Importance of the LNA Friis Formula Importance of the LNA Friis Formula Digital Electronics CMOS LNA...

Post on 29-Mar-2015

217 views 1 download

Tags:

Transcript of Importance of the LNA Friis Formula Importance of the LNA Friis Formula Digital Electronics CMOS LNA...

Importance of the LNA

Importance of the LNA

21

1 ( 1)

111 1 .....

1 .....m

totp p m

NFNFNF NF

Ap A A

Friis’ Formula

Importance of the LNA

21

1 ( 1)

111 1 .....

1 .....m

totp p m

NFNFNF NF

Ap A A

Friis’ Formula

Digital Electronics CMOS LNA

X

Low Cost

High Integration

Integration With Digital IC

Larger Parasitic Capisitance

Importance of the LNA

21

1 ( 1)

111 1 .....

1 .....m

totp p m

NFNFNF NF

Ap A A

Friis’ Formula

Digital Electronics CMOS LNA

X

Low Cost

High Integration

Integration With Digital IC

Larger Parasitic Capisitance

RF Hexagon

Why Inductive Degenerated LNA?

2-Port Noise Theory

22

2s n s n

s

i i Y eF

i

Why Inductive Degenerated LNA?

2-Port Noise Theory

22

2s n s n

s

i i Y eF

i

2

2

2

s u c s n

s

i i Y Y eF

i

Why Inductive Degenerated LNA?

2-Port Noise Theory

22

2s n s n

s

i i Y eF

i

2

2

2

s u c s n

s

i i Y Y eF

i

CMOS small signal equivalent

Why Inductive Degenerated LNA?

2-Port Noise Theory

22

2s n s n

s

i i Y eF

i

2

2

2

s u c s n

s

i i Y Y eF

i

CMOS small signal equivalent

Thermal Noise Contribution

Why Inductive Degenerated LNA?

2-Port Noise Theory

22

2s n s n

s

i i Y eF

i

2

2

2

s u c s n

s

i i Y Y eF

i

CMOS small signal equivalent

Thermal Noise Contribution

*

2 2

ng nd

ng nd

i ic

i i min 1 1

5c gsF Y j C a c

Why Inductive Degenerated LNA?

2-Port Noise Theory

22

2s n s n

s

i i Y eF

i

2

2

2

s u c s n

s

i i Y Y eF

i

CMOS small signal equivalent

Thermal Noise Contribution

*

2 2

ng nd

ng nd

i ic

i i min 1 1

5c gsF Y j C a c

X Power Matching

Inductive Degenerated LNA

Bond Wire Inductance

Inductive Source Degeneration

Input Power Matching

Inductive Degenerated LNA

Bond Wire Inductance

Inductive Source Degeneration Small Signal Equivalent

Input Power Matching

Inductive Degenerated LNA

Bond Wire Inductance

Inductive Source Degeneration Small Signal Equivalent

1( ) m s

in g sgs gs

g LZ j L j L

j C C

0Re( ( )) sZin R

0Im( ( )) 0Zin Power

Matching

Input Power Matching

Inductive Degenerated LNA

Bond Wire Inductance

Inductive Source Degeneration Small Signal Equivalent

1( ) m s

in g sgs gs

g LZ j L j L

j C C

0Re( ( )) sZin R

0Im( ( )) 0Zin Power

Matching

m gs s sg C R L

g s s sL Q R L

Input Power Matching

Inductive Degenerated LNA

Bond Wire Inductance

Inductive Source Degeneration Small Signal Equivalent

1( ) m s

in g sgs gs

g LZ j L j L

j C C

0Re( ( )) sZin R

0Im( ( )) 0Zin Power

Matching

m gs s sg C R L

g s s sL Q R L 1s o gs sQ C R

2 3gs oxC WLC

Input Power Matching

Definitions

Basic Equation of MOS Drain

||2

n oxD gs t gs t sat

C WI V V V V LE

L

Definitions

Basic Equation of MOS Drain

||2

n oxD gs t gs t sat

C WI V V V V LE

L

2n

sat satv E

od gs tV V V od

sat

V

LE

2

1D ox sat sat

pI WLC v E

p

Definitions

Basic Equation of MOS Drain

||2

n oxD gs t gs t sat

C WI V V V V LE

L

2n

sat satv E

od gs tV V V od

sat

V

LE

2

1D ox sat sat

pI WLC v E

p

21 / 2

1D

m ox n odgs

I Wg C V

V L

2

1D DD D DD ox sat sat

pP V I V WLC v E

p

Definitions

Basic Equation of MOS Drain

||2

n oxD gs t gs t sat

C WI V V V V LE

L

2n

sat satv E

od gs tV V V od

sat

V

LE

2

1D ox sat sat

pI WLC v E

p

21 / 2

1D

m ox n odgs

I Wg C V

V L

( ) 1 ( )s st

F Q Q

2 2 21

( ) (1 ) 25 5 5s s s

s

Q Q c QQ

2

1D DD D DD ox sat sat

pP V I V WLC v E

p

Definitions

Basic Equation of MOS Drain

||2

n oxD gs t gs t sat

C WI V V V V LE

L

2n

sat satv E

od gs tV V V od

sat

V

LE

2

1D ox sat sat

pI WLC v E

p

21 / 2

1D

m ox n odgs

I Wg C V

V L

( ) 1 ( )s st

F Q Q

2 2 21

( ) (1 ) 25 5 5s s s

s

Q Q c QQ

2

1D DD D DD ox sat sat

pP V I V WLC v E

p

0.395c j1a Long Channel

1a 2 Short Channel

2 / 3 4

4 / 3 150odV mV

Inductive Specified Technique

1st step: Setting the value of Ls

Inductive Specified Technique

1st step: Setting the value of Ls

2nd step: Finding the value of ωt.Ls

. /t Ls m gs s sg C R L From Impendance Matching:

Inductive Specified Technique

3rd step: Finding the optimum Qs

1st step: Setting the value of Ls

2nd step: Finding the value of ωt.Ls

. /t Ls m gs s sg C R L From Impendance Matching:

. .( ) 0

s s opt Lss s Q Q

Q Q

. . 2

51s opt LsQ

min, . .( ) 1 1.64Ls s opt Lst

F F Q

Inductive Specified Technique

3rd step: Finding the optimum Qs

1st step: Setting the value of Ls

2nd step: Finding the value of ωt.Ls

4th step: Finding the value of Lg

. /t Ls m gs s sg C R L From Impendance Matching:

. .( ) 0

s s opt Lss s Q Q

Q Q

. . 2

51s opt LsQ

min, . .( ) 1 1.64Ls s opt Lst

F F Q

. . .g Ls s opt Ls s sL Q R L From Impendance Matching:

Inductive Specified Technique

3rd step: Finding the optimum Qs

1st step: Setting the value of Ls

2nd step: Finding the value of ωt.Ls

4th step: Finding the value of Lg

5th step: Finding the optimum Cgs

. /t Ls m gs s sg C R L From Impendance Matching:

. .( ) 0

s s opt Lss s Q Q

Q Q

. . 2

51s opt LsQ

min, . .( ) 1 1.64Ls s opt Lst

F F Q

. . .g Ls s opt Ls s sL Q R L From Impendance Matching:

From Impendance Matching:

1s o gs sQ C R . . . ,1gs opt Ls o s opt Ls sC Q R

Inductive Specified Technique

6th step: Finding the optimum device’s width Wopt,Ls

2 3gs oxC WLC , . .3 / 2opt Ls o ox s s opt LsW LC R Q

Inductive Specified Technique

6th step: Finding the optimum device’s width Wopt,Ls

2 3gs oxC WLC , . .3 / 2opt Ls o ox s s opt LsW LC R Q

7th step: Finding the optimum device’s transconductance gm.opt.Ls

From Impendance Matching: . . . . /m opt Ls s gs opt Ls Sg R C L

Inductive Specified Technique

6th step: Finding the optimum device’s width Wopt,Ls

2 3gs oxC WLC , . .3 / 2opt Ls o ox s s opt LsW LC R Q

7th step: Finding the optimum device’s transconductance gm.opt.Ls

From Impendance Matching: . . . . /m opt Ls s gs opt Ls Sg R C L

8th step: Finding the optimum ρ and Vod

21 / 2

1m ox n od

Wg C V

L

.

11

1 2 / 3opt Lst satL v

. . . 150od opt Ls opt Ls satV LE mV !

Inductive Specified Technique

6th step: Finding the optimum device’s width Wopt,Ls

2 3gs oxC WLC , . .3 / 2opt Ls o ox s s opt LsW LC R Q

7th step: Finding the optimum device’s transconductance gm.opt.Ls

From Impendance Matching: . . . . /m opt Ls s gs opt Ls Sg R C L

8th step: Finding the optimum ρ and Vod

21 / 2

1m ox n od

Wg C V

L

.

11

1 2 / 3opt Lst satL v

. . . 150od opt Ls opt Ls satV LE mV !

9th step: Finding the current consumption ID.Ls

2. 1D Ls opt ox sat sat opt optI W LC v E

Current Specified Technique

1st step: Setting the current consumption ID

Current Specified Technique

1st step: Setting the current consumption ID

2nd step: Finding the optimum ρ and Vod

2

( )1

os

D

IQ

I

2

1 0.5( ) 3

(1 )sat

t

v

L

( )

( ) 1( )t

F

.

( ) ( ) 0opt I

t

. 2

5 31 1 1

5d

opt Io

Ic

I c

. . .od opt I opt I satV LE

Current Specified Technique

1st step: Setting the current consumption ID

2nd step: Finding the optimum ρ and Vod

2

( )1

os

D

IQ

I

2

1 0.5( ) 3

(1 )sat

t

v

L

( )

( ) 1( )t

F

.

( ) ( ) 0opt I

t

. 2

5 31 1 1

5d

opt Io

Ic

I c

. . .od opt I opt I satV LE

3nd step: Finding the optimum Qs

. . 2

5 31 1 1

5s opt IQ cc

From 2nd Step:

Current Specified Technique

1st step: Setting the current consumption ID

2nd step: Finding the optimum ρ and Vod

2

( )1

os

D

IQ

I

2

1 0.5( ) 3

(1 )sat

t

v

L

( )

( ) 1( )t

F

.

( ) ( ) 0opt I

t

. 2

5 31 1 1

5d

opt Io

Ic

I c

. . .od opt I opt I satV LE

3nd step: Finding the optimum Qs

4th step: Finding the optimum device width Wopt,I

. . 2

5 31 1 1

5s opt IQ cc

From 2nd Step:

From 3rd Step & Impendance Matching: .

. .

3 1

2opt Io ox s s opt I

WLC R Q

Current Specified Technique

1st step: Setting the current consumption ID

2nd step: Finding the optimum ρ and Vod

2

( )1

os

D

IQ

I

2

1 0.5( ) 3

(1 )sat

t

v

L

( )

( ) 1( )t

F

.

( ) ( ) 0opt I

t

. 2

5 31 1 1

5d

opt Io

Ic

I c

. . .od opt I opt I satV LE

3nd step: Finding the optimum Qs

4th step: Finding the optimum device width Wopt,I

5nd step: Finding the value of ωt.I

. . 2

5 31 1 1

5s opt IQ cc

From 2nd Step:

From 3rd Step & Impendance Matching: .

. .

3 1

2opt Io ox s s opt I

WLC R Q

From 2nd Step:

.. . 2

.

1 0.53

(1 )opt I sat

t I opt Iopt I

v

L

Current Specified Technique

6th step: Finding the optimum device transconductance gm.opt.I

From 2nd , 3rd Step & Impendance Matching:

2. . . . . .2 1 / 2 1m opt I opt I ox sat opt I opt I opt Ig W C v

min, ..

( ) 1 1.81I opt It I

F F

Current Specified Technique

6th step: Finding the optimum device transconductance gm.opt.I

From 2nd , 3rd Step & Impendance Matching:

2. . . . . .2 1 / 2 1m opt I opt I ox sat opt I opt I opt Ig W C v

min, ..

( ) 1 1.81I opt It I

F F

7th step: Finding the optimum Cgs

From 5th , 6th Step : , , , , , ,gs opt I m opt I t opt IC g

Current Specified Technique

6th step: Finding the optimum device transconductance gm.opt.I

From 2nd , 3rd Step & Impendance Matching:

2. . . . . .2 1 / 2 1m opt I opt I ox sat opt I opt I opt Ig W C v

min, ..

( ) 1 1.81I opt It I

F F

7th step: Finding the optimum Cgs

From 5th , 6th Step : , , , , , ,gs opt I m opt I t opt IC g

From 6th , 7th Step & Impendance Matching:

8th step: Finding the optimum Ls

. . . . . .s opt I s gs opt I m opt IL R C g

Current Specified Technique

6th step: Finding the optimum device transconductance gm.opt.I

From 2nd , 3rd Step & Impendance Matching:

2. . . . . .2 1 / 2 1m opt I opt I ox sat opt I opt I opt Ig W C v

min, ..

( ) 1 1.81I opt It I

F F

7th step: Finding the optimum Cgs

From 5th , 6th Step : , , , , , ,gs opt I m opt I t opt IC g

From 6th , 7th Step & Impendance Matching:

8th step: Finding the optimum Ls

. . . . . .s opt I s gs opt I m opt IL R C g

9th step: Finding the optimum Lg

From 6th , 7th Step & Impendance Matching:

, , , ,1g I gs opt I s IL C L

Comparison Results

• Inductive Specified Technique

min, 1 1.64Ls ss

F LR

Comparison Results

• Inductive Specified Technique

min, 1 1.64Ls ss

F LR

0.5 3sL nH

Comparison Results

• Inductive Specified Technique

min, 1 1.64Ls ss

F LR

0.5 3sL nH

Parameters:

50sR

0.18um process

29.8 /oxC mF m

1.2 / secnv m

55.510 /satE V m

0.5L um

Comparison Results

@ 1.6 GHz Vod=120mVID= 1.7mA

• Inductive Specified Technique

Comparison Results

• Inductive Specified Technique

@ 2.5 GHz Vod=120mVID= 1.1mA

Comparison Results

• Inductive Specified Technique

@ 5.5 GHz Vod=120mVID= 0.5mA

Comparison Results

• Inductive Specified Technique

Vod ≤ 150 mV

Comparison Results

• Inductive Specified Technique

@ 1.6 GHz Vod=138mVID= 2.4mA

Comparison Results

• Inductive Specified Technique

@ 2.5 GHz Vod=138mVID= 1.5mA

Comparison Results

• Inductive Specified Technique

@ 5.5 GHz Vod=138mVID= 0.7mA

Comparison Results

• Inductive Specified Technique

Vod ≤ 150 mV

Comparison Results

• Inductive Specified Technique

@ 1.6 GHz Vod=162mVID= 3.2mA

Comparison Results

• Inductive Specified Technique

@ 2.5 GHz Vod=162mVID= 2.1mA

Comparison Results

• Inductive Specified Technique

@ 5.5 GHz Vod=162mVID= 0.7mA

Comparison Results

• Inductive Specified Technique

Vod ≥ 150 mV

Comparison Results

• Inductive Specified Technique

Vod ≥ 150 mV

Comparison Results

• Inductive Specified Technique

Vod ≥ 150 mV

Comparison Results

• Inductive Specified Technique

Vod ≥ 150 mV

Comparison Results

• Inductive Specified Technique

Vod ≥ 150 mV

Comparison Results

• Inductive Specified Technique

Vod ≥ 150 mV

Comparison Results

• Inductive Specified Technique

Ls = 1.2nH NFmin= 6.1dBID= 0.9mA

Comparison Results

• Inductive Specified Technique

Ls = 1nH NFmin= 5.6dBID= 1.4mA

Comparison Results

• Inductive Specified Technique

Ls = 0.8nH NFmin= 5dBID= 2.2mA

Comparison Results

• Inductive Specified Technique

Ls = 0.6nH NFmin= 4dBID= 4mA

Comparison Results

• Inductive Specified Technique

NFminID

Comparison Results

• Inductive Specified Technique

NFminID

Comparison Results

• Inductive Specified Technique

NFminID

Comparison Results

• Inductive Specified Technique

NFminID IDL LS

Comparison Results

• Current Specified Technique

2.

min,. .

(1 )1 1.81

3 (1 0.5 )opt I

Iopt I opt I sat

F Lv

Comparison Results

• Current Specified Technique

0.25 16DI mA 2

.min,

. .

(1 )1 1.81

3 (1 0.5 )opt I

Iopt I opt I sat

F Lv

0.5 3sL nH

Comparison Results

• Current Specified Technique

0.25 16DI mA

Parameters:

50sR

0.18um process

29.8 /oxC mF m

1.2 / secnv m

55.510 /satE V m

0.5L um

2.

min,. .

(1 )1 1.81

3 (1 0.5 )opt I

Iopt I opt I sat

F Lv

0.5 3sL nH

Comparison Results

• Current Specified Technique

@ 1.6 GHz Vod=60mVLS=3.1nH

Comparison Results

• Current Specified Technique

@ 2.5 GHz Vod=76mVLS=2.5nH

Comparison Results

• Current Specified Technique

@ 5.5 GHz Vod=112mVLS=1.7nH

Comparison Results

• Current Specified Technique

@ 1.6 GHz Vod=85mVLS=2.2nH

Comparison Results

• Current Specified Technique

@ 2.5 GHz Vod=107mVLS=1.7nH

Comparison Results

• Current Specified Technique

@ 5.5 GHz Vod=158mVLS=1.2nH

Comparison Results

• Current Specified Technique

Comparison Results

• Current Specified Technique

Vod,opt ≥ 150mV 3nH ≥ LS ≥ 0.5nH

Comparison Results

• Current Specified Technique

NFminID

Comparison Results

• Current Specified Technique

NFminID

Comparison Results

• Current Specified Technique

NFminID IDL LS

Conclusion

• Inductive Specified Technique

Q

s

Ls

ω

t.Ls

Lg Cgs Wopt,Ls gm.opt.Ls ρ ID.Ls

Conclusion

• Inductive Specified Technique

• Current Specified Technique

Q

s

Ls

ω

t.Ls

Lg Cgs Wopt,Ls gm.opt.Ls ρ ID.Ls

Q

s

ID p Lg Cgs Wopt,I gm.opt.I LS,opt,I

ω

t.I

Conclusion

• Inductive Specified Technique

• Current Specified Technique

Q

s

Ls

ω

t.Ls

Lg Cgs Wopt,Ls gm.opt.Ls ρ ID.Ls

Q

s

ID p Lg Cgs Wopt,I gm.opt.I LS,opt,I

ω

t.I

Same Results for Same Numbers from the two techniques

Conclusion

• Inductive Specified Technique

• Current Specified Technique

Q

s

Ls

ω

t.Ls

Lg Cgs Wopt,Ls gm.opt.Ls ρ ID.Ls

Q

s

ID p Lg Cgs Wopt,I gm.opt.I LS,opt,I

ω

t.I

Same Results for Same Numbers from the two techniques

Noise minimization for different values than those for Power Matching X

Conclusion

• Inductive Specified Technique

• Current Specified Technique

Q

s

Ls

ω

t.Ls

Lg Cgs Wopt,Ls gm.opt.Ls ρ ID.Ls

Q

s

ID p Lg Cgs Wopt,I gm.opt.I LS,opt,I

ω

t.I

Same Results for Same Numbers from the two techniques

Future Work:

Work for Linearity Include all the theory in a toolkit for giving Guidelines

Noise minimization for different values than those for Power Matching X

References

[1] Hashemi, H. and Hajimiri A., “Concurrent multiband low-noise amplifiers-theory, design and applications,” IEEE Trans. Mircrowave theory and techniques,52(1), pp.288–301, 2002.[2] Lee, T.H. The design of CMOS Radio Frequency Integrated Circuits., Cambridge Univ. Press, Cambridge, 1998.[3] Voinigescu, S. P., Maliepaard, M.C., Showell, J.L., Babcock, G.E., Marchesan, D., Schroter, M., Schvan, P. and Harame, D.L. “A scalable high-frequency noise model for bipolar transistors with application optimal transistor sizing for low-noise amplifier design,” IEEE J. Solid-State Circuits,32(9), pp.1430–1439, 1997.[4] Shaeffer, D. K. and Lee, T.H., “A 1.5 V, 1.5 GHz CMOS low noise amplifier,” IEEE J. Solid-State Circuits,32(5),745–758,1997.[5] Andreani P. Sjöland H., “Noise optimization of an inductively degenerated CMOS low noise amplifier,” IEEE Trans. Circuits Syst., 48, pp.835–841, Sept. 2001.

Thank you for you attention !