Packed Bed ReactorPacked Bed Reactor

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 9/57

 

CSTRCSTR

Agitator 

Connection for heating

or cooling jacket

Hand holes for charging

reactor 

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 10/57

 

CA,in

CA,out

Gas + solids

Plug Flow ModelPlug Flow Model

 ρ V 

 H t =

out  , Ain , A C C  ≅

Particle surrounding byParticle surrounding by

fluid of essential constantfluid of essential constantconcentration,concentration, CC A,m A,m

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 11/57

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 12/57

 

Countercurrent FlowCountercurrent Flow

If solids are moving plugIf solids are moving plug

flow and we have constantflow and we have constant

flow compositionflow composition

  Residence time of solids:Residence time of solids:

Heat Effects !!Heat Effects !!

 ρ V 

 H t =

 AC 

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 13/57

 

Heat Effects on ReactionsHeat Effects on Reactions

of Single Particlesof Single Particles Normally (developed) dealing with exothermic and endothermicNormally (developed) dealing with exothermic and endothermic

reaction.reaction.

If reaction occurs at a rate such that the heat absorbed (endothermic)If reaction occurs at a rate such that the heat absorbed (endothermic)

or generated (for exothermic) can’t be transferred rapidly enough,or generated (for exothermic) can’t be transferred rapidly enough,

then non-isothermal effects become important:then non-isothermal effects become important:The particle T The particle T ≠ the fluid T≠ the fluid T

For exothermic reaction, TFor exothermic reaction, Tpp will increase and the rate of reaction willwill increase and the rate of reaction will

increase above that expected for the isothermal case.increase above that expected for the isothermal case.

 Two conditions: Two conditions:

i) Filmi) Film  ∆T (external ∆T) T  ∆T (external ∆T) Tf f  (bulk fluid) ≠ T(bulk fluid) ≠ Tpp (particle)(particle) ii) Intraparticle ∆T (internal ∆T) Tii) Intraparticle ∆T (internal ∆T) Tr=Rpr=Rp ≠ T≠ Tr=∞r=∞

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 14/57

 

Non-ReactingNon-Reacting

1.1. Small particlesSmall particles highly conductivehighly conductive

particlesparticles

2.2. Small particlesSmall particles volumetricvolumetric

reactionreaction

1)1)S ll P i lS ll P ti l

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 15/57

 

1)1)Small Particles:Small Particles:

Highly ConductiveHighly Conductive

ParticlesParticles Particle initially at uniform TParticle initially at uniform T

= T= Tpp

At t = 0, we drop it into ourAt t = 0, we drop it into ourfurnacefurnace

Fluid at Tf 

Tp

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 16/57

 

Energy BalanceEnergy Balance

dt 

dH mQQ radiationconvection =+

( ) ( )[ ]( )dt 

T C d mT T T T h R

p p

 pwm p f  cv =−∈+− 4424 σ π 

Heat in by convection and radiation = change in enthalpy of particle

Where,

Area of sphere = 4πR2

Hcv = convection coefficient

σ = Stefan-Boltzman constant

Єm = emissivity of the particle (wall has Є = 1)

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 17/57

 

Energy BalanceEnergy Balance

( )( ) p F 

 pw

mr T T 

T T h

−−

∈=44

σ  

( ) ( )dt 

dT 

 A

C mT T hh

p p p

 p F r cv

 ρ 

=−⋅+

Can solve this equation to get Tp =f(t)

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 18/57

 

Find hFind hcvcv

Have film:Have film:  ∆H T  ∆H Tf f  ≠ T≠ Tpp

Use mass transfer analogy to get hUse mass transfer analogy to get hcvcv

3

1

2

1

602 Pr  Re. Nuk 

d h p

 f  

 pcv +==

 ρ 

 µ ν 

 µ 

ν === ;

C  Pr ;

Vd  Re

 f  

 p p

 p

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 19/57

 

2. Small Particles:2. Small Particles:

Volumetric ReactionVolumetric Reaction Small such that noSmall such that no

internal gradientsinternal gradients

( ) ( ) ( ) f   p pr  Av p T T hA H r V  −=−⋅− ∆

Heat generated by reaction = Heat transferred to surrounding

Steady State:

Volume of particle Rate of 

reaction

( ) ( ) ( )   

  ⋅

−⋅−=−

3

 R

h

r  H T T  Avr  f   p

Exothermic Rxn:

-∆Hr  = (+)

-r Av = (+)

3 L P ti l3 L P ti l

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 20/57

 

3. Large Particles:3. Large Particles:

Possible Internal ParticlePossible Internal Particle

GradientsGradients We have to solve the conduction equationWe have to solve the conduction equation

Non reacting particle: the conduction equation for sphere:Non reacting particle: the conduction equation for sphere:

C r 

k r r r  s , pe ∂∂

=   

  

∂∂

∂∂

 ρ 2

2

1

( ) Rr  p f  

 Rr e T T hdr 

dT 

:Surface

== −=

Heat conducted into

particle at r =Rp

Heat transferred into particle

Note: accommodate radiation in the

definition of h if that is the case

Ke = effective thermoconductivity

within the particle∂T/∂r = 0 at steady state

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 21/57

 

Boundary ConditionsBoundary Conditions

0

0

=

=∂

r r 

 p , p p T  )r ( T ;T T ;t  === 00

00

00

 Rr r r r 

r r 

T T 

 RT T 

== ≠

=≠=

Symmetry condition

Initial condition

Internal gradient

External gradient Rr r   f   T T =

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 22/57

 

Reacting SystemsReacting Systems

General equation for volumetricGeneral equation for volumetric

reactionsreactions

(Reaction in porous particles)(Reaction in porous particles)

Recall continuity equation:Recall continuity equation:

continuity for Acontinuity for A

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 23/57

 

Solve (1), (2), (3)Solve (1), (2), (3)

TogetherTogether

 Av A

e A r 

C  Dr 

r r t 

C − 

  

  

∂∂

∂∂

=∂∂ 2

2

1ε 

( ) ( )

( ) Av

n

m

 Ar 

r  Ave p

r C C k 

 H r r 

T k r 

r r t 

T C 

−=

−+   

  

∂∂

∂∂

=∂∂

− ∆ε  ρ  2

2

11

Continuity for A

Energy balance

( ) ( ) Av

n

m

 Ar  r C C T k  −=

(1)

(2)

(3)

Coupledthroug

hthe

reaction

rate

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 24/57

 

In Steady StateIn Steady State

Showed that for steady conditions:Showed that for steady conditions:

( )r  A

ee H dr 

dC  D

dr 

dT k  ∆−=−

( ) ( ) ( )r r  , A s , Ae

e

S r  H C C k 

 D

T T  ∆−⋅−=− == 00

Integrate at r = 0, r = R

For sphere

 Rr r S  T T =

=

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 25/57

 

Some NotesSome Notes

If we knowIf we know CC A,s A,s (surface concentration) and(surface concentration) and CC A,r=0 A,r=0 ((CC A A 

within pellet at r = 0), we can calculate temperaturewithin pellet at r = 0), we can calculate temperature

gradient, previous equation tell us either we need orgradient, previous equation tell us either we need or

don’t need to worry about T gradient within particle.don’t need to worry about T gradient within particle.

Where isothermal (approach) approximation can beWhere isothermal (approach) approximation can be

used and where internal T gradients must beused and where internal T gradients must be

considered.considered.

Volumetric reaction for porous particles, heat isVolumetric reaction for porous particles, heat is

generated in a volume.generated in a volume.

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 26/57

 

Shrinking Core: Non-Shrinking Core: Non-

IsothermalIsothermal

Heat generated at reactionHeat generated at reaction frontfront, not throughout the volume, not throughout the volume

In Steady State,In Steady State,

SolveSolve

T C 

T k r 

r r s , pe ∂∂

=   

  

∂∂

∂∂

 ρ 2

2

1

02

2

=   

  

∂∂

∂∂

T r 

r r 

k e

( )( ) ( ) 21111

11

T T 

dr 

dT ;

T T 

T T 

cc

c

r  R

 sc

r  R

r r 

 sc

c

−−

=−

−=

−−

R

r c

Ts

Tf 

Tc

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 27/57

 

T ConditionsT Conditions

r r 

 Rr  s

r r c

T T 

T T 

T T c

=

=

=

=

=

=

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 28/57

 

Boundary Condition 1:Boundary Condition 1: r r  == r r 

cc

Heat is generated = Heat conducted out through product layer 

Area

( )

( )

   

 

 

 

−⋅

−−

=−

−=−=

ce

r c , A ,S r 

S C 

r r 

er c , A ,S r 

r  Rk 

 H C C ak 

T T 

dr dT k  H C C ak 

c

110

0

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 29/57

 

Boundary Condition 2:Boundary Condition 2: r r  == RR

Heat arriving by conduction = Heat removed for 

from within particle convection

( )

( ) ( )    

 

 

 

−  

 

 

 

−−=−

−=−=

cr  R

e

S C  f  S 

 f  S 

 Rr 

e

 RhR

T T T T 

T T hdr 

dT k 

11

1

Bi-1Can be obtained

from B.C. 1

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 30/57

 

SolutionSolution

Combine equations and eliminateCombine equations and eliminate T T SS to getto get T T cc--T T f f 

( ) 2

0

2

1111cr c , A ,S r 

ce

 f  C  r  H C C ak 

hR Rr k 

T T  ⋅−=+ 

  

   −

− ∆

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 31/57

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 32/57

 

T T cc

-- T T f f 

( )

22

0

2

111111111

 Rk r C ak  Rr  D

 H C 

hR Rr k 

T T 

mc ,S r ce

r  f  , A

ce

 f C 

++   

  

 −

−=

+   

  

 −

− ∆

Conduction Convection Diffusion in

Product Layer 

Reaction Mass

Transfer 

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 33/57

 

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 34/57

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 35/57

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 36/57

 

Fixed Bed ReactorFixed Bed Reactor

Solids take part in reactionSolids take part in reaction unsteady state or semi-batch modeunsteady state or semi-batch mode

Over some time, solids either replaced or regeneratedOver some time, solids either replaced or regenerated

1 2

CA,in

CA,out

Regeneration

t

CA,out

/CA,in

Breakthroughcurve

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 37/57

 

Isothermal Reaction:Isothermal Reaction:

Plug Flow ReactorPlug Flow Reactor

Plug flow of fluid – no radialPlug flow of fluid – no radial

gradients, and no axial dispersiongradients, and no axial dispersion

Constant density with positionConstant density with position

Superficial velocity remains constantSuperficial velocity remains constant

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 38/57

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 39/57

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 40/57

 

( )f   , A

' ' 

v A

 Av C k dt 

dN 

V  sreactor m

mol r  ε −==

11

3

0→∂

C   f   , A

For first order reaction, fluid only:

For steady state:

Therefore,

( ) 010

=−+ f   , A

' ' 

v

 f   , AC k 

dz 

dC U  ε 

Volume of reactor 

Void fraction

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 41/57

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 42/57

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 43/57

 

Balance on SolidBalance on Solid

( )

( ) ( )

( )0

1

01

=−

+∂∂

−⋅=−

=+∂∂

ε 

ε 

a

r ar 

r t 

 Av s

 svav

 sv s

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 44/57

 

Solve These EquationsSolve These Equations

00 =+∂

+∂

∂ Av

 f   , A f   , A

r  z 

U t 

ε 

( )0

1=

−+

∂∂

ε a

C   Av s

( )0

1

0

=∂

∂−−

a

 z 

C  s f   , A ε 

= 0 (In quasi steady state, we ignore the

accumulation of A in gas)

    S   u    b   s    t    i    t   u

    t   e    r   A

   v

( )

( )t  , z  f  C 

t  , z  f  C t 

 z 

 s

 f   , A

 s

 f   , A

=

=

=∂

∂+

∂0

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 45/57

 

a)a) Shrinking Core ModelShrinking Core Model

b)b) Uniform reaction in porous particleUniform reaction in porous particle, zero order, zero orderin fluidin fluid

c)c) Uniform reactionUniform reaction, 1, 1stst order in fluid and in solidorder in fluid and in solid

d)d) Park et al., “An Unsteady State Analysis of Park et al., “An Unsteady State Analysis of Packed Bed Reactors for Gas-Solid Reactions”,Packed Bed Reactors for Gas-Solid Reactions”,

 J. Chem. Eng. Of Japan, 17(3):269-274 (1984) J. Chem. Eng. Of Japan, 17(3):269-274 (1984)

e)e) Evans et al., “Application of a Porous PelletEvans et al., “Application of a Porous Pellet

Model to Fixed, Moving and Fluid Bed Gas-Model to Fixed, Moving and Fluid Bed Gas-Solid Reactors”, Ind. Eng. Chem. Proc. Des.Solid Reactors”, Ind. Eng. Chem. Proc. Des.13(2):146-155 (1974)13(2):146-155 (1974)

) I Sh i ki C) I Sh i ki C

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 46/57

 

a) In Shrinking Corea) In Shrinking Core

ModelModel

( ) o ,S c , Av Av C C ak r  ε −= 1

 R Bir r C ak 

 D

r C ak 

 D

mcco ,S r 

e

co ,S v

e

 f   , A

c , A

111

11

2

   

  

 −−  

 

  

 +

=3

   

  = Rr C C  c

o , s s

Recall that

03

3

2

=+∂∂ cc , Avc

c r C k  R

r r 

( ) 010

=−+∂

∂c , Ao , sv

 f   , AC C ak 

 z 

C U  ε 

Solid Phase

Liquid Phase

For SCM

SolveCA,f  = f(z)

r c = f(z,t)

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 47/57

O ll C i fO ll C i f

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 48/57

 

Overall Conversion of Overall Conversion of 

SolidSolid

∫ 

∫ 

∫  =  

 

 

 

=− L

c L

 L

c

 s dz r  LR

dz 

dz  R

 X 0

3

3

0

0

3

11

H i ht V tiH i ht V ti

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 49/57

 

Height Vs timeHeight Vs time

(Graphical)(Graphical)

z/L

t/τ   

All CA has

been

reacted

Particles at bed

entrance are

completed reacted

Unreacted

bed depth

Reaction

zone

Completelyreacted

b) Uniform Reaction in Porousb) Uniform Reaction in Porous

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 50/57

 

b) Uniform Reaction in Porousb) Uniform Reaction in Porous

ParticleParticle

and Zero Order in Fluidand Zero Order in Fluid

( )S S   X k 

dt 

dX −= 1

S  ,S 

S S 

dC C dX 

C  X 

0

0

1

1

=−

=−where

( )0

0

1

0

=+∂∂

=+

∂⋅

−S 

 f   , A

kC t 

kC 

 z 

a

ε 

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 51/57

 

c) Uniform Reaction and 1c) Uniform Reaction and 1stst  order in Fluid and in solidorder in Fluid and in solid

( )

( )

( )

( ) 01

01

1

1

0

=−+∂

=−+

−=

−=

S  s , Av

 s , A

S  s , Av

 f   , A

S v Av

S  Av Av

C C ak t 

C C ak 

 z 

C U 

C ak r 

C C ak r 

η ε 

η ε 

η ε 

ε 

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 52/57

 

Non-Isothermal PackedNon-Isothermal Packed

Bed ReactorBed Reactor For mass continuityFor mass continuity did balance ondid balance on

fluid and on solidfluid and on solid For energy balance, we do balanceFor energy balance, we do balance

on each phaseon each phase

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 53/57

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 54/57

 

ModelingModeling

Tf  + dTf 

Tf 

z + dz

z

Tf,0

U0

q =0

 g U  sm

kg G ρ 

02=

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 55/57

Moving Bed ReactorMoving Bed Reactor

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 56/57

 

Moving Bed ReactorMoving Bed Reactor

(MBR)(MBR) Steady state reactor where solids moving atSteady state reactor where solids moving at

near their packed bed voidagenear their packed bed voidage

Counter or co-current operationCounter or co-current operation

Solid usually move downward (vertical shaftSolid usually move downward (vertical shaftreactor or furnace)reactor or furnace)

Voidage is near that of a packed bedVoidage is near that of a packed bed

Slightly above random loose-packedSlightly above random loose-packed

voidagevoidage Solids move mainly in a plug floe, but regionSolids move mainly in a plug floe, but region

near wall have a velocity distributionnear wall have a velocity distribution

8/8/2019 Multi Phases

http://slidepdf.com/reader/full/multi-phases 57/57

Advantages of MBRAdvantages of MBR

 True counter-current flow True counter-current flow

Uniform residence time (essentially plug flow)Uniform residence time (essentially plug flow)

ReasonableReasonable ∆P ∆P

 Throughput variable Throughput variable Generally larger particle dGenerally larger particle dpp > 2-3 mm> 2-3 mm 

Difficulties coping with wide size distribution of Difficulties coping with wide size distribution of 

particles (fines tend to block up the voidparticles (fines tend to block up the void

spaces)spaces)