J. Jasche, Bayesian LSS Inference Jens Jasche La Thuile, 11 March 2012 Bayesian Large Scale...

Post on 21-Jan-2016

212 views 0 download

Tags:

Transcript of J. Jasche, Bayesian LSS Inference Jens Jasche La Thuile, 11 March 2012 Bayesian Large Scale...

J. Jasche, Bayesian LSS Inference

Jens Jasche

La Thuile, 11 March 2012

Bayesian Large Scale Structureinference

J. Jasche, Bayesian LSS Inference

Goal: 3D cosmography• homogeneous evolution

• Cosmological parameters• Dark Energy• Power-spectrum / BAO

• non-linear structure formation• Galaxy properties• Initial conditions• Large scale flows

Motivation

Tegmark et al. (2004)

Jasche et al. (2010)

J. Jasche, Bayesian LSS Inference

Motivation

No ideal Observations in reality

J. Jasche, Bayesian LSS Inference

Motivation

No ideal Observations in reality• Statistical uncertainties

Noise, cosmic variance etc.

J. Jasche, Bayesian LSS Inference

Motivation

No ideal Observations in reality• Statistical uncertainties • Systematics

Noise, cosmic variance etc.

Kitaura et al. (2009)

Survey geometry, selection effects,biases

J. Jasche, Bayesian LSS Inference

Motivation

No ideal Observations in reality• Statistical uncertainties • Systematics

Noise, cosmic variance etc.

Kitaura et al. (2009)

Survey geometry, selection effects,biases

No unique recovery possible!!!

J. Jasche, Bayesian LSS Inference

Bayesian Approach

“Which are the possible signals compatible with the observations?”

J. Jasche, Bayesian LSS Inference

Object of interest: Signal posterior distribution

“Which are the possible signals compatible with the observations?”

Bayesian Approach

J. Jasche, Bayesian LSS Inference

Object of interest: Signal posterior distribution

“Which are the possible signals compatible with the observations?”

Prior

Bayesian Approach

J. Jasche, Bayesian LSS Inference

Object of interest: Signal posterior distribution

“Which are the possible signals compatible with the observations?”

Likelihood

Bayesian Approach

J. Jasche, Bayesian LSS Inference

Object of interest: Signal posterior distribution

“Which are the possible signals compatible with the observations?”

Evidence

Bayesian Approach

J. Jasche, Bayesian LSS Inference

Object of interest: Signal posterior distribution

“Which are the possible signals compatible with the observations?”

We can do science!• Model comparison• Parameter studies• Report statistical summaries• Non-linear, Non-Gaussian error propagation

Bayesian Approach

J. Jasche, Bayesian LSS Inference

LSS Posterior Aim: inference of non-linear density fields

• non-linear density field lognormal

See e.g. Coles & Jones (1991), Kayo et al. (2001)

J. Jasche, Bayesian LSS Inference

LSS Posterior Aim: inference of non-linear density fields

• non-linear density field lognormal

• “correct” noise treatment full Poissonian distribution

See e.g. Coles & Jones (1991), Kayo et al. (2001)

Credit: M. Blanton and the

Sloan Digital Sky Survey

J. Jasche, Bayesian LSS Inference

LSS Posterior

Problem: Non-Gaussian sampling in high dimensions • direct sampling not possible• usual Metropolis-Hastings algorithm inefficient

Aim: inference of non-linear density fields• non-linear density field

lognormal

• “correct” noise treatment full Poissonian distribution

See e.g. Coles & Jones (1991), Kayo et al. (2001)

Credit: M. Blanton and the

Sloan Digital Sky Survey

J. Jasche, Bayesian LSS Inference

LSS Posterior

Problem: Non-Gaussian sampling in high dimensions • direct sampling not possible• usual Metropolis-Hastings algorithm inefficient

Aim: inference of non-linear density fields• non-linear density field

lognormal

• “correct” noise treatment full Poissonian distribution

See e.g. Coles & Jones (1991), Kayo et al. (2001)

HADES (HAmiltonian Density Estimation and Sampling)

Jasche, Kitaura (2010)

Credit: M. Blanton and the

Sloan Digital Sky Survey

J. Jasche, Bayesian LSS Inference

LSS inference with the SDSS

Application of HADES to SDSS DR7• cubic, equidistant box with sidelength 750 Mpc• ~ 3 Mpc grid resolution• ~ 10^7 volume elements / parameters

Jasche, Kitaura, Li, Enßlin (2010)

J. Jasche, Bayesian LSS Inference

Application of HADES to SDSS DR7• cubic, equidistant box with sidelength 750 Mpc• ~ 3 Mpc grid resolution• ~ 10^7 volume elements / parameters

Goal: provide a representation of the SDSS density posterior• to provide 3D cosmographic descriptions• to quantify uncertainties of the density distribution

LSS inference with the SDSS

Jasche, Kitaura, Li, Enßlin (2010)

J. Jasche, Bayesian LSS Inference

Application of HADES to SDSS DR7• cubic, equidistant box with sidelength 750 Mpc• ~ 3 Mpc grid resolution• ~ 10^7 volume elements / parameters

Goal: provide a representation of the SDSS density posterior• to provide 3D cosmographic descriptions• to quantify uncertainties of the density distribution

3 TB, 40,000 density samples

LSS inference with the SDSS

Jasche, Kitaura, Li, Enßlin (2010)

J. Jasche, Bayesian LSS Inference

What are the possible density fields compatible with the data ?

LSS inference with the SDSS

J. Jasche, Bayesian LSS Inference

What are the possible density fields compatible with the data ?

LSS inference with the SDSS

J. Jasche, Bayesian LSS Inference

J. Jasche, Bayesian LSS Inference

ISW-templates

LSS inference with the SDSS

J. Jasche, Bayesian LSS Inference

Redshift uncertainties Photometric surveys

• deep volumes• millions of galaxies• low redshift accuracy

J. Jasche, Bayesian LSS Inference

Redshift uncertainties

Galaxy positions

Matter density

Photometric surveys• deep volumes• millions of galaxies• low redshift accuracy

J. Jasche, Bayesian LSS Inference

Redshift uncertainties

Galaxy positions

Matter density

We know that:• Galaxies trace the matter distribution• Matter distribution is homogeneous and isotropic

Jasche et al. (2010)

Photometric surveys• deep volumes• millions of galaxies• low redshift accuracy

J. Jasche, Bayesian LSS Inference

Redshift uncertainties

Galaxy positions

Matter density

We know that:• Galaxies trace the matter distribution• Matter distribution is homogeneous and isotropic

Jasche et al. (2010)

Photometric surveys• deep volumes• millions of galaxies• low redshift accuracy

J. Jasche, Bayesian LSS Inference

Redshift uncertainties

Galaxy positions

Matter density

We know that:• Galaxies trace the matter distribution• Matter distribution is homogeneous and isotropic

Jasche et al. (2010)

Joint inference

Photometric surveys• deep volumes• millions of galaxies• low redshift accuracy

J. Jasche, Bayesian LSS Inference

Joint sampling

J. Jasche, Bayesian LSS Inference

Joint sampling

Metropolis Block sampling:

J. Jasche, Bayesian LSS Inference

Application of HADES to artificial photometric data • cubic, equidistant box with sidelength 1200 Mpc• ~ 5 Mpc grid resolution• ~ 10^7 volume elements / parameters

Photometric redshift inference

J. Jasche, Bayesian LSS Inference

Application of HADES to artificial photometric data • cubic, equidistant box with sidelength 1200 Mpc• ~ 5 Mpc grid resolution• ~ 10^7 volume elements / parameters• ~ 2x10^7 radial galaxy positions / parameters

• (~100 Mpc)

Photometric redshift inference

J. Jasche, Bayesian LSS Inference

Application of HADES to artificial photometric data • cubic, equidistant box with sidelength 1200 Mpc• ~ 5 Mpc grid resolution• ~ 10^7 volume elements / parameters• ~ 2x10^7 radial galaxy positions / parameters

• (~100 Mpc)• ~ 3x10^7 parameters in total

Photometric redshift inference

J. Jasche, Bayesian LSS Inference

Application of HADES to artificial photometric data • cubic, equidistant box with sidelength 1200 Mpc• ~ 5 Mpc grid resolution• ~ 10^7 volume elements / parameters• ~ 2x10^7 radial galaxy positions / parameters

• (~100 Mpc)• ~ 3x10^7 parameters in total

Photometric redshift inference

J. Jasche, Bayesian LSS Inference

Photometric redshift sampling

Jasche, Wandelt (2011)

J. Jasche, Bayesian LSS Inference

Deviation from the truth

Jasche, Wandelt (2011)

Before After

J. Jasche, Bayesian LSS Inference

Deviation from the truth

Jasche, Wandelt (2011)

Raw data Density estimate

J. Jasche, Bayesian LSS Inference

Summary & Conclusion

LSS 3D density inference Correction of systematic effects, survey geometry, selection effects Accurate treatment of Poissonian shot noise Precision non-linear density inference Non-linear, non-Gaussian error propagation

Joint redshift & 3D density inference Positive influence on mutual inference Improved redshift accuracy Treatment of joint uncertainties

Also note: methods are general complementary data sets

• 21 cm, X-ray, etc

J. Jasche, Bayesian LSS Inference

The End …

Thank you

J. Jasche, Bayesian LSS Inference

Resimulating the SGW

Building initial conditions for the Sloan Volume• resimulate the Sloan Great Wall (SGW)

Preliminary Work

J. Jasche, Bayesian LSS Inference

Marginalized redshift posterior

Jasche, Wandelt (2011)

J. Jasche, Bayesian LSS Inference

IDEA: Follow Hamiltonian dynamics

Conservation of energy Metropolis acceptance probability is unity

All samples are accepted

Persistent motion

Hamiltonian Sampling

= 1

HADES (Hamiltonian Density Estimation and Sampling)HADES (Hamiltonian Density Estimation and Sampling)

J. Jasche, Bayesian LSS Inference

HADES vs. ARES

HADES

Variance

Mean

J. Jasche, Bayesian LSS Inference

ARESHADES

HADES vs. ARES

J. Jasche, Bayesian LSS Inference

Lensing templates

LSS inference with the SDSS

J. Jasche, Bayesian LSS Inference

Extensions of the sampler Multiple block Metropolis Hastings sampling

Example redshift sampling