FUSE results on deuterium abundances; What can we learn from D/O and D/N ratios?

Post on 11-Jan-2016

27 views 0 download

Tags:

description

FUSE results on deuterium abundances; What can we learn from D/O and D/N ratios?. Guillaume H ÉBRARD Institut d’Astrophysique de Paris LoLa-GE meeting International Space Science Institute, Bern February 24 rd , 2004. Current address: Guillaume Hébrard The Johns Hopkins University - PowerPoint PPT Presentation

Transcript of FUSE results on deuterium abundances; What can we learn from D/O and D/N ratios?

FUSE results on deuterium abundances;FUSE results on deuterium abundances;

What can we learn from D/O and D/N ratios?What can we learn from D/O and D/N ratios?

Guillaume HGuillaume HÉBRARDÉBRARDInstitut d’Astrophysique de Paris

LoLa-GE meeting

International Space Science Institute, BernFebruary 24rd, 2004

Guillaume Hébrard

Institut d’Astrophysique de Paris

98bis, boulevard Arago

F-75014 Paris

phone: (33 1) 44 32 80 78

fax: (33 1) 44 32 80 01

email: hebrard@iap.fr

Current address:

Guillaume Hébrard

The Johns Hopkins University

Department of Physics & Astronomy

Bloomberg, room 144B

3400 North Charles Street

Baltimore, MD 21218

USA

phone: 410 516 7496

fax: 410 516 5494

email: hebrard@pha.jhu.edu

Hébrard & Moos (2003): ApJ 599, 311Hébrard & Moos (2003): ApJ 599, 311This paper includes most of the references quoted in this talk

Three kinds of abundance measurements:

– Primordial (14 x 109 year)

– Proto-solar (4.5 x 109 year)

– Interstellar (present epoch)

Deuterium: tracer of chemical evolution

Rogerson & York (1973)

Copernicusβ Cen

D/H measurements (70’, 80’, 90’): spatial variations or not?

Ferlet et al. (1995)

(Linsky et al. 1995)

FUSEFUSEFFar ar UUltraviolet ltraviolet SSpectroscopic pectroscopic EExplorerxplorer

Wavelength (Å)

Nu

mb

er

of

line

s

(pe

r 1

00

Å in

terv

al)

Photons energy (eV)

Ground

June 24th, 1999

HD

H2

Atoms & Ions

FUSE in few words

Total cost: ~250 106 US$

Duration: 3 + 2 years (+ 2 years)

Cycles 1, 2 & 3 (PI + GI): 1999 → 2003

Cycle 4 (GI): April 2003 → March 2004

Cycle 5 (GI): Begins in April 2004(80 programs selected)

Cycle 6 (GI): July 2004(deadline: Sept. 17th, 2004)

FUSE Science Conference Victoria (Canada)August 2-6, 2004

Web: http://fuse.pha.jhu.eduhttp://fuse.pha.jhu.edu

About 3500 observations already performed (2700 public)

Equivalent widths measurements

→ curves of growth

Friedman et al. (2002)

Profile fitting

Wood et al. (2002)

Example of a line fit

Wavelength (Å)

Flu

x

WD 2211-495

FUSE MDRS SiC2A

D I

Hébrard et al. (2002)

Profile fitting (Voigt) with Owens.f (M. Lemoine)

Ly

Ly

Ly

Ly

Ly

Ly

Ly

Ly

Ly

Ly

Ly

Ly

Ly

DI

DI

DIDI

DIDI

DIDI

DIDI

DI

DI

DI

DI

DI

DIDI

DIDI

OI

OIOIOIOI

OI

OIOI

OI OI OI OI OI OI

OI

OI DIOI

OIOIOIOI

OI

OIOI

OIOIOIOIOI

O ID I

Hébrard et al. (2002)

Results toward 24 targets

Overview:

Hébrard & Moos (2003)

ApJ 599, 297-311.

Moos et al. (2002)Friedman et al. (2002)

Hébrard et al. (2002)

Kruk et al. (2002)

Lemoine et al. (2002)

Lehner et al. (2002)

Sonneborn et al. (2002)

Wood et al. (2002)

Hoopes et al. (2003)

Oliveira et al. (2003)

White dwarf

Most local ISM

Subdwarf

More distant ISM

D/O

Hébrard & Moos (2003)

D/N

Hébrard & Moos (2003)

D/O vs. D/N

Hébrard & Moos (2003)

2 = 8.4 for 13 d.o.f.

d.o.f. = degrees of freedom

2 = 117.9 for 23 d.o.f.

2 = 189.9 for 23 d.o.f.

D/OD/O

D/ND/N2 = 37.3 for 13 d.o.f.

Hébrard & Moos (2003)

Local Bubble

D/O = ( 3.84 ± 0.16 ) x 10-2 • Moos et al. (2002)

5 targets in LB →

D/O = ( 3.76 ± 0.20 ) x 10-2

• Oliveira et al. (2003)

8 targets in LB →

D/O = ( 3.87 ± 0.18 ) x 10-2

• Hébrard & Moos (2003)

14 targets in LB →

D/O = ( 3.84 ± 0.16 ) x 10-2

D/O

Hébrard & Moos (2003) log N(HI) = 19.3 – 19.4

→ Local Bubble wall (Sfeir et al. 1999)

D/O

If D/H = 1.5 0.1 x 10-5 (Linsky 1998)

or D/H = 1.52 0.08 x 10-5 (Moos et al. 2002),

with O/H = 3.43 0.15 x 10-4

D/O = 4.4 0.3 x 10-2

If D/O = 3.84 0.16 x 10-2,

with O/H = 3.43 0.15 x 10-4 (Meyer 2001)

D/H = 1.32 0.08 x 10-5

D/O = (D/H) / (O/H)

If D/O is homogeneous in the LB

D/H and O/H homogeneous in the LB

Hébrard & Moos (2003)

D/O in the Local Bubble

D/H

O/H

D/O

Hébrard & Moos (2003)

Local Bubble

Which value for D/O is representative of the present epoch?

D/O

Hébrard & Moos (2003)

Local Bubble

D/O = ( 3.96 ± 0.15 ) x 10-2

2 = 12.5 for 15 d.o.f.

Hébrard & Moos (2003)

D/O

Hébrard & Moos (2003)

D/O vs. D/N

Hébrard & Moos (2003)

Local Bubble

D/O = (1.50 ± 0.25) x10-2

→ D/H = (5.2 ± 0.9) x10-6

D/O

Hébrard & Moos (2003)

HD191877 (Hoopes et al. 2003)

HD195965 (Hoopes et al. 2003)

LSS1274 (Hébrard & Moos 2003)

Local Bubble

D/N = (1.15 ± 0.16) x10-1

D/N

Hébrard & Moos (2003)

→ D/H = (8.6 ± 1.3) x10-6

HD191877 (Hoopes et al. 2003)

HD195965 (Hoopes et al. 2003)

LSS1274 (Hébrard & Moos 2003)

2 high values (D/H > 2 x10-5):

2 Vel (Sonneborn et al. 2000): → D/H = (2.18 ± 0.20) x10-5

– Feige 110 (Friedman et al. 2002): → D/H = (2.14 ± 0.41) x10-5

5 low values (D/H < 1 x10-5):

Ori A (Laurent et al. 1979; Jenkins et al. 1999): → D/H = (0.74 ± 0.11) x10-5

Sco (York 1983): → D/H = (0.76 ± 0.25) x10-5

Car (Allen et al. 1992): → D/H = (0.50 ± 0.16) x10-5

– HD191877 (Hoopes et al. 2003): → D/H = (0.78 ± 0.20) x10-5

– HD195965 (Hoopes et al. 2003): → D/H = (0.85 ± 0.15) x10-5

2 extra low values in Orion (ISO, HD molecule):

– Orion molecular outflow (Bertoldi et al. 1999): → D/H = (0.76 ± 0.29) x10-5

– Orion Bar (Wright et al. 1999): → D/H = (1.0 ± 0.3) x10-5

Previous distant D/H measurements

Hébrard & Moos (2003)

Hébrard & Moos (2003)

Galactocentric gradient?

Chiappini, Renda, & Matteucci (2002)

d log (D/N) / dR

0.14 dex / kpc

d log (D/O) / dR

0.13 dex / kpc

t = 14 Gyr

t = 14 Gyr

Hébrard & Moos (2003)

5.2

2.8 2.8

2.0

1.1 1.1

O/H: depletion

André et al. (2003)Meyer et al. (1998)

Chiappini, Renda, & Matteucci (2002)

t = 14 Gyr

D/O 4.0 x 10-2

D/O 2.5 x 10-2

R (kpc)

• QSO 0105+1619 : D/O = (280 ± 30) x10-2 (O’Meara et al. 2001)• QSO 0347-3819 : D/O = (37 ± 3) x10-2 (Levshakov et al. 2002)

= (21 ± 4) x10-2 (D’Oddorico et al. 2001)• QSO 1243+3047 : D/O = (3000 ± 300) x10-2 (Kirkman et al. 2003)

• Complex C : D/O = (28 ± 12) x10-2 (Sembach et al. 2004)

QSOQSO

D/O = (1.50 ± 0.25) x 10-2

HD/H2

Dense clouds:

HD/H2 = 2 x D/H

Ferlet et al. (2000)

More than 100 HD

detections with FUSE

Future work

D H (105)

Hébrard et al. (2000)

Deuterium Balmer seriesDeuterium Balmer series

Future work

A&A 354, L79 and A&A 364, L31

– D/O and D/N are less sensitive to systematic errors than D/H;

– D/H is homogeneous within the Local Bubble (~100pc) and is 1.5 x 10-5 (direct measurement) or 1.3 x 10-5 (measurement via D/O);

– This local value IS NOT the canonical value of (D/H)ISM, characteristic of material at the present epoch;

– The (D/H)ISM ratio characteristic of the present epoch is likely to be significantly lower than the local value.

Conclusions:

FUSE

Hébrard & Moos (2003)