Magnetically Coupled Circuits Instructor: Chia-Ming Tsai Electronics Engineering National Chiao Tung...

Post on 05-Jan-2016

225 views 2 download

Tags:

Transcript of Magnetically Coupled Circuits Instructor: Chia-Ming Tsai Electronics Engineering National Chiao Tung...

Magnetically Coupled Circuits

Instructor: Chia-Ming TsaiElectronics Engineering

National Chiao Tung UniversityHsinchu, Taiwan, R.O.C.

Contents• Introduction

• Mutual Inductance

• Energy in a Coupled Circuit

• Linear Transformers

• Ideal Transformers

• Applications

Introduction• Conductively coupled circuit means that one loop

affects the neighboring loop through current conduction.

• Magnetically coupled circuit means that two loops, with or without contacts between them, affect each other through the magnetic field generated by one of them.

• Based on the concept of magnetic coupling, the transformer is designed for stepping up or down ac voltages or currents.

Self Inductance

)inductance-(self

is volatgeinduced the turns,For

is volatgeinduced theeach turn,For

1T

di

dNL

dt

diL

dt

di

di

dN

dt

dNv

Ndt

dv

turns

inductance

:inductorAn

N

L

Mutual Inductance (1/5)

dt

diM

dt

di

di

dN

dt

dNv

di

dNL

dt

diL

dt

di

di

dN

dt

dNv

N

L

N

L

121

1

1

122

1222

1

111

11

1

1

11

111

12111

2

2

1

1

where

is 1 coilby generatedflux The

2, coilin current no Assuming

turns

sinductance-self:2 Coil

turns

sinductance-self:1 Coil

dt

diMv

di

dNM

1212

1

12221

is voltagemutualcircuit -open The

is 1 coil respect to2with coil

of inductance-mutual The

Mutual Inductance (2/5)

dt

diM

dt

di

di

dN

dt

dNv

di

dNL

dt

diL

dt

di

di

dN

dt

dNv

N

L

N

L

212

2

2

211

2111

2

222

22

2

2

22

222

21222

2

2

1

1

where

is 2 coilby generatedflux The

1, coilin current no Assuming

turns

sinductance-self:2 Coil

turns

sinductance-self:1 Coil

dt

diMv

Mdi

dNM

2121

212

21112

is voltagemutualcircuit -open The

)(

is 2 coil respect to1with coil

of inductance-mutual The

Mutual Inductance (3/5)• We will see that M12=M21=M.

• Mutual coupling only exists when the inductors or coils are in close proximity, and the circuits are driven by time-varying sources.

• Mutual inductance is the ability of one inductor to induce a voltage across a neighboring inductor, measured in henrys (H).

i1

+

_dt

diMv 1

2

• The dot convention states that a current entering the dotted terminal induces a positive polarity of the mutual voltage at the dotted terminal of the second coil.

Mutual Inductance (4/5)

)(

)(

. and induces

, and induces

2221122

2112111

22212

12111

i

i

dt

diM

dt

diL

dt

dN

dt

dN

dt

dNv

dt

diM

dt

diL

dt

dN

dt

dN

dt

dNv

121

22

122

22212

222

212

11

211

12111

111

)(

)(

Mutual Inductance (5/5)

i1

+

_dt

diMv 1

2

i1

+

_dt

diMv 1

2

i2

+

_dt

diMv 2

1

i2

+

_dt

diMv 2

1

Series-Aiding Connection

dt

diMMLL

dt

diM

dt

diL

dt

diM

dt

diL

vvvdt

diM

dt

diLv

dt

diM

dt

diLv

211221

212121

21

2122

1211

MLLLdt

diMLLv

MMM

2

2

,But

21eq

21

2112

+ _v1 + _v2

Series-Opposing Connection

dt

diMMLL

dt

diM

dt

diL

dt

diM

dt

diL

vvvdt

diM

dt

diLv

dt

diM

dt

diLv

211221

212121

21

2122

1211

MLLLdt

diMLLv

MMM

2

2

,But

21eq

21

2112

+ _v1 + _v2

Example 1

(1b)

gives 2mesh toKVL Applying

(1a)

gives 1mesh toKVL Applying

122222

211111

dt

diM

dt

diLRiv

dt

diM

dt

diLRiv

(2b) )(

(2a) )(

asdomain

phasorin (1) Eq can write We

22212

21111

IIV

IIV

LjRMj

MjLjR

Circuit Model for Coupled Inductors

dt

diL

dt

diMv

dt

diM

dt

diLv

22

12

2111

2212

2111

IIV

IIV

LjMj

MjLj

Example 2

(1b) )42(3

612

0)612(3

gives 2mesh toKVL Applying

(1a) 03)54(12

gives 1mesh toKVL Applying

221

21

21

III

II

II

jj

j

jj

jjj

39.4901.13)42(

04.1491.24

12

gives (1a) into (1b)

21

2

II

I

j

j

Example 3

(1b) 0)185(8

0)52286(26

gives 2mesh toKVL Applying

(1a) 1008)34(100

026)634(100

gives 1mesh toKVL Applying

21

211

21

221

II

III

II

III

jj

jjjjj

jj

jjjj

19693.8

5.33.20

0

100

1858

834

get we(1b) and (1a) From

2

1

2

1

I

I

I

I

jj

jj

Energy in a Coupled Circuit (1/4)

2112222

21121

2222112

0 2220 211222

222

212122112

2211

2110 11111

111111

112

2

1

2

12

1

)(

. to0 from increases , :II Step2

1

)(

. to0 from increases ,0 :I Step

22

1

IIMILILwww

ILIIM

diiLdiIMdtpw

dt

diLi

dt

diMIvivitp

IiIi

ILdiiLdtpw

dt

diLivitp

Iii

II

I

i1

i2

I1

I2

I II

t

Energy in a Coupled Circuit (2/4)

MMM

IIMILILwww

ILIIMw

IiIi

ILw

Iii

2112

2121222

21121

21121212

1122

2221

221

case.former

the toequalmust energy totalBut the

2

1

2

12

1

. to0 from increases , :II Step2

1

. to0 from increases ,0 :I Step

as changed becan process analysis The

i1

i2

I1

I2

I II

t

Energy in a Coupled Circuit (3/4)21

222

211 2

1

2

1iMiiLiLw 21

222

211 2

1

2

1iMiiLiLw

Energy in a Coupled Circuit (4/4)

21

21

2121

2

2211

21222

211

21222

211

0

02

1

02

1

2

1

case,any for 0But

2

1

2

1

asgiven is storedenergy ousinstantane

thes,assignmentcurrent different For

LLM

MLL

MLLiiLiLi

iMiiLiL

w

iMiiLiLw

)10( or

as defined is

The

21

21

kLLkM

LL

Mk

koefficientcoupling c

More about k

0

coupling.perfect means 1

or

asflux of

in terms expressed becan

2211

2221

21

1211

12

k

k

k

k

Coupling vs. Winding Style

Loosly coupled k < 0.5

Tightly coupled k > 0.5

Example

J 73.202

1

2

1

824.2)1( ,389.3)1(

)6.1604cos(254.3

)4.194cos(905.3

6.160254.3

4.19905.3

(1b) 0)416(10

2,mesh For

(1a) 306010)2010(

1,mesh For

56.020

5.2 :Sol

s. 1at inductors coupled

in the storedenergy theand Find

21222

211

21

2

1

2

1

21

21

21

iMiiLiLw

ii

ti

ti

jj

jj

LL

Mk

t

k

I

I

II

II

rad/s 4

V )304cos(60 tv

Linear Transformers

Zin

impedancereflected

pedanceprimary im

ZLjR

MLjR

R

P

RP

L

:

: where

22

22

11in

Z

Z

ZZ

Z

1in

2221

2111

But

0)(

)(

givesmesh two the toKVL Applying

I

VZ

II

IIV

LZRLjMj

MjLjR

R1 and R2

are winding resistances.

T (or Y) Equivalent Circuit

2

1

2

1

2

1

I

I

V

V

LjMj

MjLj

2

1

2

1

)(

)(

I

I

V

V

cbc

cca

LLjLj

LjLLj

)(

)(2

1

2

1

ML

MLL

MLL

LLjLj

LjLLj

LjMj

MjLj

c

b

a

cbc

cca

П (or ) Equivalent Circuit

221

2

1

1

2

2

1

where MLLK

Kj

L

Kj

MKj

M

Kj

L

V

V

I

I

2

1

2

1

111

111

V

V

I

I

CBC

CCA

LjLjLj

LjLjLj

111

111

1

2

1

2

M

KL

ML

KL

ML

KL

LjLjLj

LjLjLj

Kj

L

Kj

MKj

M

Kj

L

C

B

A

CBC

CCA

Ideal Transformers (1/3)

1. Coils have very large reactance (L1, L2, M ~ )

2. Coupling coefficient is equal to unity (k = 1)

3. Primary and secondary are lossless (series resistances R1= R2= 0)

21 dt

dNv

dt

dNv

2211

Ideal Transformers (2/3)

. thecalled is where

.or 1

coupling,perfect For

gives (1b) into 1(c) ngSubstituti

(1c)

(1a), From

(1b)

(1a)

111

21

1

212

21

21

2

211

2

1211

2212

2111

oturns ratin

nL

L

L

LL

LLMk

jL

ML

L

M

LjMj

LjMj

MjLj

VVVV

IVV

IVI

IIV

IIV

Ideal Transformers (3/3)

nN

N

nN

N

v

vdt

dNv

dt

dNv

1

2

1

2

1

2

1

2

22

11

V

V

nN

N

iviv

1

domain,phasor In

lossless, iser transformidealAn

2

1

1

2

2211

2211

I

I

IVIV

Types of Transformers

• When n = 1, we generally call the transformer an isolation transformer.

• If n > 1 , we have a step-up transformer (V2 > V1).

• If n < 1 , we have a step-down transformer (V2 < V1).

Impedance Transformation

lossless! iser transformThe

loss.without

secondary the todelivered isprimary

the tosuppliedpower complex The

isprimary in thepower complex The

1

2*22

*2

2*111

21

21

2

1

1

2

1

2

1

2

SIVIV

IVS

II

VV

I

IV

V

nn

nn

nN

N

nN

N

matching! impedancefor Useful

) (

1

is source by the

seen as impedanceinput The

2in

2

22

2

2

1

1in

impedancereflected n

nnn

LZZ

I

V

I

V

I

VZ

Zin

How to make a transformer ideal?

Zin

L

L

L

L

L

L

Lj

Lj

Lj

LLLLLj

Lj

MLj

LLMRR

LjR

MLjR

Z

Z

Z

Z

ZZ

ZZ

2

1

2

212

212

1

2

22

1in

2121

22

22

11in

coupling)(perfect and 0 If

oturns ratiL

Ln

nL

L

Lj

Lj

L

LLL

L

the: where

If

1

2

22

1

2

1in

2

ZZZZ

Z

The linear transformer model

Impedance Matching

Linear network

:

complex :

issfer power tran

maximumfor condition The

Th2

*Th2

LLL

LL

Rn

Rn

ZZ

ZZZ

Ideal Transformer Circuit (1/3)

Linear network 1 Linear network 2

Ideal Transformer Circuit (2/3)

nns22

1Th

21 0

VVVV

II

22

2

22

2

2

1

1Th

21

21

1

nnn

nn

n

Z

I

V

I

V

I

VZ

VV

II

1

Ideal Transformer Circuit (3/3)

c c

Applications of Transformers• To step up or step down voltage and current (useful

for power transmission and distribution)

• To isolate one portion of a circuit from another

• As an impedance matching device for maximum power transfer

• Frequency-selective circuits

Applications: Circuit Isolation

When the relationship betweenthe two networks is unknown,any improper direct connectionmay lead to circuit failure.

This connection style canprevent circuit failure.

Applications: DC Isolation

Only ac signal can pass, dc signal is blocked.

Applications: Load Matching

Applications: Power Distribution