Inorganic Chemistry 2 Chapter 4 - Yazd

49
1 Reaction Mechanisms of d-Metal Complexes مپلکس هایکنش های کی واکانيسم ها م فلزاتd Inorganic Chemistry 2 Chapter 4 1 Alireza Gorji [email protected] Department of Chemistry, Yazd University [email protected] 2 [email protected] Content 1 2 3 4

Transcript of Inorganic Chemistry 2 Chapter 4 - Yazd

Page 1: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

1

Reaction Mechanisms of d-Metal

Complexes

مکانيسم های واکنش های کمپلکس های

dفلزات

Inorganic Chemistry 2

Chapter 4

1

Alireza [email protected]

Department of Chemistry, Yazd [email protected]

[email protected]

Content

1

2

3

4

Page 2: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

2

[email protected]

Time Scale

Thermodynamics Kinetics

G = H -T S G‡ = H‡ -T S‡

G° = -RTlnK G ‡ = -RTlnk

G

G

Reaction Coordinate

G‡

G

Reaction Coordinate

Large K → yield=100% Large k → fast reaction

[email protected]

Kinetics vs. Thermodynamics

Page 3: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

3

Thermodynamics Kinetics

A

G<0

G

B

A is unstable

ناپايدار

G>0

G

Reaction Coordinate

B

A

A is stable

پايدار

G‡ is small

GA is labile

واکنش پذير

A

B

A is inert

بی اثر

G‡ is large

G

Reaction Coordinate

A

B

[email protected]

A is unstable ناپايدار

A

G

Reaction Coordinate

labile

inert

[email protected]

Page 4: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

4

Thermodynamics Kinetics

G / H / S / K G‡ / H‡ / S‡ / k

Stable پايدار

Unstable ناپايدار

Inert بی اثر

Labile واکنش پذير

Spontaneousخودبخودی

nonspontaneous غيرخودبخودیFast سريع

Slow آهسته

Acid

Base

Electrophile

Nucleophile

[email protected]

Reaction Mechanisms

Intimate

Mechanism

Stoichiometry

Mechanism

[email protected]

Page 5: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

5

[email protected] 9

G

Reaction Coordinate

Stoichiometry Mechanism

Intimate

Mechanism

rds

1- Substitution Reaction

MLnX + Y MLnY + X

[email protected]

Page 6: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

6

Characteristic lifetimes for exchange of water molecules in aqua complexes

[email protected]

–Labile:

• s-block elements: Large e.g. Na+, K+, Ba2+ etc…

• d-block elements: 1st row, distorted geometries, d10

• f-block

– Inert:

• s-block elements (only a few are relatively ‘inert’); Small e.g. Be2+, Mg2+

• d-block elements: d3 and d6 in Oh high-field, e.g. CrIII, CoIII. Second and third row.

Lability & Inertness

Labile complexes Fast substitution reactions (< few min)

Inert complexes Slow substitution reactions (>h)

a kinetic concept

[email protected]

Page 7: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

7

Inert !

[email protected]

[email protected]

Page 8: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

8

L

M

L L

L

L

X

L

M

L L

L

L

X

L

M

L L

L

L

G

Ea

LFAE = LFSE(sq pyr) - LFSE(oct)

[email protected]

1- Substitution Reaction

MLnX + Y MLnY + X

[email protected]

Page 9: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

9

[email protected]

Stoichiometry Mechanisms

[email protected]

Stoichiometry Mechanisms in Substitution Reaction

Dissociative InterchangeAssociative

D IA

ML5X + YML5Y + X X=Leaving group

Y=Entering group

Page 10: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

10

[email protected] 19

D

Dissociative Mechanism in Substitution Reaction

ML5X ML5 + X slow

ML5 + Y ML5Y fast

rate = k1 [ML5X]

k1

k2

[email protected] 20

A

Associative Mechanism in Substitution Reaction

ML5X + Y ML5XY slow

ML5XY ML5Y + X fast

k1

k2

rate = k1 [ML5X][Y]

Page 11: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

11

Fast equilibrium

K1 = k1/k-1

k2 << k-1

For [Y] >> [ML5X]

[email protected]

Interchange Mechanism in Substitution Reaction

I

[email protected] 22

Intimate Mechanisms in Substitution Reaction

associative activation (a)

dissociative activation (d)

Page 12: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

12

[email protected] 23

Intimate Mechanisms in Substitution Reaction

d

a

Dd

Aa

Da

a

d

Ad

[email protected]

da

IdIa

Page 13: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

13

[email protected] 25

a d

A Aa Ad

D Da Dd

I Ia Id

Mechanisms in Substitution Reactions

[email protected] 26

Determination of Stoichiometry Mechanisms

1. Detection of intermediate by fast

spectroscopy and ultrafast spectroscopy.

2. Synthesis and isolation of intermediate.

3. Stereochemistry of reaction.

A & D

Page 14: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

14

[email protected] 27

Determination of Intimate Mechanisms

Experimental evidence a d

Sensitivity to entering group

Sensitivity to leaving group

trans effect

cis effect

Increasing of steric hindrance on cis ligands - +

Increasing of positive charge on complex + -

S‡ > 0

V‡ > 0

[email protected] 28

Page 15: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

15

Substitution reaction in square planar complexes

ML3X + Y ML3Y + X

[email protected]

M = Pt

[email protected] 30

Substitution of square planar Pt2+ complexes

Page 16: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

16

[email protected]

rate = k1 [S][PtA3X] + k2[Y][PtA3X]

rate = k1[PtA3X] + k2[Y][PtA3X]

rate = (k1 + k2[Y])[PtA3X]

If [Y] >> [PtA3X] rate = kobs[PtA3X]

kobs = (k1 + k2[Y])

solvent pathway

nucleophile

pathway

[email protected] 32

rate = k1 [S][PtA3X] + k2[Y][PtA3X]

rate = k1[PtA3X] + k2[Y][PtA3X]

rate = (k1 + k2[Y])[PtA3X]

If [Y] >> [PtA3X] rate = kobs[PtA3X]

kobs = (k1 + k2[Y])

slope = k2

k1

kobs

[Y]

k1 = solvent pathway

k2 = nucleophile pathway

rate law for square planar Pt2+ complexes

k2 nucleophile a

Page 17: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

17

[email protected] 33

[PtA2Cl2] + Y [PtA2ClY] + Cl

Y Donor atom

npt

Cl- Cl 3.04

C6H5SH S 4.15

CN- C 7.00

(C6H5)3P P 8.79

CH3OH O 0

I- I 5.42

NH3 N 3.06

[email protected]

The trans effect

Page 18: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

18

[email protected]

trans labilization

[email protected] 36

G

Reaction Coordinate

-acceptor-donor

Mechanism of the trans effect

Page 19: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

19

[email protected] 37

Selective synthesis using the trans effect

[email protected]

Cl

PtCl Cl

Cl

NH3 NH3

PtCl Cl

Cl

NH3

NH3

PtH3N NH3

NH3

NH3

PtH3N NH3

Cl

Cl- Cl

-

Cl-

Cl-

NH3

Cl

PtCl Cl

Cl

PPh3

PtCl Cl

Cl

PPh3 Py

Cl-

Cl-

Cl

PtCl Cl

Cl

PPh3Py

PtCl Cl

Cl

Py

Cl-

Cl-

NH3

PPh3

PtCl

Py

Cl

NH3Pt

Cl

H3N

Cl

NH3

PtCl NH3

Cl

PPh3PtCl

Py

Cl

2- -

2+ +

2- -

2- -

Page 20: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

20

[email protected]

Steric effect

[email protected]

Activation parameters V‡ / S‡

Page 21: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

21

[email protected] 41

Stereochemistry

[email protected]

Aa or Ia

Page 22: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

22

[email protected]

[email protected]

ML5X + Y ML5Y + X

Substitution reaction in octahedral complexes

Page 23: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

23

[email protected]

[email protected]

The Eigen-Wilkins mechanism

ML5X + Y ⇌ ML5X‖Y fast

ML5X‖Y ⇀ ML5Y +X slowk

KE

rate = k[ML5X‖Y]

[ML5X‖Y]= KE[ML5X][Y]

rate = k KE[ML5X][Y]

if [Y]>>[ML5X] [Y]0 ≅ [Y][ML5X]0= [ML5X]+ [ML5X‖Y]= [ML5X](1+ KE[Y])

rate = k KE[ML5X]0[Y]/ (1+ KE[Y])

rate = k KE[ML5X]0[Y] 0/ (1+ KE[Y] 0)

Page 24: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

24

[email protected]

rate = k KE[ML5X]0[Y] 0/ (1+ KE[Y] 0)

k

Id

[email protected]

The Fuoss-Eigen equation

Page 25: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

25

[email protected]

Leaving group effects

Rate is independent of the nature of L

[email protected]

Entering group effects

Page 26: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

26

Rate is dependent on the nature of L

[email protected]

Entering group effects

[email protected]

Steric effects

Page 27: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

27

[email protected]

Cone Angle

[email protected]

Page 28: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

28

[email protected] 55

The effect of overall charge

[CoL5Cl]2+ + H2O [CoL5OH2]3+ + Cl- k1

[CoLL4Cl]+ + H2O [CoLL4OH2]2+ + Cl- k2

L = amine k1/ k2=1/1000

[email protected]

Activation Energetics

Page 29: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

29

[email protected]

Octahedral Substitution and ΔV‡

[email protected]

Octahedral Substitution General Rules

Page 30: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

30

[email protected]

Stereochemistry in Octahedral Substitution

[email protected]

The cis effect

Page 31: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

31

[email protected]

Base catalyzed hydrolysis of amines

[email protected]

Dissociative Conjugate Base (DCB) Mechanism

DCB

Page 32: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

32

[email protected]

Isomerization Reactions

[email protected]

Isomerization of chelates

1- Bond breaking

2- Twist

•Bailar Twist (C3)

•Ray-Dutt Twist (C3)

Page 33: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

33

[email protected]

Isomerization via bond breaking

[email protected]

Isomerization via Twist

Bailar Twist (C3)

Ray-Dutt Twist (C3)

Page 34: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

34

[email protected] 67

2- Redox reactions

Ox + Red ⇌ Red + Ox

Electron Transfer

Reaction

1- in electrochemical cell

2- in chemical reaction

[email protected] 68

Classification of Redox Mechanisms

• Non complementary electron transfer

Page 35: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

35

[email protected] 69

[Co(NH3)6]3+ + [Cr(OH2)6] 2+ [Co(OH2)6]2+ + [Cr(OH2)6] 3+ + 6NH3

Outer Sphere Electron Transfer OSET

L LI I

[email protected] 70

OSET: t2gt2g > t2geg > egeg

[FeIII(Phen)3]3+ + [FeII(CN)6]

4- [FeIII(Phen)3]2+ + [FeIII(CN)6]

3-

[FeIII(Phen)3]3+ + [CrII(OH2)6]

2+ [FeIII(Phen)3]2+ + [CrII(OH2)6]

3+

Page 36: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

36

[email protected] 71

• Characteristics: Electrons are transferred between the species (reductant

oxidant) without changes in their co-ordination spheres.

• Requirements: Redox reaction must be much faster than substitution

reactions.

– Slow substitution inert metal centers:

• d-block: d6 high-field e.g. high field Co3+, Fe2+; second and third

row d-elements (large CFSE).

– Ligands:

• Ideally, unable to bridge

• -acceptors

Outer Sphere Electron Transfer OSET

[FeIII(Phen)3]3+ + [FeII(CN)6]

4- [FeIII(Phen)3]2+ + [FeIII(CN)6]

3-

[Fe(CN)6]4- + [IrCl6]

2- [Fe(CN)6]3- + [IrCl6]

3-

[Co(NH3)5Cl]2+ + [Ru(NH3)6]2+ [Co(NH3)5Cl]+ + [Ru(NH3)6]

3+

Reactions ca. 100 times faster

than ligand exchange

(coordination spheres remain the same)

rate = k [A][B]

Ea

A B+

A B

A' B'+

G

"solvent cage"

Tunneling

mechanism

[email protected]

Outer Sphere Electron Transfer OSET

The metal ligand distances are different before and after electron transfer.

Page 37: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

37

[email protected] 73

OSET Mechanism

Rudy Marcus, 1992

Nobel Prize in Chemistry

[email protected]

Page 38: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

38

[email protected] 75

Reaction profile for OSET

[Fe(OH2)6]2++[Fe*(OH2)6]

3+[Fe(OH2)6]3+ +[Fe*(OH2)6]

2+

K = 3.0 M-1s-1 Ea = 32 kJ/mol

Exchange Reaction

G‡IS

G‡OS

G‡ET

[email protected]

Marcus Theory

Page 39: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

39

[email protected]

Marcus Theory

[email protected]

Reaction with nonzero G

Page 40: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

40

[email protected]

The Marcus equation

[email protected] 80

[Co(bipy)3]2++[Co(terpy)3]

3+ [Co(bipy)3]3++[Co(terpy)3]

2+ K=3.57

: (T=273 K)ثابت سرعت واکنش زير را حساب کنيد

[Co(bipy)3]2++[*Co(bipy)3]

3+ [Co(bipy)3]3++[*Co(bipy)3]

2+ k11=9.0 M-1s-1

[Co(terpy)3]2++[*Co(terpy)3]

3+ [Co(terpy)3]3++[*Co(terpy)3]

2+ k22=48.0 M-1s-1

k12=[(9.0 M-1s-1)(48.0 M-1s-1)(3.57)(1)]1/2

k12=39.0 M-1s-1

1- change of spin

2- change of symmetry

Page 41: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

41

[email protected] 81

را در شرايط زير حساب کنيدOSETثابت سرعت يک واکنش تک الکترونی

T=273 K, k11=9.0 M-1s-1, k22=48.0 M-1s-1, E= 1.0 v

ΔG=-n f E

ΔG=- (1)(96500)(1.0)= -96500

ΔG=-RT lnK

lnK = -96500/(8.314 273)

K = 2.91 1018

k12=[(9.0 M-1s-1)(48.0 M-1s-1)(2.91 1018 )(1)]1/2

k12=9.0 3.6 10 M-1s-1

[email protected]

Evidence for the Marcus equation

Page 42: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

42

[email protected] 83

Inner Sphere Electron Transfer ISET

-

[email protected]

Page 43: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

43

[email protected]

Inner Sphere Electron Transfer ISET

ISET: t2gt2g < t2geg < egeg

• Inner-Sphere Mechanism Requires:

1. Labile metal complexes

2. Ligand capable of bridging

3. Ligand capable of receiving/delivering e-

[email protected]

Bridging ligands in ISET

Page 44: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

44

Reactions much faster

than outer sphere electron transfer

(bridging ligand often exchanged)

Ox-X + Red Ox-X-Redk1

k2

k3

k4

Ox(H2O)- + Red-X+

Ea

Ox-X Red+

Ox-X-Red

G

Ox(H2O)- + Red-X+

[email protected]

ISET mechanism

Rate = k[Ox-X][Red] k= (k1k3/k2 + k3)

[email protected]

ISET mechanism

Page 45: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

45

[email protected]

ISET and Linkage Isomerism

[email protected]

Summary

OSET: t2gt2g > t2geg > egeg

ISET: egeg > eg t2g > t2gt2g

Page 46: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

46

[email protected]

3- Oxidative Addition and Reductive Elimination

[email protected]

Oxidative Addition

Page 47: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

47

[email protected]

Oxidative Addition and Reductive Elimination

[email protected] 94

4-Photochemistry

Ground State A A* Excited Stateh

A +heat +luminescence Products

Photophysics Photochemistry

Quantum yield =

Page 48: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

48

[email protected] 95

Photochemistry

Photochemistry

Supramolecular photochemistry

Interamolecular photochemistry

Intermolecular photochemistry

A A* h

h

Ligand Field Transition

Charge Transfer Transition

Intervalence Transition

Intermetallic Transition

…..

[email protected] 96

Photochemistry

1- Ligand Field Transition

[Co(NH3)5Br]2++H2O [Co(NH3)5OH2]3++Br- Photosubstitution

2- Charge Transfer Transition

[Fe(C2O4)3]3- [Fe(OH2)6]

2++CO2 Photoredox

3- Intervalence Transition Photoredox

[R—MII—X—MIII—R] [R—MIII—X—MII—R] R+ + [MII—X—MII—R]

4- Interligand Transition

[Cr(acac)2(NH3) (N3)] N2 + …. Photoredox

5- Intermetallic transition

[ N2 + …. Photodissociationh

h

h

h

h

Page 49: Inorganic Chemistry 2 Chapter 4 - Yazd

2/9/2015

49

[email protected]

Content

1

2

3

4