Introduction to Machine...

Post on 26-Jun-2020

2 views 0 download

Transcript of Introduction to Machine...

Introduction to Machine LearningFelix Brockherde12 Kristof Schutt1

1Technische Universitat Berlin2Max Planck Institute of Microstructure Physics

IPAM Tutorial 2013

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 1 / 35

What is Machine Learning?

InferedStructure

Data with Pattern Algorithm ML Model

ML is about learning structure from data

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 2 / 35

Examples

Drug discovery

Search engines

BCI

DNA splice site detection

Face recognition

Recommender systems

Speech recognition

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 3 / 35

This Talk

Part 1: Learning Theory andSupervised ML

I Basic Ideas of Learning TheoryI Support Vector MachinesI KernelsI Kernel Ridge Regression

Part 2: Unsupervised ML andApplication

I PCAI Model SelectionI Feature Representation

Not covered

I Probabilistic Models

I Neural Networks

I Online Learning

I Reinforcement Learning

I Semi-supervised Learning

I etc.

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 4 / 35

Supervised Learning

Classification

yi ∈ {−1,+1}

Regression

yi ∈ RI Given: Points X = (x1, . . . , xN) with xi ∈ Rd and Labels

Y = (y1, . . . , yn) generated by some joint probability distribution.

I Learn underlying unknown mapping f (x) = y

I Important: Performance on unseen data

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 5 / 35

Basic Ideas in Learning Theory

Risk minimization (RM)Learn a model function f from examples

(x1, y1), . . . , (xN , yN) ∈ Rd × R or {+1,−1}, generated from P(x, y)

such that the expected number of errors on test data (drawn fom P(x, y)),

R[f ] =

∫1

2|f (x)− y |2dP(x, y),

is minimal.

Problem: Distribution P(x, y) is unknown

Empirical Risk Minimization (ERM)Replace the average over P(x, y) by average of training samples (i.e.minimize the training error):

Remp[f ] =1

N

N∑i=1

1

2|f (xi )− yi |2

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 6 / 35

Law of large numbers: Remp[f ]→ R[f ] asN →∞.

Question: Does minf Remp[f ] give usminf R[f ] for sufficiently large N?

No: uniform convergence needed

Error bound for classification

With probablity of at least 1− η:

R[f ] ≤ Remp[f ] +

√D(log 2N

D + 1)− log(η4 )

N

where D is the VC dimension (Vapnik and Chervonenkis (1971)).

Introduce structure on set of possible functions and use Structural RiskMinimization (SRM).

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 7 / 35

Law of large numbers: Remp[f ]→ R[f ] asN →∞.

Question: Does minf Remp[f ] give usminf R[f ] for sufficiently large N?

No: uniform convergence needed

Error bound for classification

With probablity of at least 1− η:

R[f ] ≤ Remp[f ] +

√D(log 2N

D + 1)− log(η4 )

N

where D is the VC dimension (Vapnik and Chervonenkis (1971)).

Introduce structure on set of possible functions and use Structural RiskMinimization (SRM).

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 7 / 35

The linear function class has VC-dimension D = 3

minf

Remp[f ] + Complexity[f ]

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 8 / 35

Support Vector Machines (SVM)

{x|w · x + b = 0}

{x|w · x + b = +1}

{x|w · x + b = −1}

2||w||

w

b

Normalize w so thatminxi w · xi + b = 1.

w · x1 + b = +1

w · x2 + b = −1

⇐⇒ w · (x1 − x2) = 2

⇐⇒ w

||w||· (x1 − x2) =

2

||w||

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 9 / 35

Support Vector Machines (SVM)

{x|w · x + b = 0}

{x|w · x + b = +1}

{x|w · x + b = −1}

2||w||

w

b

Normalize w so thatminxi w · xi + b = 1.

w · x1 + b = +1

w · x2 + b = −1

⇐⇒ w · (x1 − x2) = 2

⇐⇒ w

||w||· (x1 − x2) =

2

||w||

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 9 / 35

Support Vector Machines (SVM)

{x|w · x + b = 0}

{x|w · x + b = +1}

{x|w · x + b = −1}

2||w||

w

b

Normalize w so thatminxi w · xi + b = 1.

w · x1 + b = +1

w · x2 + b = −1

⇐⇒ w · (x1 − x2) = 2

⇐⇒ w

||w||· (x1 − x2) =

2

||w||

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 9 / 35

Support Vector Machines (SVM)

{x|w · x + b = 0}

{x|w · x + b = +1}

{x|w · x + b = −1}

2||w||

w

b

Normalize w so thatminxi w · xi + b = 1.

w · x1 + b = +1

w · x2 + b = −1

⇐⇒ w · (x1 − x2) = 2

⇐⇒ w

||w||· (x1 − x2) =

2

||w||

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 9 / 35

Support Vector Machines (SVM)

{x|w · x + b = 0}

{x|w · x + b = +1}

{x|w · x + b = −1}

2||w||

w

b

Normalize w so thatminxi w · xi + b = 1.

w · x1 + b = +1

w · x2 + b = −1

⇐⇒ w · (x1 − x2) = 2

⇐⇒ w

||w||· (x1 − x2) =

2

||w||

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 9 / 35

VC Dimension of Hyperplane Classifiers

Theorem (Cortes and Vapnik (1995))

Hyperplanes in canonical form have VC Dimension

D ≤ min{R2||w||2 + 1, N + 1}

where R the radius of the smallest sphere containing the data.

SRM Bound:

R[f ] ≤ Remp[f ] +

√D(log 2N

D + 1)− log(η4 )

N

maximal margin = minimum ||w||2 → good generalization, i.e. low risk:

minw,b

||w||2

subject to yi (w · xi + b) ≥ 1 for i = 1 . . .N

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 10 / 35

Slack variables

ξi

Introduce slack variables ξi :

minw,b,ξi

||w||2 + CN∑i=1

ξi

subject to yi (w · xi + b) ≥ 1− ξiξi ≥ 0

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 11 / 35

Slack variables

ξi

Introduce slack variables ξi :

minw,b,ξi

||w||2 + CN∑i=1

ξi

subject to yi (w · xi + b) ≥ 1− ξiξi ≥ 0

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 11 / 35

Non-linear hyperplanes

Map into a higher dimensional feature space:

Φ : R2 → R3

(x1, x2) 7→ (x21 ,√

2x1x2, x22 )

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 12 / 35

Non-linear hyperplanes

Map into a higher dimensional feature space:

Φ : R2 → R3

(x1, x2) 7→ (x21 ,√

2x1x2, x22 )

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 12 / 35

Dual SVM

Primalmin

w,b,ξi||w||2 + C

N∑i=1

ξi

subject to yi (w · Φ(xi) + b) ≥ 1− ξi and ξi ≥ 0 for i = 1 . . .N

Dual

maxα

N∑i=1

αi −1

2

N∑i ,j=1

αiαjyiyj (Φ(xi) · Φ(xj))

subject toN∑i=1

αiyi = 0 and C ≥ αi ≥ 0 for i = 1 . . .N

Data points xi only appear in scalar products (Φ(xi) · Φ(xj)).

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 13 / 35

The Kernel Trick

Replace scalar products with kernel function (Muller et al. (2001)):

k(x , y) = Φ(x) · Φ(y)

I Compute kernel matrix Kij = k(xi , xj), i.e. never use Φ directlyI Underlying mapping Φ can be unknownI Kernels can be adopted to specific task, e.g. using prior knowledge

(kernels for graphs, trees, strings, . . . )

Common kernels

Gaussian Kernel: k(x , y) = exp(− ||x−y ||

2

2σ2

)Linear Kernel: k(x , y) = x · y

Polynomial Kernel: k(x , y) = (x · y + c)d

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 14 / 35

The Support Vectors in SVM

maxα

N∑i=1

αi −1

2

N∑i ,j=1

αiαjyiyj (Φ(xi) · Φ(xj))

subject toN∑i=1

αiyi = 0 and C ≥ αi ≥ 0 for i = 1 . . .N

KKT conditions

yi [wΦ(xi)) + b] > 1 =⇒ ai = 0 −→ xi irrelevant

yi [wΦ(xi)) + b] = 1 =⇒ on/in margin −→ xi Support Vector

Old model f (x) = w · Φ(xi ) + b becomes via w =∑N

i=1 αiyiΦ(xi ):

f (x) =N∑i=1

αiyik(xi , x) + b −→ f (x) =∑

xi∈SVαiyik(xi , x) + b

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 15 / 35

Kernel Ridge Regression (KRR)

Ridge Regression

minw

N∑i=1

||yi − w · xi||2 + λ||w ||2

Setting derivative to zero gives

w =

(λI +

N∑i=1

xixᵀi

)−1 N∑i=1

yixi

Linear Model: f (x) = w · x

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 16 / 35

Kernelizing Ridge Regression

Setting X = (x1, . . . , xN) ∈ Rd×N and Y = (y1, . . . , yn)ᵀ ∈ RN :

w = (λI + XX ᵀ)−1 XY

Apply Woodbury Matrix identity:

w = X (X ᵀX + λI )−1 Y

Introduce α:

α = (K + λI )−1Y and w =N∑i=1

Φ(xi)αi

Kernel Model: f (x) = w · Φ(x) =∑N

i=1 αik(xi , x)

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 17 / 35

Unsupervised Learning

I Learn structure from unlabeled data

I Fit an assumed model / distribution tothe data

I ExamplesI clusteringI blind source separationI outlier detectionI dimensionality reduction

426 9. MIXTURE MODELS AND EM

(a)

!2 0 2

!2

0

2 (b)

!2 0 2

!2

0

2 (c)

!2 0 2

!2

0

2

(d)

!2 0 2

!2

0

2 (e)

!2 0 2

!2

0

2 (f)

!2 0 2

!2

0

2

(g)

!2 0 2

!2

0

2 (h)

!2 0 2

!2

0

2 (i)

!2 0 2

!2

0

2

Figure 9.1 Illustration of the K-means algorithm using the re-scaled Old Faithful data set. (a) Green pointsdenote the data set in a two-dimensional Euclidean space. The initial choices for centres µ1 and µ2 are shownby the red and blue crosses, respectively. (b) In the initial E step, each data point is assigned either to the redcluster or to the blue cluster, according to which cluster centre is nearer. This is equivalent to classifying thepoints according to which side of the perpendicular bisector of the two cluster centres, shown by the magentaline, they lie on. (c) In the subsequent M step, each cluster centre is re-computed to be the mean of the pointsassigned to the corresponding cluster. (d)–(i) show successive E and M steps through to final convergence ofthe algorithm.

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 18 / 35

Principal Component Analysis (PCA)

Given centered data matrix X = (x1, . . . , xN)ᵀ ∈ RNxD

I best linear approximation

w1 = arg min‖w‖=1

{‖X − Xwwᵀ‖2

}I direction of largest variance

w1 = arg max‖w‖=1

{‖Xw‖2

}I matrix reduction for further

components

Xk+1 = Xk − XkwwᵀPearson, K. 1901. On lines and planes of closest fit to systems of points in space. Philosophical Magazine 2:559-572.

http://pbil.univ-lyon1.fr/R/pearson1901.pdf

Pearson (1901)

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 19 / 35

Principal Component Analysis (PCA)

Given centered data matrix X ∈ RNxD , decompose correlated data matrixinto uncorrelated, orthogonal PCs

I diagonalize covariance matrix Σ = 1NX

ᵀX

Σwk = σ2kwk

I order principal components wk by variance σ2k

I project data to first n principal components

What about nonlinear correlations?

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 20 / 35

Principal Component Analysis (PCA)

Given centered data matrix X ∈ RNxD , decompose correlated data matrixinto uncorrelated, orthogonal PCs

I diagonalize covariance matrix Σ = 1NX

ᵀX

Σwk = σ2kwk

I order principal components wk by variance σ2k

I project data to first n principal components

What about nonlinear correlations?Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 20 / 35

Kernel Principal Component Analysis (kPCA)

Transformation to feature space X 7→ Xf :

Σf =1

NX ᵀf Xf , K = Xf X

ᵀf ,Kij = k(xi , xj)

Σf wk = σ2kwk

⇓ wk = X ᵀf αk

X ᵀf Xf X

ᵀf αk = Nσ2

kXᵀf αk

⇓ Xf ·K 2αk = Nσ2

kKαk

⇓ K−1·Kαk = Nσ2

kαk

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 21 / 35

Kernel Principal Component Analysis (kPCA)

Transformation to feature space X 7→ Xf :

Σf =1

NX ᵀf Xf , K = Xf X

ᵀf ,Kij = k(xi , xj)

X ᵀf Xf wk = Nσ2

kwk

⇓ wk = X ᵀf αk

X ᵀf Xf X

ᵀf αk = Nσ2

kXᵀf αk

⇓ Xf ·K 2αk = Nσ2

kKαk

⇓ K−1·Kαk = Nσ2

kαk

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 21 / 35

Kernel Principal Component Analysis (kPCA)

Transformation to feature space X 7→ Xf :

Σf =1

NX ᵀf Xf , K = Xf X

ᵀf ,Kij = k(xi , xj)

X ᵀf Xf wk = Nσ2

kwk

⇓ wk = X ᵀf αk

X ᵀf Xf X

ᵀf αk = Nσ2

kXᵀf αk

⇓ Xf ·K 2αk = Nσ2

kKαk

⇓ K−1·Kαk = Nσ2

kαk

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 21 / 35

Kernel Principal Component Analysis (kPCA)

Transformation to feature space X 7→ Xf :

Σf =1

NX ᵀf Xf , K = Xf X

ᵀf ,Kij = k(xi , xj)

X ᵀf Xf wk = Nσ2

kwk

⇓ wk = X ᵀf αk

X ᵀf Xf X

ᵀf αk = Nσ2

kXᵀf αk

⇓ Xf ·Xf X

ᵀf Xf X

ᵀf αk = Nσ2

kXf Xᵀf αk

⇓ K−1·Kαk = Nσ2

kαk

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 21 / 35

Kernel Principal Component Analysis (kPCA)

Transformation to feature space X 7→ Xf :

Σf =1

NX ᵀf Xf , K = Xf X

ᵀf ,Kij = k(xi , xj)

X ᵀf Xf wk = Nσ2

kwk

⇓ wk = X ᵀf αk

X ᵀf Xf X

ᵀf αk = Nσ2

kXᵀf αk

⇓ Xf ·K 2αk = Nσ2

kKαk

⇓ K−1·Kαk = Nσ2

kαk

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 21 / 35

Kernel Principal Component Analysis (kPCA)

Transformation to feature space X 7→ Xf :

Σf =1

NX ᵀf Xf , K = Xf X

ᵀf ,Kij = k(xi , xj)

X ᵀf Xf wk = Nσ2

kwk

⇓ wk = X ᵀf αk

X ᵀf Xf X

ᵀf αk = Nσ2

kXᵀf αk

⇓ Xf ·K 2αk = Nσ2

kKαk

⇓ K−1·Kαk = Nσ2

kαk

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 21 / 35

Kernel Principal Component Analysis (kPCA)

Projection:

xᵀf wk = xᵀf Xᵀf αk

=N∑i=1

αk,ik(x , x i )Scholkopf et al. (1997)

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 22 / 35

Model Selection

I Find the model that best fits thedata distribution

I We can only estimate thisdistribution

I ConsiderI noise ratio / distributionI data correlation

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 23 / 35

Hyperparameters

I adjust model complexityI regularization, kernel

parameters, etc.

I have to be tuned using examplesnot used for training

I standard solution:exhaustive search overparameter grid

0 1 2 3 4 5 6

x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

f(x)

traintest

f (x) = sin(x)

f (x) =∑i

αi exp

(‖x − xi‖2

σ2

)α = (K + τ I )−1y

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 24 / 35

Grid Search

0 1 2 3 4 5 6

x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

f(x)

0 1 2 3 4 5 6

x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

f(x)

10−2 10−1 100 101 102

τ

10−2

10−1

100

101

102

σ2

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

RM

SE

0 1 2 3 4 5 6

x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

f(x)

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 25 / 35

k-fold cross-validation

testtraining

training test

split data

4x inner loopmodel selection

evaluation 5x outer loop

Don’t even think aboutlooking at the test set!

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 26 / 35

k-fold cross-validation

testtraining

training test

split data

4x inner loopmodel selection

evaluation 5x outer loop

Don’t even think aboutlooking at the test set!

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 26 / 35

From objects to vectors

How to represent complex objects for kernel methods?I explicit map to vector space: φ : M → Rn

I use standard kernel (e.g., linear, polynomial, gaussian)k : Rn × Rn → R on mapped features

I direct use of kernel function: k : M ×M → R

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 27 / 35

Feature Representation

Given a physical object (molecule, crystal, etc.) and a property of interest,what is a good ML representation?

I no loss of valuable informationI support generalization

I remove invariancesI decompose problem

I incorporation of domain knowledge

I depends on data set, target function and learning method

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 28 / 35

Feature Representation - Molecules

Coulomb matrix:

Cij =

0.5Z 2.4

i if i = j

ZiZj

‖r i − r j‖if i 6= j

(a) (b) (c) (d) (e)

(Rupp et al., 2012; Montavon et al., 2012)

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 29 / 35

Feature Representation - Molecules

PCA of Coulomb matrices with atom permutations Montavon et al. (2013)

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 30 / 35

Results - Molecules

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 31 / 35

Feature Representation - Crystals

element pair r1 · · · rn

α α gαα(r1) · · · gαα(rn)

α β gαβ(r1) · · · gαβ(rn)

β α gβα(r1) · · · gβα(rn)

β β gββ(r1) · · · gββ(rn)

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 32 / 35

Results - Crystals

Learning curve of DOSfermi predictions

K.T. Schutt, H. Glawe, F. Brockherde, A. Sanna, K.-R. Muller, E.K.U. Gross, How to represent crystal structures for machine

learning: towards fast prediction of electronic properties, arXiv, 2013

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 33 / 35

Machine Learning ...

... has been successfully applied to various research fields.

... is based on statistical learning theory.

... provides fast and accurate predictions on previously unseen data.

... is able to model non-linear relationships of high-dimensional data.

Feature representation is key!

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 34 / 35

Machine Learning ...

... has been successfully applied to various research fields.

... is based on statistical learning theory.

... provides fast and accurate predictions on previously unseen data.

... is able to model non-linear relationships of high-dimensional data.

Feature representation is key!

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 34 / 35

Machine Learning ...

... has been successfully applied to various research fields.

... is based on statistical learning theory.

... provides fast and accurate predictions on previously unseen data.

... is able to model non-linear relationships of high-dimensional data.

Feature representation is key!

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 34 / 35

Machine Learning ...

... has been successfully applied to various research fields.

... is based on statistical learning theory.

... provides fast and accurate predictions on previously unseen data.

... is able to model non-linear relationships of high-dimensional data.

Feature representation is key!

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 34 / 35

Machine Learning ...

... has been successfully applied to various research fields.

... is based on statistical learning theory.

... provides fast and accurate predictions on previously unseen data.

... is able to model non-linear relationships of high-dimensional data.

Feature representation is key!

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 34 / 35

Literature I

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3):273–297.

Montavon, G., Hansen, K., Fazli, S., Rupp, M., Biegler, F., Ziehe, A., Tkatchenko, A., Lilienfeld, A. V., and Muller, K.-R.(2012). Learning invariant representations of molecules for atomization energy prediction. In Advances in Neural InformationProcessing Systems, pages 449–457.

Montavon, G., Rupp, M., Gobre, V., Vazquez-Mayagoitia, A., Hansen, K., Tkatchenko, A., Muller, K.-R., and von Lilienfeld,O. A. (2013). Machine learning of molecular electronic properties in chemical compound space. arXiv preprintarXiv:1305.7074.

Muller, K.-R., Mika, S., Ratsch, G., Tsuda, K., and Scholkopf, B. (2001). An introduction to kernel-based learning algorithms.Neural Networks, IEEE Transactions on, 12(2):181–201.

Pearson, K. (1901). Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and DublinPhilosophical Magazine and Journal of Science, 2(11):559–572.

Rupp, M., Tkatchenko, A., Muller, K.-R., and von Lilienfeld, O. A. (2012). Fast and accurate modeling of molecularatomization energies with machine learning. Physical Review Letters, 108(5):058301.

Scholkopf, B., Smola, A., and Muller, K.-R. (1997). Kernel principal component analysis. In Artificial NeuralNetworks—ICANN’97, pages 583–588. Springer.

Vapnik, V. N. and Chervonenkis, A. Y. (1971). On the uniform convergence of relative frequencies of events to theirprobabilities. Theory of Probability & Its Applications, 16(2):264–280.

Felix Brockherde, Kristof Schutt Introduction to Machine Learning IPAM Tutorial 2013 35 / 35