Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf ·...

52
Introduction to phonon transport Ivana Savi´ c Tyndall National Institute, Cork, Ireland Materials for a Sustainable Energy Future Tutorials, Institute for Pure & Applied Mathematics, UCLA September 12, 2013 Ivana Savi´ c, [email protected] Introduction to phonon transport September 12, 2013 1 / 52

Transcript of Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf ·...

Page 1: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Introduction to phonon transport

Ivana Savic

Tyndall National Institute, Cork, Ireland

Materials for a Sustainable Energy Future Tutorials,

Institute for Pure & Applied Mathematics, UCLA

September 12, 2013

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 1 / 52

Page 2: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Outline

Thermal transport and sustainable energy.

Overview of atomistic approaches to study thermal transport inmaterials:

Boltzmann transport equation.

Non-equilibrium molecular dynamics.

Equilibrium molecular dynamics.

Critical assessment of these approaches, recent developments andfuture challenges.

Examples of their applications and insights gained from them.

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 2 / 52

Page 3: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Basic problem

How is energy (heat) transported in a semiconducting material due tothe temperature gradient?

T+ ∆ T

Theat flow

Fourier law: J = −κ∇T ; J - heat current, κ - thermal conductivity.

κ = κlattice + κelectronic + κradiative.

κ ≈ κlattice in semiconductors.

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 3 / 52

Page 4: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Why do we study thermal transport in semiconductors?

Sustainable energy: convert waste heat into electricity.

��������

��� ������

�������� ������

��������

��� ������

����� � ���

!� �����

� ��� �� �����

"������������

#��������������� ����

� ��

$�������� �����

!������� � ��

%������� ����

&� ��'(��� ��������

#���)����*��������

���+#����������%�(����

#���� ���+,���+#���)�+,��+��+����-+.���+/� ��

������-+00�0+�����+1 � +��+2 ���+��+13#4#%5'����6����'��78+9 �8+�����+%:+����+��:��� ����+��+ +��(���������+�:+��+��+����8+������+����+2�+)�*��+��+���+0 ;�����+0�*������+� ���� �+0 2�� ���� ��+���+1�( ������+�:+#���)�8+�����+;����+ ��(����+���+;��<+; �+(��:������+1�����2����+�����������+��(�������+����+��� ��+�����������+� ���+ ��+����+���+�������+���:')���� �����++#%5+��(����

������(����+�:+����; 2��+���������+6����8+�����8+;���8+)������� �+ ��+��� �7+:��+�����������+��+&,'�=��* ����+* ����+2�+ ������)+ +��(�� �+:�����+:���+(� ��+>�� �+� ���>++&��+�::�������+�:+�����������+(�����������+� ���� ���+ �+���+��� �+��� ��+�����������+����*����+��*����+2�+���+(��� ��+����)�+��(��+����+�����������+)���� �����++#��+���+�::�������+��+����� ���+ �+��?+:��+���+��������� �+ ��+�������� �+�������+ �?

:��+���+�������� �+������8+ ��+��?+:��+���+�� ��(��� ����+�������++&�� ��+� �+���+�=� �+���+�:+���(������+���+��+����(������+�������)�+00�0'9%'������

$�@�����#���)�� ��

����

����

����

����

���

�����

����

�����

�����

������

������

�����

���

���

����

��

�����

���

����

����

���

������

���

�����

�����

�����

����

����

����

����

�����

���

����

����

���

����

���

����

�����

����

�����

����

���������������� �����������������

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 4 / 52

Page 5: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Thermoelectric energy conversion

Maximum efficiency of the thermoelectric couple:

ηmax =∆T

T +∆T

1 + ZT − 1√

1 + ZT + T/(T +∆T ).

+e e

T+ T

T+ T

T

n−type

I

e+ −e

T

+

p−type

heat sink

n−typep−type

cooling

dissipation

−V V

heat source

transforming electricity into heat transforming heat into electricity

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 5 / 52

Page 6: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Thermoelectric energy conversion

Thermoelectric figure of merit: ZT = σα2T/κσ - electrical conductivity.α - Seebeck coefficient (α = V /∆T ).κ - thermal conductivity.

+e e

T+ T

T+ T

T

n−type

I

e+ −e

T

+

p−type

heat sink

n−typep−type

cooling

dissipation

−V V

heat source

transforming electricity into heat transforming heat into electricity

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 6 / 52

Page 7: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Thermoelectric energy conversion

If ZT → ∞, Carnot limit: ηmax → ∆T/(T +∆T ).

State-of-the-art bulk thermoelectric materials: ZT ∼ 1,ηmax ∼ 0.17 × ηCarnot.

+e e

T+ T

T+ T

T

n−type

I

e+ −e

T

+

p−type

heat sink

n−typep−type

cooling

dissipation

−V V

heat source

transforming electricity into heat transforming heat into electricity

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 7 / 52

Page 8: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Why is it difficult to increase ZT in bulk materials?

ZT = σα2T/(κel + κlatt)

Conflicting effects on ZT : α ∼ 1/σ ∼ m∗, κel ∼ σ, κlatt ∼ σ.

Carrier concentration (cm−3)

0

0.5

1

zT

zT

2

1018 1019 1020 1021

© Nature Publishing Group

C. J. Snyder and E. Toberer, Nature Mater. 7, 105 (2008)

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 8 / 52

Page 9: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Nanostructured thermoelectric materials

ZT = σα2T/κ.Nanostructuring can improve ZT of bulk materials:

M. S. Dresselhaus et al., Adv. Mater. 19, 1043 (2007)

Reduce the thermal conductivity κ.

The power factor σα2 is reduced less than κ.

incoming phonon

outcoming phonon

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 9 / 52

Page 10: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

High ZT nanostructured materials: Si nanowires with

rough surface

ZT ∼ 0.6, 60 times larger than that of bulk Si due to the κ reduction.

a b

c d

A. I. Hochbaum et al., Nature 451, 163 (2008)

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 10 / 52

Page 11: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Extremely anharmonic bulk materials

Low ω optical branches and strong phonon-phonon interaction ⇒very low κ.

D. T. Morelli et al., PRL 101, 035901 (2008)

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 11 / 52

Page 12: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Thermal management in nano- and opto-electronics

Solid state cooling via thermoelectric materials.

E. Pop and K. E. Goodson, J. Electron. Packag. 128, 102 (2006)

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 12 / 52

Page 13: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Lattice vibrations in solids

Atom = ion cores + valence electrons.

Ion cores move in a potential field generated by the average motion ofvalence electrons.

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 13 / 52

Page 14: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Lattice vibrations in solids

Displacements from equilibrium positions can be described as a linearcombination of normal modes.

Energy of a normal mode is quantized: (n + 1/2)~ω, n = 0, 1, ...

Phonons are quanta of energy of normal modes.

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 14 / 52

Page 15: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Lattice Hamiltonian of crystalline solids

Total potential energy of the crystal in the harmonic approximation:

V = V0 +∑

lb,α

∂V

∂uα(lb)

0

uα(lb)+

+1

2!

lb,l′b′,α,α′

∂2V

∂uα(lb)∂uα′(l′b′)

0

uα(lb)uα′(l′b′) + ...

uα(lb) - deviation of atom lb from its equilibrium position in the αdirection.

Equations of motion:

mb

d2uα(lb)

dt2= −

b′,α′

∂2V

∂uα(lb)∂uα′(l′b′)uα′(l′b′).

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 15 / 52

Page 16: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Lattice Hamiltonian of crystalline solids

Reciprocal space:

uα(lb) =1

mb

q

Uα(q;b) exp[i(q · x(l) − ωt)].

Equations of motion become

ω2Uα(q;b) =∑

b′α′

Dαα′(bb′|q)Uα′(q;b′).

Dynamical matrix is defined as

Dαα′(bb′|q) = 1√mbmb′

l′

∂2V

∂uα(0b)∂uα′(l′b′)exp(iql′).

G. P. Srivastava, “The physics of phonons”

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 16 / 52

Page 17: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

How do we obtain the interatomic potential?

fs

ps

ns

A nm mmµm

Empirical

DFT

Length

Tim

e

Density functional theory (DFT):

No fitting parameters.

Computationally expensive.

Short length and time scales.

Empirical potentials:

Fitted to experimental data.

Computationally lessexpensive.

Longer length and time scales.

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 17 / 52

Page 18: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Phonon band structure: Example of Si

0

5

10

15

Fre

quen

cy (

TH

z)ExperimentDFTTersoff

Γ ΓX K L

DFT reproduces well experimental phonon frequencies.

Empirical potentials do not describe phonon frequencies as accuratelyas DFT.

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 18 / 52

Page 19: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Lattice dynamics: beyond the harmonic approximation

Harmonic approximation ⇒ infinite phonon lifetimes and κ.

Finite phonon lifetimes (but still infinite κ) due to boundaries,defects, impurities, alloying...

C. J. Vineis et al., Adv. Mater. 22, 3970 (2010)

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 19 / 52

Page 20: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Lattice dynamics: beyond the harmonic approximation

Finite phonon lifetimes and finite κ due to anharmonicity:

V = V0 +∑

lb,α

∂V

∂uα(lb)

0

uα(lb)+

1

2!

b,b′,α,α′

∂2V

∂uα(b)∂uα′(b′)

0

uα(b)uα′(b′) +1

3!×

b,b′,b′′,α,α′,α′′

∂3V

∂uα(b)∂uα′(b′)∂uα′′(b′′)

0

uα(b)uα′(b′)uα′′(b′′) + ...

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 20 / 52

Page 21: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Three-phonon scattering

q’s’

q’’ s’’

q s

q’s’

q s

q’’ s’’

(a) Annihilation of one phonon and creation of two phonons:ω(q, s) = ω(q′, s ′) + ω(q′′, s ′′), q+ G = q′ + q′′.

(b) Annihilation of two phonons and creation of a third phonon:ω(q, s) + ω(q′, s ′) = ω(q′′, s ′′), q+ q′ = q′′ +G.

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 21 / 52

Page 22: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Thermal conductivity in the kinetic theory of gases

��������������������������������������������������

��������������������������������������������������

������������������������������������������������������������

������������������������������������������������������������

T+ ∆T T

zl−l 0

JJR

L

Heat current: Jz = nvzǫ,

n - concentration, vz - speed of gas atoms, ǫ - energy.

Jz = JL − JR ∼ nvzkB[(

T − l dTdz

)

−(

T + l dTdz

)]

,

l - mean free path.

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 22 / 52

Page 23: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Thermal conductivity in the kinetic theory of gases

���������������������������������������������

���������������������������������������������

������������������������������������������������������

������������������������������������������������������

T+ ∆T T

zl−l 0

JJR

L

Thermal conductivity: κz = cvvz l = cvv2z τ ,

cv - heat capacity, τ = l/vz - average collision time.

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 23 / 52

Page 24: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

More advanced theory: Boltzmann transport equation

Time evolution of the distribution function n(r,v,t):

n(r+ dr, v + dv, t + dt)− n(r, v, t) = dt∂n

∂t

scattering

r− position, v − velocity, t − time.

Boltzmann transport equation (BTE):

∂n

∂t+ v∇rn +

F

m∇vn =

dn

dt

scattering

F− driving force.

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 24 / 52

Page 25: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

More advanced theory: Boltzmann transport equation

Phonon Boltzmann transport equation in the steady state:

vq,s∇Tdnq,s

dT=

dnq,s

dt

scattering

nq,s − occupation ( = Bose-Einstein distribution in equilibrium),

vq,s = dωq,s/dq− group velocity.

q s

q s q s q s q s

T+dT

(T)

dn−

dt scattering

(T+dT)v n v n

T

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 25 / 52

Page 26: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Scattering rates due to three-phonon processes

Fermi’s golden rule:

P f

i (3ph) =2π

~| 〈f |V3|i〉 |2δ(ωf − ωi),

Scattering term in BTE:

dnq,s

dt

3ph

=∑

q′,s′

q′′,s′′

(

−Pq′′s′′

qs,q′s′ −1

2Pq′s′,q′′s′′

qs + Pqs,q′′s′′

q′′s′′ +1

2Pqsq′s′,q′′s′′

)

q

q’

s

s’

q’’s’’ω

q

q’

s

s’

q’’s’’ω

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 26 / 52

Page 27: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Scattering rates due to three-phonon processes

Fermi’s golden rule:

P f

i (3ph) =2π

~| 〈f |V3|i〉 |2δ(ωf − ωi),

Scattering term in BTE:

dnq,s

dt

3ph

=∑

q′,s′

q′′,s′′

(

−Pq′′s′′

qs,q′s′ −1

2Pq′s′,q′′s′′

qs + Pqs,q′′s′′

q′′s′′ +1

2Pqsq′s′,q′′s′′

)

ω

q

q’

s

s’

q’’s’’

ω

q

q’

s

s’

q’’s’’

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 27 / 52

Page 28: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Thermal conductivity in the BTE framework

Solve linearized BTE self-consistently to determine occupations.

Heat current:

J =1

NqV

q,s

~ωq,snq,svq,s .

Thermal conductivity from Fourier law:

καβ = −Jα · ∇Tβ

|∇T |2 = − 1

NqV |∇T |2∑

q,s

~ωq,snq,svq,s · ∇Tβ.

G. P. Srivastava, “The physics of phonons”

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 28 / 52

Page 29: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Thermal conductivity from linearized BTE: Example of Si

and Ge

Si

exp.

theory

Color onlined Lattice thermal conductivity sid as a function of

Downloaded 10 Dec 2007 to 128.253.198.179. Redistribution subject to AIP license or copyright; see http://apl.aip.org/apl/copyright.jsp

Empirical potentials:

D. A. Broido et al., PRB 72, 014308 (2005)

First principles (DFT):

D. A. Broido et al., APL 91, 231922 (2007)

Very good agreement between first principles results and experiment.

Empirical potentials give good trends, but are not very accurate.

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 29 / 52

Page 30: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

BTE in the relaxation time approximation approach

(BTE-RTA) for thermal transport

Relaxation time (τq,s) approximation:

Assume equilibrium phonon distribution in all states except (q,s):

τ−1q,s =

1

nq,s(nq,s + 1)

q′,s′

q′′,s′′

(Pq′′s′′

qs,q′s′ +1

2Pq′s′,q′′s′′

qs ),

dnq,s

dt

scattering = −nq,s − nq,s

τq,s.

Thermal conductivity:

κ =1

NqV

q,s

cq,sv2q,sτq,s , cq,s − heat capacity.

G. P. Srivastava, “The physics of phonons”

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 30 / 52

Page 31: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Self-consistent BTE or BTE-RTA? Example of carbon

diamond

normal umklapp

q

q’ q’’

q’

q

q’’

G

Q

q+q’=q’’ Q=q+q’=q’’+G

A. Ward et al., PRB 80, 125203 (2009)

If umklapp scattering is weak, self-consistent BTE solution differsfrom BTE-RTA.

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 31 / 52

Page 32: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Insights gained from BTE simulations of κ

Mechanisms for low κ in bulk materials can be uncovered.

Provide guidance in the search for more efficient materials.

Z. Tian et al., PRB 85, 184303 (2012)

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 32 / 52

Page 33: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Insights gained from BTE simulations of κ

κ vs mean free path in bulk materials.

Estimate nanostructure dimensions to achieve a desired κ reduction.

Si

A. J. Minich et al., PRL 107, 095901 (2009)

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 33 / 52

Page 34: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Challenges for BTE approach applied to nanostructured

and disordered materials

How to solve BTE for large scale systems?

SL NW SL ND SL

SiGe

How to calculate the first principles input to BTE for large scalesystems?

How to extend BTE to treat disordered materials without resorting tothe virtual crystal + effective lifetimes approximation?

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 34 / 52

Page 35: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Non-equilibrium MD (NEMD) approach to thermal

transport

Impose ∇T in MD simulation by exchanging the energy of the atomsin the central and end slabs.

Critical feature: existence of boundaries at the edges of the heatsource and sink.

F. Muller-Plathe, JCP 106, 6082 (1997)

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 35 / 52

Page 36: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Extracting κ from the temperature profile

Instantaneous local temperature in slab k : Tk ∼ ∑

i∈kmiv

2i.

-300 -200 -100 0 100 200 300

z (Å)

800

1000

1200

1400

1600

1800

2000

T (

K)

-200 -160 -120 -80950

1000

1050

1100

0.8076 K/Å

80 120 160 200950

1000

1050

1100

0.8115 K/Å

Si

Heat flux Jz determined from the transferred kinetic energy.

κ = 〈Jz(t)〉 /(∂T/∂z).

Y. He, I. Savic, D. Donadio, and G. Galli, PCCP 14, 16209 (2012)

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 36 / 52

Page 37: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Size effects in NEMD simulations of κ

0 0.005 0.01 0.015 0.02 0.025 0.03

1/Lz (nm)-1

0

0.02

0.04

0.06

0.08

1/κ

(W/m

K)-1

0 200 100 66 50 40 33Lz (nm)

T=1000K

T=300K

Si

Boundary scattering: l−1L

= l−1∞

+ 4L−1z ⇒ κ−1

L= κ−1

∞+ CL−1.

Difficult to ensure both the cross-section and length convergence:Is NEMD good enough for disordered materials?

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 37 / 52

Page 38: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Insights gained from NEMD simulations of κ

Complex materials can be straightforwardly simulated.

Si nanowires

I. Ponomareva at al., Nano Lett. 7, 1155 (2007)

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 38 / 52

Page 39: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Insights gained from NEMD simulations of κ

Predict κ trends for complex materials.

Si nanowires

I. Ponomareva at al., Nano Lett. 7, 1155 (2007)

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 39 / 52

Page 40: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

NEMD approach to calculate κ from first principles

Straightforward coupling of ab-initio and NEMD heat transportmethods.

Good agreement with experiments for MgO, predictions fortemperatures and pressures in the Earth mantle.

S. Stackhouse at al., PRL 104, 2085012 (2010)

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 40 / 52

Page 41: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Size effects in NEMD approach from first principles

0 0.005 0.01 0.015 0.02 0.025 0.03

1/Lz (nm)-1

0

0.02

0.04

0.06

0.08

1/κ

(W/m

K)-1

0 200 100 66 50 40 33Lz (nm)

T=1000K

T=300K

First principles:

S. Stackhouse at al., PRL 104, 2085012(2010)

Empirical potentials:

Y. He et al., PCCP 14, 16209 (2012)

Much smaller sizes accessible than with empirical potentials.

Much shorter simulation time than with empirical potentials:∼ 10 ps versus ∼ 1 ns.

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 41 / 52

Page 42: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Equilibrium MD (EMD) approach to thermal transport

Green-Kubo formalism (fluctuation-dissipation theorem):

κ =1

VkBT2

0〈J(t)J(0)〉 dt,

Heat current obtained from EMD:

J =d

dt

i

ri (t)ǫi(t); i - atomic site, ri - coordinate, ǫi - energy.

ǫi can be defined for empirical potentials, but not in a unique way.

Open problem: how to define the local energy from first principles?

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 42 / 52

Page 43: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Time scale for EMD simulations of κ

κ =1

VkBT2

ttr

0〈J(t)J(0)〉 dt

0 200 400 600ttr (ps)

0

150

300

κ (W

/mK

)

0.001 0.01 0.1 1 10 100 1000tcorr

(ps)

0

0.2

0.4

0.6

0.8

CJ(

t)

t

<J(

t)J(

0)> Si

〈J(t)J(0)〉 indirect measure of longest phonon lifetimes (∼ 100 ps).

Total simulation time ∼ 10 ns.

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 43 / 52

Page 44: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Size effects in EMD simulations of κ

102

104

106

Number of atoms

100

150

200

250

300

κ (W

/m K

)

Si

0 10 20 30 40L

cell (nm)

0

2

4

6

8

κ(W

/mK

)

47 374 1263 2995N (x1000)

Si0.5

Ge0.5

Convergence for large samples (∼ 105 − 106 atoms).

Samples with 105 − 106 atoms can be simulated with EMD.

Disordered samples can be simulated with EMD.

Y. He, I. Savic, D. Donadio, and G. Galli, PCCP 14, 16209 (2012)

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 44 / 52

Page 45: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Insights gained from EMD simulations of κ

Materials with very complex morphologies can be simulated.

Closest to mimicking realistic materials so far!

Si nanowires with surface roughness

Y. He and G. Galli, PRL 108, 215901 (2012)

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 45 / 52

Page 46: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Insights gained from EMD simulations of κ

Powerful probe to determine which types of disorder cause strongscattering and κ reduction.

Si nanowires with surface roughness

Y. He and G. Galli, PRL 108, 215901 (2012)

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 46 / 52

Page 47: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Calculating κ with lifetimes obtained from EMD

EMD lifetimes from the exponential decay of the normal modepotential energy autocorrelation function.

Use EMD lifetimes for κ: κτEMD= 1

NqV

q,s cq,sv2q,sτ

EMDq,s .

Typically κEMD ≈ κτEMDfor small system sizes (∼ 1000 atoms).

A. J. H. McGaughey and M. Kaviani, PRB 69, 094303 (2004)

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 47 / 52

Page 48: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

κ with EMD lifetimes from first principles

Can be calculated for small system sizes (∼ 100 atoms) and shortsimulation times (∼ 40 ps).

Good agreement with experiments for MgO.

N. de Koker, PRL 103, 125902 (2009)

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 48 / 52

Page 49: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Can we use EMD lifetimes to study heat transport in

disordered materials? Example of rough Si nanowires

κEMD 6= 1NqV

q,s cq,sv2q,sτ

EMDq,s .

Non-propagating and non-localized vibrations give additionalcontribution to κ.

extra+extra

τ EMD

τ EMD

D. Donadio and G. Galli, PRL 102, 195901 (2009)

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 49 / 52

Page 50: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Summary of atomistic approaches to heat transport

Method EMD NEMD BTE

Disorder Yes Yes ApproximateAnharmonicity Yes Yes Approximate

Transport regimes Any Any PropagatingfBE ? ? Yes

Ab-initio ? Yes Yes

fBE - the Bose-Einstein distribution.

No perfect approach, they complement each other.

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 50 / 52

Page 51: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Summary

We need to understand the thermal conductivity to design newthermoelectric materials.

Atomistic methods to calculate the thermal conductivity could behelpful.

Lots of recent methodological developments in the field, especially inthe domain of first principles calculations.

Lots of insight gained from applications of these methods, but moreinsight is needed.

Quite a few challenges ahead for these methods, especially to modeldisordered and nanostructured materials.

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 51 / 52

Page 52: Introduction to phonon transporthelper.ipam.ucla.edu/publications/msetut/msetut_11469.pdf · 2013-09-12 · Introduction to phonon transport Ivana Savi´c Tyndall National Institute,

Acknowledgments

Prof. Giulia Galli, Department of Chemistry and Department ofPhysics, UC Davis, Davis, California, USA

Dr. Yuping He, Department of Chemistry, UC Davis, Davis,California, USA

Dr. Davide Donadio, Max Planck Institute for Polymer Research,Mainz, Germany

Dr. Eamonn Murray, Tyndall National Institute, Cork, Ireland

Prof. Francois Gygi, Department of Computer Science, UC Davis,Davis, California, USA

Ivana Savic, [email protected] Introduction to phonon transport September 12, 2013 52 / 52