Holistic Energy Analysis of Various Drivetrain Topologies Close to … · 2017. 11. 17. · Daimler...

Post on 10-Oct-2020

1 views 0 download

Transcript of Holistic Energy Analysis of Various Drivetrain Topologies Close to … · 2017. 11. 17. · Daimler...

Folie in Ursprungsform

Wechsel des Folienlayouts

im Menü über:

Start // Absatz // Listenebene Holistic Energy Analysis of Various Drivetrain Topologies Close to

Reality

Benedikt Hollweck / Christian Schnapp / Thomas Kachelriess

European GT Conference, Frankfurt am Main, 9th October 2017

Folie in Ursprungsform

Wechsel des Folienlayouts

im Menü über:

Start // Absatz // Listenebene

Daimler AG GT-Conference / Benedikt Hollweck, Christian Schnapp, Thomas Kachelriess / 09.10.2017 / Page 2

Agenda

1. What is a well-to-wheel analysis and why do we need realistic boundary conditions

and user behaviour?

2. Methodology for the approach to represent realistic boundary conditions and user

behaviour for a well-to-wheel analysis

3. Drivetrains modelled with GT-SUITE

• Plug-In Hybrid Electric Vehicle (ICE-PHEV)

• Range Extender Electric Vehicle (ICE-REEV)

4. Validation/Results of a previous FCEV simulation model

5. Analysis of power losses due to tire rolling resistance

6. Summary

Folie in Ursprungsform

Wechsel des Folienlayouts

im Menü über:

Start // Absatz // Listenebene

Daimler AG GT-Conference / Benedikt Hollweck, Christian Schnapp, Thomas Kachelriess / 09.10.2017 / Page 3

Well-to-Wheel Analysis

A well-to-wheel analysis is the rating of energy consumption and greenhouse gas

emissions arising on the path from the energy source to the wheel.

Evaluation criteria:

Well-to-Tank (WtT) Tank-to-Wheel (TtW)

Well-to-Wheel Analysis (WtW)

Fuel production Vehicle operation

Energy consumption Greenhouse gas emissions

Folie in Ursprungsform

Wechsel des Folienlayouts

im Menü über:

Start // Absatz // Listenebene

Daimler AG GT-Conference / Benedikt Hollweck, Christian Schnapp, Thomas Kachelriess / 09.10.2017 / Page 4

WtW-Analysis: CO2- and Energy comparison of EUCAR

reference vehicles 2020+Fuel Cell: High range (> 500 km), short refueling time (3 min), applicable for different vehicle concepts

Battery: Optimal operation in compact cars for the city traffic (200 - 250 km), recharging over night

Electric drivetrains are a real step to reduce energy consumption and GHG-emissions. Using EVs means a significant step forward.

*GHG: Green House Gas

Source:

JEC, Well-to-Wheel report (version 4), 2014

ICE = Internal combustion engine

BEV = Battery electric vehicle

FCV = Fuel cell vehicle

PHFCV = Plug-In hybrid fuel cell vehicle

0 120604020 200180160

25

50

75

100

125

150

FCEV

(Wind-Electricity, Grid, Centr.

Electrolysis, CH2, FCEV)

BEV

(Wind-/PV-/Water-Electricity,

Grid, Battery EV Li-Ion)

PH-FCEV

(Wind-Electricity, Grid, Centr. Electrolysis,

CH2, PlugIn Hybrid-FCEV)

FCEV

(NG 4000km, Centr. ref.,

Road, CH2, FCEV)

BEV

(EU-Electricity-Mix, Grid,

Battery EV Li-Ion)

Gasoline

Hybrid Gasoline

Diesel

Hybrid Diesel

CNG

Hybrid ICEICE

14010080

Battery-EV

Fuel Cell-EV

Energy Consumption Well-to-Wheel [MJ/100km]

GH

G*

Em

issio

ns [

g C

O2e

q/

km

]

Folie in Ursprungsform

Wechsel des Folienlayouts

im Menü über:

Start // Absatz // Listenebene

Daimler AG GT-Conference / Benedikt Hollweck, Christian Schnapp, Thomas Kachelriess / 09.10.2017 / Page 5

Reference vehicles Reference vehicles(small, medium, large)

SmallMedium Large

Methodology for the approach to represent realistic

boundary conditions and user behaviour for a WtW-analysis

0

1

2

3

4

5

6

7

8

9

10

0-1 1-2

2-3

3-4

4-5

5-6

6-7

7-8

8-9

9-1

0

10

-11

11

-12

12

-13

13

-14

14

-15

15

-16

16

-17

17

-18

18

-19

19

-20

20

-21

21

-22

22

-23

23

-24

Fre

qu

en

cy i

n %

Cluster 10 – 9 am23,59%Average value:7:061 hour simulation duration

Cluster 29 am – 1 pm23,39%

10:54

Cluster 31 – 4 pm19,82%

14:36

Cluster 44 – 7 pm23,16%

17:18

Cluster 57 – 12 pm10,05%

20:36

Starting time in h

Starting times (MiD)

Data of the study:

„Mobilität in Deutschland“ (MiD 2008)

GT-SUITE vehicle simulation model

Weighting factors of

the study “Mobilität

in Deutschland”

Results:

Realistic energy

consumption for a

typical German driver

4*5 climate clusters for Germany

Evaluation by track type

and track length

Results:

Realistic energy

consumption of a

specific user

Specific daytime,

track type and track

length

3 Artemis driving cycles User behaviour(Track-type, traffic

flow, typical driver)

Climate

boundary conditions

and start conditions

Fre

qu

en

cy

Driving distance

Driving performance (MiD)

Source: B. Hollweck, et. al., Energy analyses of fuel cell electric vehicles (FCEVs) under

European weather conditions and various driving behaviours, 6th European PEFC and

Electrolyser Forum, Luzern 2017

Folie in Ursprungsform

Wechsel des Folienlayouts

im Menü über:

Start // Absatz // Listenebene

Daimler AG GT-Conference / Benedikt Hollweck, Christian Schnapp, Thomas Kachelriess / 09.10.2017 / Page 6

Methodology – Modular vehicle simulation with GT-SUITE

Thermal management:

Drivetrain BEV

Drivetrain ATS FCPHEV

Drivetrain ATS FCEV

Drivetrain ATS PHEV

Drivetrain ATS HEV

Drivetrain ATS ICE

gasoline

Drivetrain ATS ICE diesel

Drivetrain:

• BEV

• FC-PHEV / FC-RE

• FCEV

• PHEV / REEV

• ICE gasoline

• ICE diesel

• HEV

Vehicle cabin:

Vehicle cabin small

Vehicle cabin medium

Vehicle cabin large

Vehicle architecture :

• Reference vehicle small

• Reference vehicle medium

• Reference vehicle large

• Driving cycle NEDC

• Driving cycle WLTP

• 3 x Driving cycles user

behaviour

Source: B. Hollweck, et. al., Energy analyses of fuel cell electric vehicles (FCEVs) under

European weather conditions and various driving behaviours, 6th European PEFC and

Electrolyser Forum, Luzern 2017

Folie in Ursprungsform

Wechsel des Folienlayouts

im Menü über:

Start // Absatz // Listenebene

Daimler AG GT-Conference / Benedikt Hollweck, Christian Schnapp, Thomas Kachelriess / 09.10.2017 / Page 8

Simulation model – ICE Range Extender Electric Vehicle (ICE-REEV)

RE-module

Battery

Electric motor

Fuel tank

Combustion engine Generator

3

12

1 ICE Off

2 ICE LPM

3 ICE Alone

4

4 Recuperation

Folie in Ursprungsform

Wechsel des Folienlayouts

im Menü über:

Start // Absatz // Listenebene

Daimler AG GT-Conference / Benedikt Hollweck, Christian Schnapp, Thomas Kachelriess / 09.10.2017 / Page 9

Validation/Results of a previous FCEV simulation model

Characteristic Original NEDC

energy consumption JEC FCEV 2010 [1]

Simulated NEDC energy consumption

JEC FCEV 2010

Original NEDC energy consumption JEC FCEV 2020 [1]

Simulated NEDC energy consumption

JEC FCEV 2020

H2 consumption

[kgH2/100km] 0,624 0,634 0,448 0,434

[1] HUSS, A., HASS, H., MAAS, H., TANK-TO-WHEELS Report Version 4.0, JRC

Technical Reports, European Commission, 2013

NEDC Energy consumption:

Cabin heat-up and cool-down:

[2]

[2] Hollweck, B., Moullion, M., Christ, M., Kolls, G., Wind, J., Energy analyses of fuel cell electric vehicles (FCEVs) under

European weather conditions and various driving behaviours, 6th European PEFC and Electrolyser Forum, Luzern 2017

Folie in Ursprungsform

Wechsel des Folienlayouts

im Menü über:

Start // Absatz // Listenebene

Daimler AG GT-Conference / Benedikt Hollweck, Christian Schnapp, Thomas Kachelriess / 09.10.2017 / Page 10

Analysis of power losses due to tire rolling resistance

• Tire rolling resistance depends on the velocity and tire shoulder temperature

• Model was validated on stationary points and verified on a four-mass-model which

was validated on stationary and transient measurements

• Model consists of two masses

• Model contains all basic thermal transfers and main geometries

• Model fits our needs best: short calculation time and good accuracy

Folie in Ursprungsform

Wechsel des Folienlayouts

im Menü über:

Start // Absatz // Listenebene

Daimler AG GT-Conference / Benedikt Hollweck, Christian Schnapp, Thomas Kachelriess / 09.10.2017 / Page 11

0

-20 20 40

Tem

per

atu

re o

fti

re s

ho

uld

er [

°C]

Ambient temperature [°C]

Temperature of tire shoulder at different ambient temperatures

Measurement data GT tire-model

Analysis of power losses due to tire rolling resistance

Difference of Rolling Resistance Factor due to different tire

shoulder temperature is <5 % in the range from -20 to 40°C.

4-mass-model

at 25 °C

2-mass-GT-model

at 25 °C

2-mass-GT-model

at -20 °C

Total Energy

for rolling resistance

at NEDC

100% 99,9% 148,4%

@ 80km/h and 5.400N normal force 0

0 200 400 600 800 1000 1200

Ro

llin

g re

sist

ance

po

wer

[W

]

Time [s]

Rolling resistance power at NEDC

GT-tire model 25°C 4-mass-model 25°C GT- tire model -20°C

Source: D. Schuring und S. J.F., „Transient Speed and Temperature Effects on Rolling Loss of Passanger

Car Tires,“ SAE Technical Paper, Detroit, 1989.

Folie in Ursprungsform

Wechsel des Folienlayouts

im Menü über:

Start // Absatz // Listenebene

Daimler AG GT-Conference / Benedikt Hollweck, Christian Schnapp, Thomas Kachelriess / 09.10.2017 / Page 12

Summary

• The approach of a Well-to-Wheel analysis was introduced and the need to compare

different drivetrain topologies under realistic boundary conditions and user behaviour

was explained.

• A methodology to represent realistic boundary conditions and user behaviour for a

Well-to-Wheel Analysis was presented.

• The simulation models of a Plug-In Hybrid Electric Vehicle and a Range Extender

Electric Vehicle were shown and explained.

• Validation for energy consumption during NEDC and cabin heat-up for a FC-BEV was

shown

• Simulation model for power losses due to tire rolling resistance was explained and

results compared

Folie in Ursprungsform

Wechsel des Folienlayouts

im Menü über:

Start // Absatz // Listenebene

Thank you for your attention!