How to Cut Pseudoparabolas into Segments Seminar on Geometric Incidences By: Almog Freizeit.

Post on 20-Jan-2016

217 views 0 download

Tags:

Transcript of How to Cut Pseudoparabolas into Segments Seminar on Geometric Incidences By: Almog Freizeit.

How to Cut Pseudoparabolas into Segments

Seminar on Geometric Incidences

By: Almog Freizeit

A Reminder

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

2

Székely’s method

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

3

Our goal• We want to apply Székely’s method to circles with arbitrary

radii.

• The problem: the graph is not simple

• What can we do?

• We will make the Székely’s graph simple: Cutting into pseudo-segments.

• Each pair of pseudo-segments intersects at most once, and the resulting graph is guaranteed to be simple.

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

4

Our goal

• Example:

Original P and C Cutting into pseudo-segments The Székely graph

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

5

Our goal

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

6

Hisao Tamaki and Takeshi Tokuyama, 1998

The bounds

are not tight

!!

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

7

Terminologies

•Let Γ be an arrangement of pseudoparabolas. The arrangement subdivides the plane into faces. We use the terms cell, edge and vertex for two-, one- and zero-dimensional respectively.

•When two pseudoparabolas intersect twice, they form a closed curve, which we call a lens. We say a lens is a 1-lens if no curve crosses the lens.

•Observation: The cutting number of Γ is notless then the number of 1-lenses

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

8

Lower bound

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

9

Lower bound

• Very carefully, we countedthe number of incidences in this arrangement and succeeded to prove the desiredlower bound.

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

10

Lower bound

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

11

Lower bound

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

12

Lower bound

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

13

Lower bound

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

14

Lower bound

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

15

Upper bound

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

16

Some notations about Hypergraphs

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

17

Our Hypergraph• We define a hypergraph H(Γ)=(X,E):

• X: the set of edges of the arrangement Γ.

• E: each hyperedge is a set of nodes which its corresponding set of edges in the arrangement forms a lens.

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

18

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

19

Computing a covering• A greedy algorithm for computing a covering is the following:

1.Find a node of maximum degree

2.Insert the node to the covering, and remove it and all hyperedges containing it.

3.If all hyperedges are covered, EXIT; Else GOTO 1.

Lovász showed that the greedy algorithm achieves a covering size at most logd(H)+1 times the size of the covering of H. We neither use nor prove this fact, yet we will use and prove a key inequality from his proof.

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

20

Lovász’s Inequality

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

21

Lovász’s Inequality

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

22

Lovász’s Inequality

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

23

So what we had so far?

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

24

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

25)The graph is undirected(

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

26

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

27

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

28

Upper envelope

• On the other hand, the upper envelope of A(C) has at most 5 edges, and the lower envelope of A(D) has at most 7 edges (board)

• Let's place those envelopes together on the plane

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

29

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

30

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

31

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

32Extremal edges

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

33Near 1-lens

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

34

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

35

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

36

Upper bound

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

37

What about circles?• We can obtain these bounds to an arrangement of arbitrary

circles as well:

• We are given an arrangement of n circles.

• Each pair of circles intersect at most twice, but a circle is not an x-monotone curve

• Let's cut each circle with its horizontal diameter, and divide it into an upper half-circle and a lower half-circle.

• Now we connect two vertical downward (resp. upward) rays to an upper (resp. lower) half-circle at its endpoints, and obtain an x-monotone curve separating the plane.

• It is easy to see that every pair of curves intersects at most twice

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

38

What about circles?

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

39

Overview

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

40

Other results

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

41

Terminologies

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

42

Terminologies

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

43

Bounding the number of lunes

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

44

Let's define a graph

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

45

Let's define a graph• Lemma: G is a planar

• Proof: we will show that the plane embedding of G defined before has no pair of crossing edges. This will be a special case of the following more general lemma:

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

46

G is a planar

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

47

G is a planar

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

48

Case 1

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

49

Case 1

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

50

Case 1

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

51

Case 2

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

52

Case 3

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

53

Bounding number of lunes

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

54

Questions?

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

55

Thank you!

08

.12

.20

14

Sem

inar

on

Geom

etr

ic In

cid

en

ces

56