Han Uitenbroek National Solar Observatory/Sacramento Peak...

Post on 24-Apr-2020

4 views 0 download

Transcript of Han Uitenbroek National Solar Observatory/Sacramento Peak...

Molecular Spectral Lines

Han UitenbroekNational Solar Observatory/Sacramento Peak

Sunspot, USA

Hale COLLAGE, Boulder, Feb 23, 2016

Han Uitenbroek/NSO Molecular Spectral Lines

Molecular Spectral Lines in the Solar Spectrum

Molecules are abundant in the solar atmosphere, in particularin cooler areas like Sunspot umbrae.

The G band is one of the most used pass bands in solar highresolution imaging. Its major source of opacity is a band oflines of the CH molecule.

CO lines are important temperature diagnostics for the solaratmosphere.

Molecules are sensitive to the Zeeman effect, and have muchmore diverse sensitivity than atomic lines. This can be used toadvantage.

In some cases molecular lines can be used for abundancedeterminations when spectral lines of one of the constituentsare not readily observable (Fluorine).

Han Uitenbroek/NSO Molecular Spectral Lines

CO Lines in the Solar Spectrum

2142.0 2142.5 2143.0 2143.5Wave number [cm−1]

4.0•10−9

4.5•10−9

5.0•10−9

5.5•10−9

6.0•10−9

Inte

nsity

[J s

−1 m

−2 H

z−1 s

r−1 ]

4668 4667 4666 4665Wavelength [nm]

4500

5000

5500

6000

Brig

htne

ss T

empe

ratu

re [K

]

6−

5 R

46

7−

6 R

106

2−

1 R

21

[13]

2−

1 R

6

3−

2 R

14

7−

6 R

67

6−

5 R

126

4−

3 R

23

3−

2 R

31

[13]

7−

6 R

105

5−

4 R

120

[13]

5−

4 R

59

[13]

4−

3 R

43

[13]

5−

4 R

139

7−

6 R

68

4−

3 R

136

[13]

6−

5 R

47

Han Uitenbroek/NSO Molecular Spectral Lines

Water Lines in Umbral Spectrum

Han Uitenbroek/NSO Molecular Spectral Lines

Degrees of Freedom and Energy Levels Diatomic Molecule

Energy Levels:

Translational energy:

Etrans =1

2mv2 =

p2

2m

Rotational energy:

Erot = L2/2I

= J(J + 1)~2/µr20

Vibrational energy:

Evibr =

(v +

1

2

)~ω

Han Uitenbroek/NSO Molecular Spectral Lines

Electronic States in Diatomic Molecule

Han Uitenbroek/NSO Molecular Spectral Lines

Electronic States in Diatomic Molecule

Han Uitenbroek/NSO Molecular Spectral Lines

Energy Levels of the ground State (X) of the CO Molecule

0 1 2 3 4 5 6 7 8 900Vibrational level

0

1

2

3

4

5E

nerg

y [e

V]

Han Uitenbroek/NSO Molecular Spectral Lines

Vibration-Rotation Transitions in CO ground State

0 1 2 3Vibration number

2.2

2.4

2.6

2.8

3.0

3.2

3.4E

[eV

]P branchR branch

110 109 108 107 106 105 104 103 102 101

Han Uitenbroek/NSO Molecular Spectral Lines

Molecular Lines are grouped in Bands

4000 4500 5000 5500 6000 6500 7000Wavelength [nm]

10−8

10−7

10−6

10−5

10−4

10−3

Line

str

engt

h

1 − 0 transitions3 − 2

Bandheads T = 4000 K

R branch

P branch

2400 2200 2000 1800 1600Wavenumber [cm−1]

Han Uitenbroek/NSO Molecular Spectral Lines

Example: CN band head at 388.3 nm

387.0 387.5 388.0 388.5 389.0Wavelength [nm]

0.0

0.2

0.4

0.6

0.8

1.0R

ela

tive Inte

nsity

CenterLimb [λ=0.2]

Han Uitenbroek/NSO Molecular Spectral Lines

Abundance of Molecules:

Abundance of atomic Species:

ntotA = AAnH

Chemical equilibrium:

nAnBnAB

=

(2πmABkT

h2

)3/2

e−D/kT(UA(T )UB(T )

QAB(T )

)mAB =

mAmB

mA + mB

Non-linear set of coupled equations:

nAB − nAnBΦAB(T ) = 0

nA + nAB = AAnH

nB + nAB = ABnH

Han Uitenbroek/NSO Molecular Spectral Lines

Molecular Concentrations in the Solar Atmosphere

FALC_82.atmos (Thu Apr 13 10:17:01 2000)

−500 0 500 1000 1500 2000 2500Height [km]

10−25

10−20

10−15

10−10

10−5

n mol

ecul

e / n

Htot

H2H2+C2N2O2CHCOCNNHNOOHH2OH−

Han Uitenbroek/NSO Molecular Spectral Lines

CO Concentration in Vertical Magneto-Comvection Slice

13

14

15

16

17

18

19

log(

n CO

/ m−

3 )

0

1 2 3 4 5 6x [Mm]

−0.2

0.0

0.2

0.4

0.6

z [M

m]

15.015

.0

15.0

16.016

.0

17.017.0

17.017.0

18.0

18.0

18.018.0

18.5

18.5 18.5

18.5

18.5

3−2 R14

7−6 R68

3.60

3.70

3.80

3.90

4.00

log(

Tem

pera

ture

/ K

)

−0.2

0.0

0.2

0.4

0.6z

[Mm

]

Han Uitenbroek/NSO Molecular Spectral Lines

CH Concentration in Magneto-Convection Slice

nCH / nH

0 2•10−8 4•10−8 6•10−8 8•10−8 1•10−7

−0.2

0.0

0.2

0.4

z [

Mm

]

0 1 2 3 4 5 6 7 8x [arcsec]

Han Uitenbroek/NSO Molecular Spectral Lines

G-band Intensity as Tracer of Small-scale Magnetic Field

Courtesy: LMSAL, SVT La Palma

Han Uitenbroek/NSO Molecular Spectral Lines

Filter Integrated Intensity

429.0 429.5 430.0 430.5 431.0 431.5 432.0wavelength [nm]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5In

tens

ity [1

0−8 J

m−

2 s−

1 Hz−

1 sr−

1 ]

Filter signal:

f =

∫ ∞0

Iλfλdλ

Han Uitenbroek/NSO Molecular Spectral Lines

Molecular Bands in the Blue

429.0 429.5 430.0 430.5 431.0 431.5 432.0Wavelength [nm]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Inte

nsity

[10−

8 J m

−2 s

−1 H

z−1 s

r−1 ]

387.0 387.5 388.0 388.5 389.0 389.5Wavelength [nm]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Inte

nsity

[10−

8 J m

−2 s

−1 H

z−1 s

r−1 ]

Han Uitenbroek/NSO Molecular Spectral Lines

Filtergrams in CH and CN Bands

G−band filter intensity

1.0 1.5 2.0 2.5

0

1

2

3

4

5

6

7

8

y [

arcs

ec]

0 1 2 3 4 5 6 7 8x [arcsec]

CN 388.3 filter intensity

0.5 1.0 1.5 2.0 2.5

0

1

2

3

4

5

6

7

8

y [

arcs

ec]

0 1 2 3 4 5 6 7 8x [arcsec]

Han Uitenbroek/NSO Molecular Spectral Lines

Filtergrams in CH and CN Bands

G−band filter intensity

1.0 1.5 2.0 2.5

0

1

2

3

4

5

6

7

8

y [

arcs

ec]

0 1 2 3 4 5 6 7 8x [arcsec]

CN 388.3 filter intensity

0.5 1.0 1.5 2.0 2.5

0

1

2

3

4

5

6

7

8

y [

arcs

ec]

0 1 2 3 4 5 6 7 8x [arcsec]

Han Uitenbroek/NSO Molecular Spectral Lines

Comparison of Observed and Calculated Spectra

387.0 387.5 388.0 388.5 389.0 389.5Wavelength [nm]

0.0

0.2

0.4

0.6

0.8

1.0

1.2R

elat

ive

inte

nsity

429.0 429.5 430.0 430.5 431.0 431.5 432.0Wavelength [nm]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Rel

ativ

e in

tens

ity

Han Uitenbroek/NSO Molecular Spectral Lines

Detailed Spectra of Granule and Bright Point

430.20 430.25 430.30 430.35 430.40wavelength [nm]

0

1

2

3

4

Inte

nsity

[10−8

J m

−2 s

−1 H

z−1 s

r−1]

388.15 388.20 388.25 388.30 388.35wavelength [nm]

0

1

2

3

Inte

nsity

[10−8

J m

−2 s

−1 H

z−1 s

r−1]

averagegranulebright point

Han Uitenbroek/NSO Molecular Spectral Lines

Concentration of CH Molecule and Magnetic Field

101110121013

101410151016

CH

co

nce

ntr

atio

n [m

−3]

−0.2

0.0

0.2

0.4H

eig

ht [M

m]

0.0

0.5

1.0

1.5

2.0

2.5

Fie

ld S

tre

ng

th [kG

]

0

2 4 6 8 10x [Mm]

−0.2

0.0

0.2

0.4

He

igh

t [M

m]

Han Uitenbroek/NSO Molecular Spectral Lines

Formation Height of CH band

T [103 K]

6 8 10

−0.2

0.0

0.2

0.4

y [

Mm

]

0 1 2 3 4 5x [Mm]

µ = 0.93

Han Uitenbroek/NSO Molecular Spectral Lines

The Zeeman effect in atoms

H

M

L

J S

MJ = −J,−J + 1, . . . , J − 1, J

Jz = MJ~E = E0 + gLMJµHH

gL =3

2+

S(S + 1)− L(L + 1)

2J(J + 1)

0+1

−10 0

+1+2

−1−2

MM

M

S P D011

J

JJ

11 2

Han Uitenbroek/NSO Molecular Spectral Lines

Splitting pattern for Fe i 630.25 nm and 630.15 nm

−2 0 2Wavelength shift [Larmor units]

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

Nor

mal

ized

str

engt

h

gLeff = 2.500

5D0 − 5P1

π − component

ρ+

ρ−

−3 −2 −1 0 1 2 3Wavelength shift [Larmor units]

−0.6

−0.4

−0.2

0.0

0.2

Nor

mal

ized

str

engt

h

gLeff = 1.667

5D2 − 5P2

π − component

ρ+

ρ−

Han Uitenbroek/NSO Molecular Spectral Lines

Zeeman effect in molecules: Hund’s Case (a) and (b)

J

H

M R

ΛΣ

Ω

Hund’s case (a)

J

S

RN

Λ

H

M

Hund’s case (b)

Han Uitenbroek/NSO Molecular Spectral Lines

Comparison of effective Lande factors

Interaction energy:

E = gLMJ (e~/2mec)B

Lande factor for atomic energy level:

gL =3

2+

S(S + 1)− L(L + 1)

2J(J + 1)

Lande factor for molecular energy level in Hund’s case (b):

gL =MJ

J(J + 1)

Λ2 [J(J + 1) + N(N + 1)− S(S + 1)]

2N(N + 1)+

[J(J + 1)− N(N + 1) + S(S + 1)]

Han Uitenbroek/NSO Molecular Spectral Lines

Splitting Patterns for Main Branch (∆N = ∆J) J ′′ = 3.5

−2 −1 0 1 2Shift [Larmor units]

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15S

treng

th

gLeff = −0.363

Branch: P11

−1.0 −0.5 0.0 0.5 1.0Shift [Larmor units]

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

Stre

ngth

gLeff = −0.494

Branch: P22

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5Shift [Larmor units]

−0.15

−0.10

−0.05

0.00

0.05

Stre

ngth

gLeff = 0.464

Branch: Q11

−0.5 0.0 0.5Shift [Larmor units]

−0.15

−0.10

−0.05

0.00

0.05

Stre

ngth

gLeff = −0.083

Branch: Q22

−0.5 0.0 0.5Shift [Larmor units]

−0.10

−0.05

0.00

0.05

0.10

Stre

ngth

gLeff = 0.475

Branch: R11

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6Shift [Larmor units]

−0.10

−0.05

0.00

0.05

0.10

Stre

ngth

gLeff = 0.192

Branch: R22

Jl = 3.5

Han Uitenbroek/NSO Molecular Spectral Lines

Splitting Patterns for Main Branch J ′′ = 15.5

−0.4 −0.2 0.0 0.2 0.4Shift [Larmor units]

−0.02

0.00

0.02

Stre

ngth

gLeff = −0.068

Branch: P11

−0.2 −0.1 0.0 0.1 0.2Shift [Larmor units]

−0.02

0.00

0.02

Stre

ngth

gLeff = −0.126

Branch: P22

−0.2 0.0 0.2Shift [Larmor units]

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.01

Stre

ngth

gLeff = 0.075Branch: Q11

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3Shift [Larmor units]

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.01

Stre

ngth

gLeff = −0.051Branch: Q22

−0.2 −0.1 0.0 0.1 0.2Shift [Larmor units]

−0.02

0.00

0.02

Stre

ngth

gLeff = 0.124

Branch: R11

−0.2 0.0 0.2Shift [Larmor units]

−0.02

0.00

0.02

Stre

ngth

gLeff = 0.058

Branch: R22

Jl = 15.5

Han Uitenbroek/NSO Molecular Spectral Lines

Effective Lande Factor of CH A2∆–X2Π System(Main Branches)

0

5 10 15 20 25 30J’’

−2

−1

0

1

2g e

ff

P11 P22

Q11

Q22

R11

R22

See also: Berdyugina & Solanki, 2002

Han Uitenbroek/NSO Molecular Spectral Lines

The G band Stokes V Spectrum with B = 103 G

431.00 431.10 431.20 431.30 431.40 431.50Wavelength [nm]

0

5.0•10−9

1.0•10−8

1.5•10−8

2.0•10−8

2.5•10−8

3.0•10−8

Inte

nsi

ty [J

m−

2 s

−1 H

z−1 s

r−1]

431.00 431.10 431.20 431.30 431.40 431.50Wavelength [nm]

−5•10−9

0

5•10−9

Sto

kes

V [J

m−

2 s

−1 H

z−1 s

r−1]

Han Uitenbroek/NSO Molecular Spectral Lines

Sunspot observations in the G band

2000

4000

6000

8000

Co

un

ts

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Re

lative

in

ten

sity

−1

0

1

Ve

locity [

km

]

Han Uitenbroek/NSO Molecular Spectral Lines

Observed Sokes V in the G band

430.2 430.4 430.6 430.8 431.0 431.2 431.4Wavelength [nm]

0.0

0.2

0.4

0.6

0.8

1.0

1.2S

tokes I / I

cont

430.2 430.4 430.6 430.8 431.0 431.2 431.4Wavelength [nm]

−0.2

−0.1

0.0

0.1

0.2

Sto

kes V

/ I

cont

Han Uitenbroek/NSO Molecular Spectral Lines

Magnetogram in CH line

−2000

−1000

0

1000

Ma

gn

etic f

ield

[G

au

ss]

Han Uitenbroek/NSO Molecular Spectral Lines

Determination of Fluorine (F) Abundance

Fluorine is an important element in tracing the mechanisms ofstellar nucleosynthesis and the chemical history of the Galaxy.

Having an almost full outer electron shell, the first excitedlevel from the ground state lies at 102,000 cm−1 (12.65 eV).Almost nothing in the photosphere can excite this, so higherlying levels are almost not populated, making associated linesvery weak.

The HF molecule has line in the 2.3 micron range, but HF hasa low dissociation energy (5.87 eV) and only exists in sunspotumbrae in the solar atmosphere.

Han Uitenbroek/NSO Molecular Spectral Lines

Determining the effective temperature of Sunspot atlasobservation

1564.6 1564.8 1565.0 1565.2 1565.4 1565.6wavelength [nm]

0.0

0.2

0.4

0.6

0.8

1.0

rela

tive inte

nsity

OH

15

65

.06

OH

15

65

.08

OH

15

65

.19

OH

15

65

.35

OH

15

65

.41

OH

15

65

.51

AO = 8.66

MACKKL

Teff 4250

Teff 4500

Maiorca, Uitenbroek, Uttenthaler, Randich, Busso, Magrini 2014,ApJ 788, 149

Han Uitenbroek/NSO Molecular Spectral Lines

Fitting of the Fluorine lines with AF = 4.40

Han Uitenbroek/NSO Molecular Spectral Lines

Partition Function of Discrete System

In a closed system with discrete states i = 1, . . . ,N, andcorresponding energy levels Ei and statistical weights gi , thepartition function Z (T ) is given by:

Z (T ) =N∑i=1

gie−Ei/kT

Back

Han Uitenbroek/NSO Molecular Spectral Lines