HC 399 Presentation Hidekel A. Moreno Luna. Hydrogen Consumption Purposes Transportation ...

Post on 23-Dec-2015

218 views 2 download

Tags:

Transcript of HC 399 Presentation Hidekel A. Moreno Luna. Hydrogen Consumption Purposes Transportation ...

HYDROGEN ENERGY PRODUCTION USING NUCLEAR TECHNOLOGIES

HC 399 PresentationHidekel A. Moreno Luna

Hydrogen Consumption Purposes Transportation

Automobiles Buses Bicycles Motorcycles and Scooters Rocket AirplanesEnergy Storage

Fuel Cell

Hydrogen Energy Production Today

Production Hydrogen fuel can be obtain through many thermo chemical

methods utilizing: Natural gas Coal Liquefied petroleum Biomass Water Geothermal

Today 85% of hydrogen produced is from removing sulfur from gasoline.

Fig. 1. World hydrogen supply. Source: International Association for Hydrogen Energy (IAHE)

Investment

Storage: Usually store as liquid

hydrogen in compressedhydrogen storage tanks.

Fig. 2: Energy Investment. Source: IAHE

Nuclear Energy Background

Nuclear energy in 2005 accounted for 2.1% of the world’s energy and 15% of the electricity.

In 2007 the International Atomic Energy Agency reported that there were 439 nuclear plants in the world in 31 countries.

Map , next slide.

Electricity Production from nuclear processes It originates from splitting uranium atoms(fission). The

released energy is use to make steam which is used to run a turbine that produces electricity. In the US 19% of the electricity comes from nuclear processes (US Environmental Protection Agency EPA)

Fig. 3. Nuclear Power Stations . Source: Wikipedia.org http://en.wikipedia.org/wiki/File:Nuclear_

power_station.svg

Machinery that can be used to produce electricity and hydrogen

Examples Modular Helium Reactor(MHR) Advance High Temperature Reactor(AHTR) Secure Transportable Autonomous

Reactor(SFR)

Fig.4.Technology options for nuclear hydrogen production. Source: IAHE

Efficiency figures F:\HC 399\Efficiency of hydrogen

production systems using alternative nuclear energy technologies.htm

Successful countries France

Fig.5. Electricity Production Source: International Electricity Generation

Conversion between both productions (Nuclear and hydrogen)

Nuclear energy can be used in hydrogen production in three main ways: By using the electricity from the nuclear

plant for conventional liquid water electrolysis.

By using high-temp. heat and electricity from the nuclear plant for high temp. steam electrolysis or the hybrid process.

Using the heat for thermo chemical processes.

Machinery options MHR: operating temperature 800 C AHTR: operating temp. 1000C (not built yet) AGR: operating temp. 750C

14 units in the world, originally built in UK. CO2 coolant!

STAR-H2: operating temp. 500C Based on Russian Submarine reactor, not been

built commercially yet. SFR: operating temp. 500c

Sodium cooled for efficient management. Solid demonstration in Russia, France, and the US.

Fig.6. The gas turbine-modular helium reactor. Source: General Atomics

Fig.7.Advanced Gas Reactor. Source: Österreichisches Ökologie-Institut

Fig.8.SFR. Source: Idaho National Laboratory

Approach Electrochemical   Thermochemical  

   

   

4-5 Feature Water electrolysisHigh temperatures steam electrolysis Steam-methane reformingThermochemical water splitting

Required temperature, (°C) <100, at Patm >500, at Patm >700

>800 for S-I and WSP >700 for UT-3 >600 for Cu–Cl

Efficiency of the process (%) 85–90

90–95 (at View the MathML source)

>60, depending on temperature >40, depending on TC cycle and temperature

Energy efficiency coupled to LWR, or ALWR%

not, vert, similar27 not, vert, similar30 Not feasible Not feasible

Energy efficiency coupled to MHR, ALWR, ATHR, or S-AGR (%) >35

>45, depending on power cycle and temperature

>60, depending on temperature >40, depending on TC cycle and temperature

AdvantageView the MathML source technology

View the MathML source efficiency View the MathML sourcebe coupled to reactors operating at intermediate temperatures View the MathML sourceCO2 emission

View the MathML source technology View the MathML sourceCO2 emission View the MathML source CO2 emission

Disadvantage

View the MathML source energy efficiency

View the MathML source development of durable, large-scale HTSE units

View the MathML source emissionsView the MathML source on methane prices

View the MathML source chemistry View the MathML sourcevery high temperature reactors View the MathML sourcedevelopment at large scale

Table 1.1 Advantages and Disadvantages for different approaches of energy. Source: IJHE

Hydrogen Energy Production in the Future requires change in the technology. Such change figures cannot be calculated yet because

we are still in early phases of development.

Demand: because nuclear plants are characterized by high capital cost and low operation cost, we can expect that by using the techniques develop for natural gas transportation(pipes); we could increase the storage capacity. According to the International Journal of Hydrogen Energy (IJHE), H2 storage in large volumes is expected to be relatively low cost.

Future for Hydrogen Energy?

Questions?

Fuel cell type Mobile ion Operatingtemperature

Applications and notes

Alkaline (AFC) OH− 50–200◦C e.g. Apollo, Shuttle.Proton exchangemembrane

(PEMFC) H+ 30–100◦C Vehicles and mobile applications, and forlower power

CHP systemsDirect methanol(DMFC)

H+ 20–90◦C Suitable for portable electronic systems of lowpower, running for long times

Phosphoric acid(PAFC)

H+ ∼220◦C Large numbers of 200-kW CHP systems in use.

Molten carbonate(MCFC) CO3

2− ∼650◦C Suitable for medium- to large-scale CHPsystems, up to MW capacity

Solid oxide(SOFC)

O2− 500–1000◦C Suitable for all sizes of CHP systems, 2kW tomulti-MW.

Table 1.2 Data for different types of fuel cell. Source: Fuel Cell Systems Explained

Second Edition

Fig. 9,10. Refueling infrastructure for hydrogen vehicles. Source: Journal of Power Sources

Fig.11. Capital cost of hydrogen infrastructure. Fuel. Source: Journal of Power Sources

Fig.12. Capital cost for developing new hydrogen production Source: Journal For Power Sources

Works Cited

Bilge, Yildiz, and Mugid Kazimi. "Efficiency of hydrogen production systems using alternative nuclear energy technologies ." International Journal of Hydrogen Energy 31.1 (2006): 77-92. Web. 1 Oct 2009. <F:\HC 399\Efficiency of hydrogen production systems using alternative nuclear energy technologies.htm>.

Forsberg, Charles. "Hydrogen, nuclear energy,and the advanced high temperature reactor." International Journal of Hydrogen Energy 28.10 (2003): 1073-1081. Web. 1 Oct 2009. <F:\HC 399\Hydrogen, nuclear energy, and the advanced high-temperature reactor.htm>. 3

Ogden, Joan, Margaret Steinbugler, and Thomas Kreutz. "A comparison of hydrogen, methanol and gasoline as fuels for fuel cell vehicles: implications for vehicle design and infrastructure development ." 79.2 (1999): 143-168. Web. 1 Oct 2009. <http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TH1-3WH67HF2&_user=576687&_coverDate=06%2F30%2F1999&_rdoc=1&_fmt=full&_orig=search&_cdi=5269&_sort=d&_docanchor=&view=c&_searchStrId=1046819818&_rerunOrigin=scholar.google&_acct=C000029364&_version=1&_urlVersion=0&_userid=576687&md5=92d3453a814ec1758d3724b5ccfb227c#toc18>.

Wikipedia, . "Hydrogen vehicle." Web. <http://en.wikipedia.org/wiki/Hydrogen_vehicle>.