Inorganic Chemistry 2 Chapter 4 - Yazd

Post on 03-Feb-2022

7 views 0 download

Transcript of Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

1

Reaction Mechanisms of d-Metal

Complexes

مکانيسم های واکنش های کمپلکس های

dفلزات

Inorganic Chemistry 2

Chapter 4

1

Alireza Gorjiagorji@yazd.ac.ir

Department of Chemistry, Yazd Universityagorji@yazd.ac.ir

2agorji@yazd.ac.ir

Content

1

2

3

4

2/9/2015

2

3agorji@yazd.ac.ir

Time Scale

Thermodynamics Kinetics

G = H -T S G‡ = H‡ -T S‡

G° = -RTlnK G ‡ = -RTlnk

G

G

Reaction Coordinate

G‡

G

Reaction Coordinate

Large K → yield=100% Large k → fast reaction

4agorji@yazd.ac.ir

Kinetics vs. Thermodynamics

2/9/2015

3

Thermodynamics Kinetics

A

G<0

G

B

A is unstable

ناپايدار

G>0

G

Reaction Coordinate

B

A

A is stable

پايدار

G‡ is small

GA is labile

واکنش پذير

A

B

A is inert

بی اثر

G‡ is large

G

Reaction Coordinate

A

B

5agorji@yazd.ac.ir

A is unstable ناپايدار

A

G

Reaction Coordinate

labile

inert

6agorji@yazd.ac.ir

2/9/2015

4

Thermodynamics Kinetics

G / H / S / K G‡ / H‡ / S‡ / k

Stable پايدار

Unstable ناپايدار

Inert بی اثر

Labile واکنش پذير

Spontaneousخودبخودی

nonspontaneous غيرخودبخودیFast سريع

Slow آهسته

Acid

Base

Electrophile

Nucleophile

7agorji@yazd.ac.ir

Reaction Mechanisms

Intimate

Mechanism

Stoichiometry

Mechanism

8agorji@yazd.ac.ir

2/9/2015

5

agorji@yazd.ac.ir 9

G

Reaction Coordinate

Stoichiometry Mechanism

Intimate

Mechanism

rds

1- Substitution Reaction

MLnX + Y MLnY + X

10agorji@yazd.ac.ir

2/9/2015

6

Characteristic lifetimes for exchange of water molecules in aqua complexes

11agorji@yazd.ac.ir

–Labile:

• s-block elements: Large e.g. Na+, K+, Ba2+ etc…

• d-block elements: 1st row, distorted geometries, d10

• f-block

– Inert:

• s-block elements (only a few are relatively ‘inert’); Small e.g. Be2+, Mg2+

• d-block elements: d3 and d6 in Oh high-field, e.g. CrIII, CoIII. Second and third row.

Lability & Inertness

Labile complexes Fast substitution reactions (< few min)

Inert complexes Slow substitution reactions (>h)

a kinetic concept

12agorji@yazd.ac.ir

2/9/2015

7

Inert !

13agorji@yazd.ac.ir

14agorji@yazd.ac.ir

2/9/2015

8

L

M

L L

L

L

X

L

M

L L

L

L

X

L

M

L L

L

L

G

Ea

LFAE = LFSE(sq pyr) - LFSE(oct)

15agorji@yazd.ac.ir

1- Substitution Reaction

MLnX + Y MLnY + X

16agorji@yazd.ac.ir

2/9/2015

9

17agorji@yazd.ac.ir

Stoichiometry Mechanisms

18agorji@yazd.ac.ir

Stoichiometry Mechanisms in Substitution Reaction

Dissociative InterchangeAssociative

D IA

ML5X + YML5Y + X X=Leaving group

Y=Entering group

2/9/2015

10

agorji@yazd.ac.ir 19

D

Dissociative Mechanism in Substitution Reaction

ML5X ML5 + X slow

ML5 + Y ML5Y fast

rate = k1 [ML5X]

k1

k2

agorji@yazd.ac.ir 20

A

Associative Mechanism in Substitution Reaction

ML5X + Y ML5XY slow

ML5XY ML5Y + X fast

k1

k2

rate = k1 [ML5X][Y]

2/9/2015

11

Fast equilibrium

K1 = k1/k-1

k2 << k-1

For [Y] >> [ML5X]

21agorji@yazd.ac.ir

Interchange Mechanism in Substitution Reaction

I

agorji@yazd.ac.ir 22

Intimate Mechanisms in Substitution Reaction

associative activation (a)

dissociative activation (d)

2/9/2015

12

agorji@yazd.ac.ir 23

Intimate Mechanisms in Substitution Reaction

d

a

Dd

Aa

Da

a

d

Ad

24agorji@yazd.ac.ir

da

IdIa

2/9/2015

13

agorji@yazd.ac.ir 25

a d

A Aa Ad

D Da Dd

I Ia Id

Mechanisms in Substitution Reactions

agorji@yazd.ac.ir 26

Determination of Stoichiometry Mechanisms

1. Detection of intermediate by fast

spectroscopy and ultrafast spectroscopy.

2. Synthesis and isolation of intermediate.

3. Stereochemistry of reaction.

A & D

2/9/2015

14

agorji@yazd.ac.ir 27

Determination of Intimate Mechanisms

Experimental evidence a d

Sensitivity to entering group

Sensitivity to leaving group

trans effect

cis effect

Increasing of steric hindrance on cis ligands - +

Increasing of positive charge on complex + -

S‡ > 0

V‡ > 0

agorji@yazd.ac.ir 28

2/9/2015

15

Substitution reaction in square planar complexes

ML3X + Y ML3Y + X

29agorji@yazd.ac.ir

M = Pt

agorji@yazd.ac.ir 30

Substitution of square planar Pt2+ complexes

2/9/2015

16

31agorji@yazd.ac.ir

rate = k1 [S][PtA3X] + k2[Y][PtA3X]

rate = k1[PtA3X] + k2[Y][PtA3X]

rate = (k1 + k2[Y])[PtA3X]

If [Y] >> [PtA3X] rate = kobs[PtA3X]

kobs = (k1 + k2[Y])

solvent pathway

nucleophile

pathway

agorji@yazd.ac.ir 32

rate = k1 [S][PtA3X] + k2[Y][PtA3X]

rate = k1[PtA3X] + k2[Y][PtA3X]

rate = (k1 + k2[Y])[PtA3X]

If [Y] >> [PtA3X] rate = kobs[PtA3X]

kobs = (k1 + k2[Y])

slope = k2

k1

kobs

[Y]

k1 = solvent pathway

k2 = nucleophile pathway

rate law for square planar Pt2+ complexes

k2 nucleophile a

2/9/2015

17

agorji@yazd.ac.ir 33

[PtA2Cl2] + Y [PtA2ClY] + Cl

Y Donor atom

npt

Cl- Cl 3.04

C6H5SH S 4.15

CN- C 7.00

(C6H5)3P P 8.79

CH3OH O 0

I- I 5.42

NH3 N 3.06

34agorji@yazd.ac.ir

The trans effect

2/9/2015

18

35agorji@yazd.ac.ir

trans labilization

agorji@yazd.ac.ir 36

G

Reaction Coordinate

-acceptor-donor

Mechanism of the trans effect

2/9/2015

19

agorji@yazd.ac.ir 37

Selective synthesis using the trans effect

38agorji@yazd.ac.ir

Cl

PtCl Cl

Cl

NH3 NH3

PtCl Cl

Cl

NH3

NH3

PtH3N NH3

NH3

NH3

PtH3N NH3

Cl

Cl- Cl

-

Cl-

Cl-

NH3

Cl

PtCl Cl

Cl

PPh3

PtCl Cl

Cl

PPh3 Py

Cl-

Cl-

Cl

PtCl Cl

Cl

PPh3Py

PtCl Cl

Cl

Py

Cl-

Cl-

NH3

PPh3

PtCl

Py

Cl

NH3Pt

Cl

H3N

Cl

NH3

PtCl NH3

Cl

PPh3PtCl

Py

Cl

2- -

2+ +

2- -

2- -

2/9/2015

20

39agorji@yazd.ac.ir

Steric effect

40agorji@yazd.ac.ir

Activation parameters V‡ / S‡

2/9/2015

21

agorji@yazd.ac.ir 41

Stereochemistry

42agorji@yazd.ac.ir

Aa or Ia

2/9/2015

22

43agorji@yazd.ac.ir

44agorji@yazd.ac.ir

ML5X + Y ML5Y + X

Substitution reaction in octahedral complexes

2/9/2015

23

45agorji@yazd.ac.ir

46agorji@yazd.ac.ir

The Eigen-Wilkins mechanism

ML5X + Y ⇌ ML5X‖Y fast

ML5X‖Y ⇀ ML5Y +X slowk

KE

rate = k[ML5X‖Y]

[ML5X‖Y]= KE[ML5X][Y]

rate = k KE[ML5X][Y]

if [Y]>>[ML5X] [Y]0 ≅ [Y][ML5X]0= [ML5X]+ [ML5X‖Y]= [ML5X](1+ KE[Y])

rate = k KE[ML5X]0[Y]/ (1+ KE[Y])

rate = k KE[ML5X]0[Y] 0/ (1+ KE[Y] 0)

2/9/2015

24

47agorji@yazd.ac.ir

rate = k KE[ML5X]0[Y] 0/ (1+ KE[Y] 0)

k

Id

48agorji@yazd.ac.ir

The Fuoss-Eigen equation

2/9/2015

25

49agorji@yazd.ac.ir

Leaving group effects

Rate is independent of the nature of L

50agorji@yazd.ac.ir

Entering group effects

2/9/2015

26

Rate is dependent on the nature of L

51agorji@yazd.ac.ir

Entering group effects

52agorji@yazd.ac.ir

Steric effects

2/9/2015

27

53agorji@yazd.ac.ir

Cone Angle

54agorji@yazd.ac.ir

2/9/2015

28

agorji@yazd.ac.ir 55

The effect of overall charge

[CoL5Cl]2+ + H2O [CoL5OH2]3+ + Cl- k1

[CoLL4Cl]+ + H2O [CoLL4OH2]2+ + Cl- k2

L = amine k1/ k2=1/1000

56agorji@yazd.ac.ir

Activation Energetics

2/9/2015

29

57agorji@yazd.ac.ir

Octahedral Substitution and ΔV‡

58agorji@yazd.ac.ir

Octahedral Substitution General Rules

2/9/2015

30

59agorji@yazd.ac.ir

Stereochemistry in Octahedral Substitution

60agorji@yazd.ac.ir

The cis effect

2/9/2015

31

61agorji@yazd.ac.ir

Base catalyzed hydrolysis of amines

62agorji@yazd.ac.ir

Dissociative Conjugate Base (DCB) Mechanism

DCB

2/9/2015

32

63agorji@yazd.ac.ir

Isomerization Reactions

64agorji@yazd.ac.ir

Isomerization of chelates

1- Bond breaking

2- Twist

•Bailar Twist (C3)

•Ray-Dutt Twist (C3)

2/9/2015

33

65agorji@yazd.ac.ir

Isomerization via bond breaking

66agorji@yazd.ac.ir

Isomerization via Twist

Bailar Twist (C3)

Ray-Dutt Twist (C3)

2/9/2015

34

agorji@yazd.ac.ir 67

2- Redox reactions

Ox + Red ⇌ Red + Ox

Electron Transfer

Reaction

1- in electrochemical cell

2- in chemical reaction

agorji@yazd.ac.ir 68

Classification of Redox Mechanisms

• Non complementary electron transfer

2/9/2015

35

agorji@yazd.ac.ir 69

[Co(NH3)6]3+ + [Cr(OH2)6] 2+ [Co(OH2)6]2+ + [Cr(OH2)6] 3+ + 6NH3

Outer Sphere Electron Transfer OSET

L LI I

agorji@yazd.ac.ir 70

OSET: t2gt2g > t2geg > egeg

[FeIII(Phen)3]3+ + [FeII(CN)6]

4- [FeIII(Phen)3]2+ + [FeIII(CN)6]

3-

[FeIII(Phen)3]3+ + [CrII(OH2)6]

2+ [FeIII(Phen)3]2+ + [CrII(OH2)6]

3+

2/9/2015

36

agorji@yazd.ac.ir 71

• Characteristics: Electrons are transferred between the species (reductant

oxidant) without changes in their co-ordination spheres.

• Requirements: Redox reaction must be much faster than substitution

reactions.

– Slow substitution inert metal centers:

• d-block: d6 high-field e.g. high field Co3+, Fe2+; second and third

row d-elements (large CFSE).

– Ligands:

• Ideally, unable to bridge

• -acceptors

Outer Sphere Electron Transfer OSET

[FeIII(Phen)3]3+ + [FeII(CN)6]

4- [FeIII(Phen)3]2+ + [FeIII(CN)6]

3-

[Fe(CN)6]4- + [IrCl6]

2- [Fe(CN)6]3- + [IrCl6]

3-

[Co(NH3)5Cl]2+ + [Ru(NH3)6]2+ [Co(NH3)5Cl]+ + [Ru(NH3)6]

3+

Reactions ca. 100 times faster

than ligand exchange

(coordination spheres remain the same)

rate = k [A][B]

Ea

A B+

A B

A' B'+

G

"solvent cage"

Tunneling

mechanism

72agorji@yazd.ac.ir

Outer Sphere Electron Transfer OSET

The metal ligand distances are different before and after electron transfer.

2/9/2015

37

agorji@yazd.ac.ir 73

OSET Mechanism

Rudy Marcus, 1992

Nobel Prize in Chemistry

74agorji@yazd.ac.ir

2/9/2015

38

agorji@yazd.ac.ir 75

Reaction profile for OSET

[Fe(OH2)6]2++[Fe*(OH2)6]

3+[Fe(OH2)6]3+ +[Fe*(OH2)6]

2+

K = 3.0 M-1s-1 Ea = 32 kJ/mol

Exchange Reaction

G‡IS

G‡OS

G‡ET

76agorji@yazd.ac.ir

Marcus Theory

2/9/2015

39

77agorji@yazd.ac.ir

Marcus Theory

78agorji@yazd.ac.ir

Reaction with nonzero G

2/9/2015

40

79agorji@yazd.ac.ir

The Marcus equation

agorji@yazd.ac.ir 80

[Co(bipy)3]2++[Co(terpy)3]

3+ [Co(bipy)3]3++[Co(terpy)3]

2+ K=3.57

: (T=273 K)ثابت سرعت واکنش زير را حساب کنيد

[Co(bipy)3]2++[*Co(bipy)3]

3+ [Co(bipy)3]3++[*Co(bipy)3]

2+ k11=9.0 M-1s-1

[Co(terpy)3]2++[*Co(terpy)3]

3+ [Co(terpy)3]3++[*Co(terpy)3]

2+ k22=48.0 M-1s-1

k12=[(9.0 M-1s-1)(48.0 M-1s-1)(3.57)(1)]1/2

k12=39.0 M-1s-1

1- change of spin

2- change of symmetry

2/9/2015

41

agorji@yazd.ac.ir 81

را در شرايط زير حساب کنيدOSETثابت سرعت يک واکنش تک الکترونی

T=273 K, k11=9.0 M-1s-1, k22=48.0 M-1s-1, E= 1.0 v

ΔG=-n f E

ΔG=- (1)(96500)(1.0)= -96500

ΔG=-RT lnK

lnK = -96500/(8.314 273)

K = 2.91 1018

k12=[(9.0 M-1s-1)(48.0 M-1s-1)(2.91 1018 )(1)]1/2

k12=9.0 3.6 10 M-1s-1

82agorji@yazd.ac.ir

Evidence for the Marcus equation

2/9/2015

42

agorji@yazd.ac.ir 83

Inner Sphere Electron Transfer ISET

-

84agorji@yazd.ac.ir

2/9/2015

43

85agorji@yazd.ac.ir

Inner Sphere Electron Transfer ISET

ISET: t2gt2g < t2geg < egeg

• Inner-Sphere Mechanism Requires:

1. Labile metal complexes

2. Ligand capable of bridging

3. Ligand capable of receiving/delivering e-

86agorji@yazd.ac.ir

Bridging ligands in ISET

2/9/2015

44

Reactions much faster

than outer sphere electron transfer

(bridging ligand often exchanged)

Ox-X + Red Ox-X-Redk1

k2

k3

k4

Ox(H2O)- + Red-X+

Ea

Ox-X Red+

Ox-X-Red

G

Ox(H2O)- + Red-X+

87agorji@yazd.ac.ir

ISET mechanism

Rate = k[Ox-X][Red] k= (k1k3/k2 + k3)

88agorji@yazd.ac.ir

ISET mechanism

2/9/2015

45

89agorji@yazd.ac.ir

ISET and Linkage Isomerism

90agorji@yazd.ac.ir

Summary

OSET: t2gt2g > t2geg > egeg

ISET: egeg > eg t2g > t2gt2g

2/9/2015

46

91agorji@yazd.ac.ir

3- Oxidative Addition and Reductive Elimination

92agorji@yazd.ac.ir

Oxidative Addition

2/9/2015

47

93agorji@yazd.ac.ir

Oxidative Addition and Reductive Elimination

agorji@yazd.ac.ir 94

4-Photochemistry

Ground State A A* Excited Stateh

A +heat +luminescence Products

Photophysics Photochemistry

Quantum yield =

2/9/2015

48

agorji@yazd.ac.ir 95

Photochemistry

Photochemistry

Supramolecular photochemistry

Interamolecular photochemistry

Intermolecular photochemistry

A A* h

h

Ligand Field Transition

Charge Transfer Transition

Intervalence Transition

Intermetallic Transition

…..

agorji@yazd.ac.ir 96

Photochemistry

1- Ligand Field Transition

[Co(NH3)5Br]2++H2O [Co(NH3)5OH2]3++Br- Photosubstitution

2- Charge Transfer Transition

[Fe(C2O4)3]3- [Fe(OH2)6]

2++CO2 Photoredox

3- Intervalence Transition Photoredox

[R—MII—X—MIII—R] [R—MIII—X—MII—R] R+ + [MII—X—MII—R]

4- Interligand Transition

[Cr(acac)2(NH3) (N3)] N2 + …. Photoredox

5- Intermetallic transition

[ N2 + …. Photodissociationh

h

h

h

h

2/9/2015

49

97agorji@yazd.ac.ir

Content

1

2

3

4